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Since it is possible for aΠ
b(l + G) to exist and not be zero

when G is unbounded and 1 -J- G. is not bounded away from
zero, the conditions under which products of the form
I /7Γ[1 + G(xq-u Xq)] I are bounded or bounded away from zero
for suitable subdivisions {xq}% of [a, b] are important in many
theorems concerning product integrals. Conditions are ob-
tained for such bounds to exist for products of the form
77(1 + FG) and 77(1 + F + G), where F and G are functions
from R x R to R. Further, these results are used to obtain
an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type,
and functions are from the subset {(x, y):x<y} of R x R to R, where
R represents the set of real numbers. If D — {xq}% is a subdivision
of [a, δ] and G is a function, then D(I) = {[xq-l9 xq]}l and Gg =
G{xq-Uxq). The statements that G is bounded, GeOP°,GeOQ° and
G 6 OB° on [α, 6] mean there exist a subdivision D of [α, 6] and a
positive number B such that if J = {xq}% is a refinement of D, then

(1) \G(u)\ <B for ueJ(I),
(2) \Π r(l+ Gq)\ <B f o r l ^ r ^ s ^ n,
( 3 ) \Π8

r(l + Gq)\ > B for 1 ^ r ^ s ^ n9 and
(4) ^ ( / ) | G | < 5 ,

respectively. The notation {αv}?(9) represents a subdivision of an
interval [xq-l9 xq] defined by a subdivision {xq}% If G is a function,
then G e & on [α, δ] only if lim,.,^ + G(x, y) and limβ,^p — G(x, y) exist
and are zero for p e [α, 6], and GeS2 on [α, 6] only if lim^p + G(p, x)
and lim^j, — G(x, p) exist for p e [a, 6]. Further, G 6 OA° on [α, δ] only

if Γ G exists and Γ G - [G = 0 , and GeOM° on [α, δ] only if

^ ( l + G) exists for a^x<y^b and Γ| 1 + G - 77(1 + G) | = 0.
Jtt

Also, G G OQ1 and G € 05* on [α, δ] if there exists a subdivision D =
{̂ }? of [α, δ] such that

(1) ifl<;<7<=;w and xq_x < x < y < xq, then G e OQ° on [OJ, J/],
and

(2) if 1 ^ q ^ n, then either G e 05° on [ α ^ , xq] or G - 1 e OJ5°
on [ajff_lf«J,
respectively. The statement that G is almost bounded above by β
(or, almost bounded below by β) on [α, δ] means there exists a posi-
tive integer N such that if D is a subdivision of [α, δ] and % e H
only if u e D(I) and G(^) > £ (or, G(u) < /3) then H has less than JV
elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for
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additional details.

THEOREM 1. If G is a function, then the following are equivalent:
(1) GeOB° on [a, 6], and
(2) if FeOP° on [a, b], then F + GeOP° on [a,b].

Proof (2 — 1). Let F be the function such that F(x,y) = 0 if
G(x, y)^0 and F(x, y) = - 2 if G(x, y) < 0. Hence, if J is a sub-
division of [a, b], then

which can be bounded only if G e OB°.

Proof (1 —»2). Suppose FeOP°. There exist positive numbers
5 and C with 5 > 1, a positive integer i and a subdivision D of
[α, &] such that if / = {xq}f is a refinement of D, then

(1) \Π r(l + Fq)\<B ίoγ l ^ r ^ s ^ w ,
(2) e x p [ 4 5 ^ ( 7 ) | G | ] < C ,
(3) if T is a collection of nonintersecting subsets of J(I), then

the number of t e T such that exp [ABΣt\G\] > 2 is less than i, and
(4) the number of u e J(I) such that | G(u) | > 1/45 is less than i.
Let J = {xq}o be a refinement of D and suppose 1 ^ r ^ s ^ w.

Let L = {[^_!, xq]Yr, and let H be the subset of L such that ueH
only if 11 + JP(^) | ^ 1/45. Further, let K be the collection of subsets
of L such that ke K only if there exist u,veH such that w precedes
v on [α, 6] and either

(1) k = {t\t precedes v and follows u} and k Π H — 0 ,
(2) M is the first element in H and k — {t\t precedes u}, or
(3) v is the last element in H and k — {t\t follows v}.

