Pacific Journal of Mathematics

BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JON CRAIG HELTON

Vol. 49, No. 2

June 1973

BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JON C. HELTON

Since it is possible for ${}_{a}\Pi^{b}(1+G)$ to exist and not be zero when G is unbounded and 1+G is not bounded away from zero, the conditions under which products of the form $|\Pi_{1}^{n}[1+G(x_{q-1},x_{q})]|$ are bounded or bounded away from zero for suitable subdivisions $\{x_{q}\}_{0}^{n}$ of [a, b] are important in many theorems concerning product integrals. Conditions are obtained for such bounds to exist for products of the form $\Pi(1+FG)$ and $\Pi(1+F+G)$, where F and G are functions from $R \times R$ to R. Further, these results are used to obtain an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type, and functions are from the subset $\{(x, y): x < y\}$ of $R \times R$ to R, where R represents the set of real numbers. If $D = \{x_q\}_0^n$ is a subdivision of [a, b] and G is a function, then $D(I) = \{[x_{q-1}, x_q]\}_1^n$ and $G_q =$ $G(x_{q-1}, x_q)$. The statements that G is bounded, $G \in OP^\circ$, $G \in OQ^\circ$ and $G \in OB^\circ$ on [a, b] mean there exist a subdivision D of [a, b] and a positive number B such that if $J = \{x_q\}_0^n$ is a refinement of D, then

 $(1) |G(u)| < B \text{ for } u \in J(I),$

 $(2) \quad |\Pi_r^s(1+G_q)| < B \text{ for } 1 \leq r \leq s \leq n,$

- (3) $|\Pi_r^s(1+G_q)| > B$ for $1 \leq r \leq s \leq n$, and
- $(4) \quad \Sigma_{J(I)} |G| < B,$

respectively. The notation $\{x_{qr}\}_{0}^{n(q)}$ represents a subdivision of an interval $[x_{q-1}, x_q]$ defined by a subdivision $\{x_q\}_{0}^{*}$. If G is a function, then $G \in S_1$ on [a, b] only if $\lim_{x,y \to p} + G(x, y)$ and $\lim_{x,y \to p} - G(x, y)$ exist and are zero for $p \in [a, b]$, and $G \in S_2$ on [a, b] only if $\lim_{x \to p} + G(p, x)$ and $\lim_{x \to p} - G(x, p)$ exist for $p \in [a, b]$. Further, $G \in OA^{\circ}$ on [a, b] only if $\int_{a}^{b} G$ exists and $\int_{a}^{b} |G - \int G| = 0$, and $G \in OM^{\circ}$ on [a, b] only if $_{x}\Pi^{y}(1 + G)$ exists for $a \leq x < y \leq b$ and $\int_{a}^{b} |1 + G - \Pi(1 + G)| = 0$. Also, $G \in OQ^{1}$ and $G \in OB^{*}$ on [a, b] if there exists a subdivision $D = \{x_{q}\}_{0}^{n}$ of [a, b] such that

(1) if $1 \leq q \leq n$ and $x_{q-1} < x < y < x_q$, then $G \in OQ^\circ$ on [x, y], and

(2) if $1 \leq q \leq n$, then either $G \in OB^{\circ}$ on $[x_{q-1}, x_q]$ or $G - 1 \in OB^{\circ}$ on $[x_{q-1}, x_q]$,

respectively. The statement that G is almost bounded above by β (or, almost bounded below by β) on [a, b] means there exists a positive integer N such that if D is a subdivision of [a, b] and $u \in H$ only if $u \in D(I)$ and $G(u) > \beta$ (or, $G(u) < \beta$) then H has less than N elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for

additional details.

THEOREM 1. If G is a function, then the following are equivalent: (1) $G \in OB^{\circ}$ on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $F + G \in OP^{\circ}$ on [a, b].

Proof $(2 \rightarrow 1)$. Let F be the function such that F(x, y) = 0 if $G(x, y) \ge 0$ and F(x, y) = -2 if G(x, y) < 0. Hence, if J is a subdivision of [a, b], then

$$|\Pi_{J(I)}(1+F+G)| = \Pi_{J(I)}(1+|G|)$$
 ,

which can be bounded only if $G \in OB^{\circ}$.