Let ueMonly if % e H and |G(u)| > 1/45, and let k eN only if k eK
and exp [45Σk\G\] > 2. Hence, M and N each has less than i ele-
ments. Also, if has at most one more element than H. Hence, K — N
can have at most i more elements than H — M. Let j , m and n
denote the number of elements in M, H — M and K — N, respectively,
and suppose U— {Jk^κk. Hence,

^ {ΠK[1/4B +\G\])> {ΠH.M[1/4B +\G\]}-{\Ππ(l + F + G)|}

^ {(1/4BYC} - {1/4B + 1/4B}- {| 77P(1 + i^ + G) \)

^ C{1/2B}™ • {ΠkeK\Πk[l + F][l + (1 + F)-*G] \)

{ΠkeK[\Πka + F)\][ΠΛ(1 + 4B\G\)]}

{ΠkeN[\77»(1 + -^)i][^(l + 4B|G|)]} .
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F)\][Πk(l + AB\G\)]}

rg C{1/2B}™ {BCY. {2BY

= BiCi+1(2B)n"m £ BiCi+1(2B)i .

S b

F exists, then FeOA° on [a, b] .
a

This result is due to A. Kolmogoroff [3, p. 669]. Further, related
results have also been obtained by W. D L. Appling [1, Th. 2, p.
155] and B. W. Helton [2, Th. 4.1, p. 304].

S b

F exists, then the following are equivalent:
(1) FeOP° on [α, &], and (2) [FeOP° on [a,b].

S b

F exists, FeOA0 [Lemma 1.1].
a

The result now follows by using Theorem 1.

COROLLARY 1.2. If FeOP° on [a,b], aΠ
b(l + F) exists and

| = 0, then aΠ
b(l + F + G) exists and is aΠ

b(l + F).

Indication of proof. A related result is proved by B. W. Helton
[2, Th. 5.6, p. 315]. This result follows by an argument similar to
the one used in that theorem since Theorem 1 implies that F + Ge OP°.

COROLLARY 1.3. If G is a function, then the following are
equivalent:

(1) GeOP° on [a, b], and
(2) if FeOB° on [a, b], then F + Ge OP0 on [α, &].

Proof. Theorem 1 establishes that (1) implies (2). Further, (2)
implies (1) since F = 0 belongs to OB°.

B. W. Helton has shown if G is a function from S x S to N such
that CfeOA° and GeOB°, then GeOM°, where S represents a
linearly ordered set and N represents a ring which has a multiplica-
tive identity element denoted by 1 and has a norm | | with respect
to which N is complete and | 1 | = 1 [2, Th. 3.4 (l->2), p. 301]. We
now use Theorem 1 to establish a related result. In particular, we
show that if F and G are functions from R x R to R such that Fe OM°,

FeOP°,FeS1Γ\S2 and GeOB° on [a, b] and Γ θ exists, then F +

GeOM° on [α, &].

LEMMA 2.1. If F and G are functions such that FeOM°,Fe
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OP°, Fe Sί and GeOB° on [α, b] and ε > 0, then there exists a sub-
division {yq}% of [α, b] such that if yq_γ < x < y < yq and H is a sub-
division of [x, y], then

\1-Πml)(l + F+G)\<e.

Further, if FeS2 and GeS2 on [α, 6], then there exists a subdivision
{sjo of [a, b] such that if zq_γ <; x < y ^ zq and H is a subdivision of
[x, y], then

|1 + F(x,y) + G(x,y) - Πmi)(l + F+ G)\ < ε .

Proof. Suppose F and G are functions such that FeOM°,Fe
OP^FeS, and GeOBΌ on [α, b] and ε > 0. It follows from Theorem
1 that F+ GeOP°. There exist a subdivision D1 = {%}" of [α, δ]
and a number Z? > 1 such that if / = {xq}t is a refinement of Du then

(1) I Π{(1 + Fq)\<B and 177f (1 + F , + G?) | < B for 1 ̂  i ^ j ^ n,
(2) \F(x,y)\<e/9B and ^ ( J ) |G|<ε/9S 3 if l^q^n9xq^<

x < y < xq and H is a subdivision of [α;, y], and
(3) Σq\(l + Fq)- ΠHq{I){l + F)\ < ε/9B, where fl, is a subdivi-

sion of [a?g_i, fl?ff] for ί = 1, 2, , w.
Suppose 1 ̂  g ̂  % and y g - 1 < x < y < yq. If H = {hq}l is a subdivision
of [x, y], then

F(x, y) - F(», y) - {/7;βl(l + Fg)

Fk + Gk)]}\

(α?, y) |

^ + <?*)!
< ε/9J5 + ε/95 + B2ε/9B* = ε/3B < e .

We now make the additional suppositions that Fe S2 and G e S2

on [α, 6]. There exists a subdivision E = {wg)lu+1 of [α, 5] such that
(1) #ff 6 (w2q, w2q+ί) for 1 ̂  q < u,
( 2 ) |F(y f f, ^ 2 g + 1 ) + G(yqf w2q+1) - F(yq, x) - G(yq, x) \ < ε/2 for 0 ^

g < u and xe(yq, w2q+1], and
( 3 ) I F(w2 f f, yff) + G(w2q, yq) - F(α;, yq) - G(x, yq) | < ε/2 for 0 < q ̂

u and xe [w2q, yq).
Let A == {̂ g}ott be the subdivision D1 U E of [α, 6]. Suppose 1 ̂  g ̂  3%,
2g_i ^ a? < y ^ ^g and H is a subdivision of [x, y\. If either ^ f f-1 <
x < y < zq or neither z ^ nor zq is in 2)^ then

11 + F(x, y) + G(x, y) - ΠHiI)(l + F + (?) |

^ |F(αj,»)| + |G(OJ,»)| + |1 - 77^(1 + F + G)\

< ε/9B + ε/953 + ε/3J5 < ε .
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If zq_x e Dl9 x = £g_i a n d H = {fcjj, then

11 + JX*, ?/) + G(x, y) - ΠH(I)(1 + F + G)\

<£ I F(x, y) + G(», i/) - F(x, K) - G{x, K) \

+ 11 + F(x, K) + G(x, W i l l - 77J [1 +

< e/2 + Be/SB < ε .

If zq e Όγ and y — zq1 the necessary inequality follows in a similar
manner. Therefore, D2 is the desired subdivision.

THEOREM 2. 1/ f7 αwd G are functions such that Fe OM°, Fe

OP°,FeSίnS2 and GeOB° on [a,b] and Γ G exists, then F+ Ge

OM° on [a, b].

Proof. We initially show that if e > 0 then there exists a sub-
division D of [α, b] such that if H = {xq}% is a refinement of D and
Hq is a subdivision of [#g-i, #J for q = 1, 2, , w, then

2 T | 1 + ^ + G β - ΠBq(I)(l + F+ G)\<ε.

Let ε > 0. It follows from Lemma 1.1 that Ge OA° and from Theorem
1 that J P + GeOP°. Thus, by employing the hypothesis and Lemma
2.1, there exist a subdivision Όγ — {yq}% of [a, b] and a number B > 1
such that if J = {#J<Γ is a refinement of A> then

(1) * , ( I ) | G | < B ,
(2) I/7ftl + Fq)\ <B for 1 ^ i £ j ^ n,
(3) ^ΓIGq - ΣLq{I)G\ < e/5 and 2?I(1 + Fq) - ΠLq(I)(l + F)\<ε/5,

where Lq is a subdivision of [xq_lf xq] for 1 ^ q ^ nf and
( 4 ) 11 - /7H(Z)(1 + F) | < ε/55 and 11 - /7H(I)(1 + F + G) | < ε/5B

for 1 ^ q ^ ^, α?g_! < x < y < #g and H a subdivision of [x, y].
Further, it also follows from Lemma 2.1 that there exists a sub-
division D2 = {zq}l of [α, 6] such that if 1 ^ q S v, zq_λ ^ x < y ^ zq

and H is a subdivision of [x, y], then

2

|1 + F(x, y) + G{x, y) - 77^,(1 + F + G) |

Let 7) = A U D2, and suppose ί7 = {xq}o is a refinement of D and
ίfg = {xqr}oig) is a subdivision of [xq_u xq] for 1 ^ q ^ ^ . Let P be the
set such that qeP only if [xq-uxq] has an end point in Dt, and let
Q — {i}̂  — P. Further, to simplify notation, let Fqr = jP(^,r_i, α?ffr),
G ς r - G ^ , ^ , a?ίr), Aqr = 77jz}(l + F f f i) and # g r - 77^ + 1 ( l + Fqk + Gg&).
Thus,

Fq

- Bq0\
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ΣveQ\l + Fq + Gq — Bq0\

2uε/10u + ΣqeQ\l + Fq + Gq

+ Σ:{JlAqrGqrBqr] I

ε/5 + ΣqeQ\l + Fg- Aq,n(q)+1\

I ^qeQ VTg Z, r = ι S±qr{jΓqrlJqr \

+ ΣqeQ\ΣVJlGqr - Σ:{SAqrGqrBqr\

3ε/5 + ΣqβQΣΐ<$\l - Aqr\ \Gqr\

+ ΣqΐqΣVJl\Aqr\\Gqr\\l-Bqr\

3ε/5 + (ε/5B)B + (ε/5B2)52 = ε .