Proof $(1 \rightarrow 2)$. Suppose $F \in OP^{\circ}$. There exist positive numbers B and C with B > 1, a positive integer i and a subdivision D of [a, b] such that if $J = \{x_q\}_0^{\omega}$ is a refinement of D, then

 $(1) |\Pi^s_r(1+F_q)| < B ext{ for } 1 \leq r \leq s \leq w,$

(2) $\exp [4B \Sigma_{J(I)} |G|] < C,$

(3) if T is a collection of nonintersecting subsets of J(I), then the number of $t \in T$ such that $\exp[4B\Sigma_t |G|] > 2$ is less than *i*, and

(4) the number of $u \in J(I)$ such that |G(u)| > 1/4B is less than *i*. Let $J = \{x_q\}_0^w$ be a refinement of *D* and suppose $1 \le r \le s \le w$. Let $L = \{[x_{q-1}, x_q]\}_r^s$, and let *H* be the subset of *L* such that $u \in H$ only if $|1 + F(u)| \le 1/4B$. Further, let *K* be the collection of subsets of *L* such that $k \in K$ only if there exist $u, v \in H$ such that u precedes v on [a, b] and either

(1) $k = \{t \mid t \text{ precedes } v \text{ and follows } u\}$ and $k \cap H = \emptyset$,

(2) u is the first element in H and $k = \{t \mid t \text{ precedes } u\}$, or

(3) v is the last element in H and $k = \{t \mid t \text{ follows } v\}$.

Let $u \in M$ only if $u \in H$ and |G(u)| > 1/4B, and let $k \in N$ only if $k \in K$ and $\exp [4B \Sigma_k |G|] > 2$. Hence, M and N each has less than i elements. Also, K has at most one more element than H. Hence, K - Ncan have at most i more elements than H - M. Let j, m and ndenote the number of elements in M, H - M and K - N, respectively, and suppose $U = \bigcup_{k \in K} k$. Hence,

$$\begin{split} |\Pi_{L}(1+F+G)| \\ &\leq \{\Pi_{H}[|1+F|+|G|]\} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq \{\Pi_{M}[1/4B+|G|]\} \cdot \{\Pi_{H-M}[1/4B+|G|]\} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq \{(1/4B)^{j}C\} \cdot \{1/4B+1/4B\}^{m} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq C\{1/2B\}^{m} \cdot \{\Pi_{k\in K} |\Pi_{k}[1+F][1+(1+F)^{-1}G]|\} \\ &\leq C\{1/2B\}^{m} \cdot \{\Pi_{k\in K} [|\Pi_{k}(1+F)|][\Pi_{k}(1+4B|G|)]\} \\ &= C\{1/2B\}^{m} \cdot \{\Pi_{k\in N} [|\Pi_{k}(1+F)|][\Pi_{k}(1+4B|G|)]\} . \end{split}$$

$$egin{aligned} &\{\Pi_{k\, {
m e}\, K-N}[|\,\Pi_{k}(1\,+\,F)\,|][\Pi_{k}(1\,+\,4B\,|\,G\,|)]\}\ &\leq C\{1/2B\}^{m} \cdot \{BC\}^{i} \cdot \{2B\}^{n}\ &= B^{i}C^{i+1}(2B)^{n-m} \leq B^{i}C^{i+1}(2B)^{i} \;. \end{aligned}$$

LEMMA 1.1. If $\int_a^b F$ exists, then $F \in OA^\circ$ on [a, b].

This result is due to A. Kolmogoroff [3, p. 669]. Further, related results have also been obtained by W. D. L. Appling [1, Th. 2, p. 155] and B. W. Helton [2, Th. 4.1, p. 304].

COROLLARY 1.1. If $\int_{a}^{b} F$ exists, then the following are equivalent: (1) $F \in OP^{\circ}$ on [a, b], and (2) $\int F \in OP^{\circ}$ on [a, b].

Indication of proof. Since $\int_a^b F$ exists, $F \in OA^\circ$ [Lemma 1.1]. The result now follows by using Theorem 1.

COROLLARY 1.2. If $F \in OP^{\circ}$ on [a, b], ${}_{a}\Pi^{b}(1 + F)$ exists and $\int_{a}^{b} |G| = 0$, then ${}_{a}\Pi^{b}(1 + F + G)$ exists and is ${}_{a}\Pi^{b}(1 + F)$.

Indication of proof. A related result is proved by B. W. Helton [2, Th. 5.6, p. 315]. This result follows by an argument similar to the one used in that theorem since Theorem 1 implies that $F + G \in OP^{\circ}$.

COROLLARY 1.3. If G is a function, then the following are equivalent:

(1) $G \in OP^{\circ}$ on [a, b], and

(2) if $F \in OB^{\circ}$ on [a, b], then $F + G \in OP^{\circ}$ on [a, b].

Proof. Theorem 1 establishes that (1) implies (2). Further, (2) implies (1) since $F \equiv 0$ belongs to OB° .

B. W. Helton has shown if G is a function from $S \times S$ to N such that $G \in OA^{\circ}$ and $G \in OB^{\circ}$, then $G \in OM^{\circ}$, where S represents a linearly ordered set and N represents a ring which has a multiplicative identity element denoted by 1 and has a norm $|\cdot|$ with respect to which N is complete and |1| = 1 [2, Th. 3.4 $(1 \rightarrow 2)$, p. 301]. We now use Theorem 1 to establish a related result. In particular, we show that if F and G are functions from $R \times R$ to R such that $F \in OM^{\circ}$, $F \in OP^{\circ}$, $F \in S_1 \cap S_2$ and $G \in OB^{\circ}$ on [a, b] and $\int_a^b G$ exists, then $F + G \in OM^{\circ}$ on [a, b].