Hence, if a ̂  x < y ̂  b and ε > 0, then there exist a subdivision
D of [a, b] and a number B such that iΐ H = {xq}% is a refinement of
Z) and Hq is a subdivision of [xq-u xq], then

(1) 177j(l + Fq + Gq)\ < B for 1 ̂  i ^ j ^ n, and
(2) I? 11 + F g + G, - //^(^(l + F + G) \< e/BK

Thus, if H and Hq are defined as above, then

|/7Γ(1 + Fq + Gff) - mΠHq{I)(l + F+G)\

£ B*Σ?\1 + Fq+Gq- ΠHq(I)(l + F+G)\

< B\εjB2) = ε .

Therefore, xΠ
y(l + F + G) exists.

It now follows that Γ | l + F + G - 77(1 + î 7 + G) \ = 0. Hence,

F + GeOM° on [α, 6].

THEOREM 3. If Fe OQ°, GeOB° and 1 + F + G is bounded away
from zero on [α, 6], rj/̂ ê  F + Ge OQ° on [a, 6J

Proof. There exist a subdivision 7) of [α, δ], a positive number
c < 1 and a positive integer m such that if J — {xq}% is a refinement
of D, then

( 1 ) |1 + F , + Gq\ >c for l^q^n,
( 2) I J7}(1 + Fg)\> c for l^i^j ^n, and
( 3 ) if JKΓ is any collection of nonintersecting subsets of J(7),

then the number of ke K such that Σk\G\jc> 1/2 is less than m.
Suppose J — {xq}o is a refinement of D and 1 ̂  r ^ s ̂  n. Let K —
{̂•} be the collection of nonintersecting subsets of {[α;̂ _1, xq]}s

r such
that

( 1 ) Jcλ= {[xQ-l9 xq]}m(&> where m(l) is the first integer such that
m(l) ^ r and | Gm(1) |/c ̂  1/2 and ̂ (1) is the largest integer such that
τι(l) < s, Σl% I Gq \/c ^ 1/2 and Σlι&+1 \ Gq \/c > 1/2 if such an integer
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exists and s otherwise, and
(2) kj = {[Xq-i, xq]}m{%, where m(j) is the first integer such that

m(j) > n(3 — 1) a n ( i I GmU) |/c < 1/2 and n(j) is the largest integer such
that n(j) £ s, Σl% \ Gq \/c ^ 1/2 and 2£$+11 Gq \/c > 1/2 if such an integer
exists and s otherwise.
Let U= \JkeKk and V= {[x^, xq]}'r - U. Note that K and V each
has a maximum of m elements. Thus,

Π r(l + Fq+ Gq)\

= {Πr\l + F+ G\}{nu\l + F+ G\)

^ e»Ππ[\l + F\ - \G\]

= e-ΠheX{Πk\l + F\){Πk[l -

^c*«ΊlkeK{Πka- \G\lc)}

S b

F exists, then the following are equivalent:
(1) FeOQ° on [a, 6], and (2) ^ F G O Q ° O^ [α, 6].

S b

F exists, FeOA° [Lemma 1.1]
a

The result now follows by using Theorem 3.

COROLLARY 3.2. // G is a function, then the following are equiv-
alent: (1) GeOQ1 on [α, 6], and (2) if FeOB° on [α, 6], then F +
GeOQ1 on [α, 6].

Indication of proof. Since F Ξ O is in 05°, (2) implies (1).
Further, it follows from Theorem 3 that (1) implies (2).

LEMMA 3.1. // 0 ̂  G ̂  1 and G g 0B° on [a, b], then -G $ 0Q°
on [α, 6].

Indication of proof. If H is a subdivision of [α, 6], then

/7*(7)(1 - G) = exp [^(z)ln(l - G)]

Thus, 77^(1 - G)~>0 as ΣH{I)G

COROLLARY 3.3. If G is a function, then the following are equiv-
alent: (1) GeOB0 on [a,b], and (2) i/ FeOQ1 on [a,b], then F +
GeOQ1 on [a, b].
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Proof. Since it follows from Theorem 3 that (1) implies (2), we
need only show that (2) implies (1). The function \G\ is almost
bounded above on [α, b] by 1/2. If this is not so, then a contradiction
follows by considering the function F such that

(1) F(x,y) = 0 if -1/2 ̂  G(x,y) ^ 0,
(2) F(x, y) = -G(», y) -1/2 if G(», y) < -1/2,
(3) F(x, y) = - 2 if 0 < G(α, ») ^ 1/2, and
(4) F(x, y)= - G(x, y) -3/2 if G(x, y) > 1/2.

Thus, although Fe OQ\ F + G&OQ1 since 11 + F + G| ^ 1 and the
number of intervals for which |1 + F + G\ = 1/2 is unbounded. Now,
if GgOB°, a contradiction follows from Lemma 3.1 by using the
function F such that

(1) F(x, y) = - 2 if G(x, y) ̂  0, and
( 2 ) F(α, y) = 0 if G(s, ») < 0.

THEOREM A. If G is a function, then the following are equiv-
alent:

(1) if [b\F\ = 0, tΛβn, FGeOB°,
Jα

(2) ί/ ί V l = 0, tλβn FGeOP0,

(3) if 1 \F\ = 0, then FGeOQ°, and
J a

(4) G is bounded on [α, 6].

Proof. It follows readily that (4) implies (1). Further, it follows
that (4) implies (2) and (3) by using Theorems 1 and 3, respectively.
If G(x, y) as x,y~* p~, G(x, y) as x,y-+p+, G(x, p) as x —> p~ and
G(p, x) as x—>p+ are bounded for each pe [a, 6], then it follows from
the covering theorem that G is bounded on [α, 6]. If one or more of
these bounds fail to exist for some pe[a,b], then there exists a
sequence {(yq, zq)}? of distinct subintervals of [a, b] such that | G(yq, zq) | >
q* for q = 1, 2, •••, and if {a?β}j is a subdivision of [α, &] and r is a
positive integer then there exist positive integers i and j such that
y > r and x^ ^ yy < zs ^ a?4. Contradictions to (1) and (2) now fol-
low by considering the function F such that

F(x,y) = [G(x,y)]/[q2\G(x,y)\]

if there exists a positive integer q such that x — yq and y — zq and

S δ

| JP | = 0, but FG is in neither OB° nor
α

OP°. Further, a contradiction to (3) follows by considering the func-
tion F such that F(x, y) = [—G{xf y)]"1 if there exists a positive
integer q such that x — yq and y — zq and JF(#, /̂) = 0 otherwise.
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LEMMA 5.1. If G is a function such that
( 1 ) G is almost bounded above by 1/3 on [α, 6], and
( 2) if Fe OP° on [α, 6], then FG e OPΌ on [α, 6],

then GeOB° on [a, b].

Proof. Suppose G$OB° on [a,b]. It follows from Theorem 4
that G is bounded on [α, 6] There exists a set {C(i)}T such that

( 1 ) C(i) is a finite set of nonoverlapping subintervals of [a, b]
which can be grouped into a collection D{i) of nonintersecting pairs
of adjacent intervals,

( 2 ) no interval in C(i + 1) has an end point which is also the
end point of an interval in C(q), q — 1, 2, , i,

(3 ) if (x, y) e C(ί), then G(x, y) < 1/3, and
( 4 ) Σc{i)\G\>i.

Let C= UΓ D(i), and let F be the function on [a, b] such that if
{(u, v), (r, s)} G C and GO, v) ^ G(r, s), then

( a ) F(u, v) = - 2 if G(>, v) < 0,
( b) F(u, v) = 2 if G(u, v) ^ 0,
(c ) F(r, x) ~ ~1 if r ~ v and r < x, and
(d ) F(x, s) = —1 iί s — u and a? < s,

and F(x,y) — 0 otherwise. Thus, FeOP° on [α, 6]. However,

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)] ^ 1 + | G(u, v) |/3 .

Hence, since G is bounded and {Σc{i)\G\}T is unbounded, FG&OP°.
This is a contradiction, and therefore, GeOB° on [α, 6].

LEMMA 5,2. If G is a function such that
( 1 ) G is almost bounded below by 1/10 on [a, b], and
( 2) if Fe OP° on [a, b], then FG e OP° on [a, 6],

then G - leOJ5° on [a, b].

Proof. Suppose G— l£OB° on [α, 6]. It follows from Theorem
4 that G is bounded on [α, &]. There exists a set {C(i)}Γ satisfying
conditions (1) and (2) in Lemma 5.1 plus the additional conditions

( 3 ) if (x, y) e C(i), then G(x, y) > 1/10, and
( 4 ) ^ ( < J | G - l | > ί .

Let C = (JΓ D(i), where D{i) is defined as in Lemma 5.1. Note that
if {(u, v), (r, s)} 6 C and G(u, v) ^> G(r, s), then either

( 5) G(u, v) ^ 1 and |1 - G(u, v)\^\l- G(r, s)|, or
( 6 ) G(r, s) < 1 and either G(u, v) = G(r, s) or

\1-G(u,v)\<\l-G(r,s)\.

Let ί 7 be the function on [α, b] such that if {(u, v), (r, s)} e C and
G(^, v) ^ G(r, s), then
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(a) F(u, v) = - 2 and F(r, s) = 0 if (5) is true,
(b) F(u,v) = 1 and F(r,x) = -1/2 if (6) is true, r = v and

r < x, and
(c ) F(u, v) = 1 and F(x, s) = -1/2 if (6) is true, s = u and

a? < 8,

and F(x, y) = 0 otherwise. Thus, FeOPΌ on [α, δ] Observe that
if (5) is true, then

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)] = -{1 + 2[G(w, v) - 1]} ,

and if (6) is true, then

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)]

^ [1+ G(r,s)][l- G(r,s)/2]

Hence, since G is bounded and {2^, | G — 1 |}Γ is unbounded, FG 0θP°.
This is a contradiction, and therefore, G — leO2?° on [α, 6].

THEOREM 5. If G is a function, then the following are equivalent:
(1) GeOB* on [α, 6], and
(2) if Fe OP° on [a, 6], ίfcβrc FGeOP° on [a, b].

Proof (2 —> 1). If a ^ a < 6, then there exists a number /3 such
that a < β ^ b and either G e 05° on [α, /3] or G - 1 e 0B° on [α, /3].
If this is false and a ^ a < /3 < b, then it follows from Lemmas 5.1
and 5.2 that G is neither almost bounded above by 1/3 nor almost
bounded below by 1/10 on [a, β]; hence, there exist sequences {sp}Γ
and {rp}~ such that

(1) sp and rp are subintervals of [α, 6] with a common end point,
(2) sp precedes rp and rp+ι precedes sp, and
(3 ) G(sp) < 1/10 and G(rp) ^ 1/10.

Let H — {sp}T U {̂ }Γ, and let F be the function on [α, δ] such that
(1) F(x, y) = — 1 if there exists an interval (z, y)e H such that

x < y and G(z, i/) < 1/10,
(2) F(x, y) = 2 if (α?, ») e Jϊ and G(a?, j/) ^ 1/10, and
(3 ) F(x, y) — 0 otherwise.

Thus, F e OP° on [α, 6]. However, it follows that FGϊOP° on [α, 6]
since

[1 + F(sp)G(sp)][l + F(r,)G(r,)] > (.9)(1.2) - 1.08 .

Similarly, if α < β ^ 6, then there exists a number α: such that
a^a<β and either GeOB° on [α,/3] or G-leOB° on [α, £j.
It now follows that G e OS* on [α, 6] by using the covering theorem.
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Proof (1 ->2). Since OB°^OP°, if GeOB° and FeOP° on
[a?, 2/], then FGeOP0 on [α, #]. Note that

1 + FG=1 + F+F(G-1) .

Thus, it follows from Theorem 1 that if G~leOB° and FeOPΌ

on [α;, ?/], then FGeOP° on [&,#]. Therefore, (1) must imply (2).

COROLLARY 5.1. If G is a function, then the following are equiv-
alent:

(1) GeOP° on [a, b], and
(2) if Fe OB* on [a, b], ίΛen FGeOP° on [a, b].

Indication of proof. It follows that (1) implies (2) by using
Theorem 5 and that (2) implies (1) by considering the function F = 1.

LEMMA 6.1. // G is a bounded function such that
(1) G is almost bounded above by 1/3 on [a, 6], and
( 2 ) if Fe OQ° and is bounded on [α, b] and 1 + FG is bounded

away from zero, then FGe OQ° on [α, 6],
then GeOB° on [α, 6].

Proof. Suppose GίOB° on [α, &]. There exist a subdivision D
of [α, b] and a positive integer m such that if J is a refinement of
D and % e J(I) then | G(V) |/m < 1/2. Let H be the set such that ueH
only if there exists a refinement J of D such that % e /(J), and let
F be the function such that

(1) F(u) = - 2 if u e H and 0 ^ G(u) ^ 1/3,
( 2) FO) = 1/m if u e H and G(u) < 0, and
( 3 ) F(x, y) — 0 otherwise.

Since FeOQ° and 1 + FG is bounded away from zero, FGeOQ°.
However, it follows from Lemma 3.1 that FG$OQ°. This is a con-
tradiction, and therefore, GeOB°.

LEMMA 6.2. If G is a bounded function such that
(1) G is almost bounded below by 1/10 on [α, 6], and
( 2 ) if Fe OQ° and is bounded on [α, b] and 1 + FG is bounded

away from zero, then FGe OQ° on [a, &],
then G - leOB° on [a, b].

Proof. There exist a subdivision D of [a, b] and a number B
such that if J is a refinement of D and u e J(I) then | G(u) \ < B.
Let H be the set such that ue H only if there exists a refinement
J of D such that ueJ(I). Let i ^ and iί2 be the subsets of H such
that u e Hx only if G(u) ^ 1 and w e H2 only if G(V) > 1. For i= 1,2,
let Gi(x, y) - GO, y) if (α?, #) e H, and G ^ , #) = 0 if (a?, y) ί H,.
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Suppose Gx — 1$OB° on [a, &]. Let F be the function such that
(1) F(u) = - 2 if u 6 H, and G(w) < 5/12 or 7/12 < G(u) ^ 1,
(2) F(u) = - 3 if u e H, and 5/12 ^ G(w) ^ 7/12, and
(3) F(x, y) = 0 otherwise.

Since FeOQ° and 1 + FG is bounded away from zero, FGeOQ0.
However, it follows from Lemma 3.1 that FG&OQ°. This is a con-
tradiction, and therefore, G1 — leOB°.

Suppose G2 — lίOB° on [α, δ]. There exist a set {C(i)}T and
an integer m > 1 such that

(1) C(i) is a finite set of nonoverlapping subintervals of [α, δ]
which can be grouped into a collection D(i) of nonintersecting pairs
{(u, v), (r, s)} of adjacent intervals such that either G(u, v) > 1 or
G(r, s) > 1,

(2) no interval in C(i + 1) has an end point which is also the
end point of an interval in C(q), q = 1, 2, , i,

(3) if (a?, y) e C(i) then G(a, y) > 1/10 and G(x, y)/m < 1/2, and
(4) Σ0{i)\G2-l\>i.

Let C = UΓ D(i), and let I*7 be the function such that if {(u, v), (r, s)} e C
and G(u, v) ^ G(r, s) then F(^, v) = - 1/ra, F(r, a?) = l/(ra - 1) if r = v
and ί7^, s) = l/(m — 1) if s = u, and F(OJ, y) = 0 otherwise. Since
i^e OQ° and 1 + FG is bounded away from zero, FG e OQ°. However,
if {(u, v), (r, s)} e C and G(u, v) ^ G(r, s), then

0 < [1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)]

^ [1 - G(w, v)/m][l + G(tt, v)/(m - 1)]

< 1 + [1 - G(u, v)]/m(m - 1) .

It follows from Lemma 3.1 that FG&OQ°. This is a contradiction,
and therefore, G2 - leOB°.

Thus, since G{ — l e OB° on [α, δ] for i = 1, 2, it follows that
G - l e 0 ΰ o on [α, δ].

THEOREM 6. // G is a bounded function, then the following are
equivalent:

(1) GeOB* on [a, δ], and
(2) if Fe OQ° and is bounded on [α, δ] and 1 + FG is bounded

away from zero, then FGeOQ° on [a,b].

Proof (2 —> 1). If a ^ a < b, then there exists a number /3 such
that a < β ^ δ and either G e OB° on [a, /9] or G - 1 e OB° on [a, β\.
If this is false, then it follows from Lemmas 6.1 and 6.2 that there
exist sequences {sp}? and {rjr and a set H defined as in Theorem 5.
Let Fbe a function on [α, δ] such that if (u, v) and (v, s) are intervals
in H such that G(u, v) ^ 1/10 and G(v, s) ^ 1/10, then
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(1) 1 + F{u, v)G(u, v) = 1/2 and F(v, β) = 0 if G(u, v) < -1/10,
( 2 ) F(x, v) = 1, - 1 / 2 ^ F(v, s)< 0 and 1 / 2 ^ 1 + F(v, s)G(v, s) ^

,95 if -1/10 ^ G(u, v) ^ 0, and
( 3 ) F(x, v) = - 3, -1/2 ^ F(v, s)< 0 and 1/2^1 + F(t;, s)G(v, s) ^

.95 if 0 < G(u, v) < 1/10,
and F(x, y) = 0 otherwise. Since i*7 is a bounded function in OQ°
such that 1 + FG is bounded away from zero, FGeOQ°. However,

I [1 + F(8p)G(ap)][l + F(rp)G(rp)] \ ^ .95 .

Hence, FG & OQΌ. Similarly, if a < β ^ b, then there exists a number
a such that a ^ a < β and either GeOB° on [α, /3] or G — 1 e OB°
on [α:, /9]. It now follows that Ge OB* on [a, b] by using the cover-
ing theorem.

Proof (1—>2). This follows from Theorem 3 by a procedure
similar to that used in Theorem 5.

REFERENCES

1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat.
Palermo, Series 2, 11 (1962), 154-156.
2. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966),
297-322.
3. A. Kolmogoroff, Untersτtchungen iίber den Integralbegriff, Math. Ann., 103 (1930),
654-696.
4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math., 7 (1963),
148-173.

Received May 10, 1972.

ARIZONA STATE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) J. DUGUNDJI*

University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California

Los Angeles, California 90007

R. A. BEAUMONT D. GILBARG AND J. MILGRAM

University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two must
be capable of being used separately as a synopsis of the entire paper. Items of the bibliography
should not be cited there unless absolutely necessary, in which case they must be identified by
author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be
sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index
to Vol. 39. All other communications to the editors should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual
members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,

3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace
J. Dugundji until August 1974.

Copyright © 1973 by
Pacific Journal of Mathematics

All Rights Reserved



Pacific Journal of Mathematics
Vol. 49, No. 2 June, 1973

Wm. R. Allaway, On finding the distribution function for an orthogonal polynomial
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Eric Amar, Sur un théorème de Mooney relatif aux fonctions analytiques bornées . . . . 311
Robert Morgan Brooks, Analytic structure in the spectrum of a natural system . . . . . . 315
Bahattin Cengiz, On extremely regular function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Kwang-nan Chow and Moses Glasner, Atoms on the Royden boundary . . . . . . . . . . . . . 339
Paul Frazier Duvall, Jr. and Jim Maxwell, Tame Z2-actions on En . . . . . . . . . . . . . . . . . 349
Allen Roy Freedman, On the additivity theorem for n-dimensional asymptotic

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
John Griffin and Kelly Denis McKennon, Multipliers and the group L p-algebras . . . . 365
Charles Lemuel Hagopian, Characterizations of λ connected plane continua . . . . . . . . 371
Jon Craig Helton, Bounds for products of interval functions . . . . . . . . . . . . . . . . . . . . . . . 377
Ikuko Kayashima, On relations between Nörlund and Riesz means . . . . . . . . . . . . . . . . . 391
Everett Lee Lady, Slender rings and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Shozo Matsuura, On the Lu Qi-Keng conjecture and the Bergman representative

domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Stephen H. McCleary, The lattice-ordered group of automorphisms of an α-set . . . . . . 417
Stephen H. McCleary, o − 2-transitive ordered permutation groups . . . . . . . . . . . . . . . . 425
Stephen H. McCleary, o-primitive ordered permutation groups. II . . . . . . . . . . . . . . . . . 431
Richard Rochberg, Almost isometries of Banach spaces and moduli of planar

domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
R. F. Rossa, Radical properties involving one-sided ideals . . . . . . . . . . . . . . . . . . . . . . . . . 467
Robert A. Rubin, On exact localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
S. Sribala, On 6-inverse semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
H. M. (Hari Mohan) Srivastava, On the Konhauser sets of biorthogonal polynomials

suggested by the Laguerre polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Stuart A. Steinberg, Rings of quotients of rings without nilpotent elements . . . . . . . . . . 493
Daniel Mullane Sunday, The self-equivalences of an H-space . . . . . . . . . . . . . . . . . . . . . 507
W. J. Thron and Richard Hawks Warren, On the lattice of proximities of Čech
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