LEMMA 2.1. If F and G are functions such that $F \in OM^{\circ}, F \in$

 OP° , $F \in S_1$ and $G \in OB^{\circ}$ on [a, b] and $\varepsilon > 0$, then there exists a subdivision $\{y_q\}_0^u$ of [a, b] such that if $y_{q-1} < x < y < y_q$ and H is a subdivision of [x, y], then

$$|1 - \Pi_{H(I)}(1 + F + G)| < \varepsilon$$
 .

Further, if $F \in S_2$ and $G \in S_2$ on [a, b], then there exists a subdivision $\{z_q\}_0^v$ of [a, b] such that if $z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y], then

$$|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)| < \varepsilon$$
.

Proof. Suppose F and G are functions such that $F \in OM^{\circ}, F \in OP^{\circ}, F \in S_1$ and $G \in OB^{\circ}$ on [a, b] and $\varepsilon > 0$. It follows from Theorem 1 that $F + G \in OP^{\circ}$. There exist a subdivision $D_1 = \{y_q\}_0^u$ of [a, b] and a number B > 1 such that if $J = \{x_q\}_0^u$ is a refinement of D_1 , then $(1) \quad |\Pi_i^j(1 + F_q)| < B$ and $|\Pi_i^j(1 + F_q + G_q)| < B$ for $1 \leq i \leq j \leq n$,

 $\begin{array}{c} (1) & |\Pi_{i}(1+|\Gamma_{q})| < \mathcal{D} \text{ and } |\Pi_{i}(1+|\Gamma_{q}|+|\mathcal{G}_{q})| < \mathcal{D} \text{ for } \Gamma \equiv \mathfrak{r} \equiv \mathfrak{r} \equiv \mathfrak{r}, \\ (2) & |F(x,y)| < \varepsilon/9B \text{ and } \mathcal{L}_{H(I)}|G| < \varepsilon/9B^3 \text{ if } 1 \leq q \leq n, x_{q-1} < \\ x < y < x_q \text{ and } H \text{ is a subdivision of } [x, y], \text{ and} \end{array}$

(3) $\Sigma_q | (1 + F_q) - \prod_{H_q(I)} (1 + F) | < \varepsilon/9B$, where H_q is a subdivision of $[x_{q-1}, x_q]$ for $q = 1, 2, \dots, n$. Suppose $1 \leq q \leq u$ and $y_{q-1} < x < y < y_q$. If $H = \{h_q\}_0^r$ is a subdivision of [x, y], then

$$\begin{split} |1 - \Pi_{H(I)}(1 + F + G)| \\ &= |1 + F(x, y) - F(x, y) - \{\Pi_{q=1}^{r}(1 + F_{q}) \\ &+ \Sigma_{q=1}^{r}[\Pi_{j=1}^{q-1}(1 + F_{j})][G_{q}][\Pi_{k=q+1}^{r}(1 + F_{k} + G_{k})]\}| \\ &\leq |1 + F(x, y) - \Pi_{q=1}^{r}(1 + F_{q})| + |F(x, y)| \\ &+ \Sigma_{q=1}^{r}|\Pi_{j=1}^{q-1}(1 + F_{j})||G_{q}||\Pi_{k=q+1}^{r}(1 + F_{k} + G_{k})| \\ &< \varepsilon/9B + \varepsilon/9B + B^{2}\varepsilon/9B^{3} = \varepsilon/3B < \varepsilon \;. \end{split}$$

We now make the additional suppositions that $F \in S_2$ and $G \in S_2$ on [a, b]. There exists a subdivision $E = \{w_q\}_{0}^{2u+1}$ of [a, b] such that

 $(1) \quad y_q \in (w_{2q}, w_{2q+1}) \text{ for } 1 \leq q < u,$

 $\begin{array}{ll}(2) & |F(y_q,w_{2q+1}) + G(y_q,w_{2q+1}) - F(y_q,x) - G(y_q,x)| < \varepsilon/2 \text{ for } 0 \leq \\ q < u \text{ and } x \in (y_q,w_{2q+1}], \text{ and}\end{array}$

 $(3) |F(w_{2q}, y_q) + G(w_{2q}, y_q) - F(x, y_q) - G(x, y_q)| < arepsilon/2 ext{ for } 0 < q \leq u ext{ and } x \in [w_{2q}, y_q).$

Let $D_2 = \{z_q\}_0^{3u}$ be the subdivision $D_1 \cup E$ of [a, b]. Suppose $1 \leq q \leq 3u$, $z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y]. If either $z_{q-1} < x < y < z_q$ or neither z_{q-1} nor z_q is in D_1 , then

$$egin{aligned} |1+F(x,y)+G(x,y)-\Pi_{{}_{H(I)}}(1+F+G)|\ &\leq |F(x,y)|+|G(x,y)|+|1-\Pi_{{}_{H(I)}}(1+F+G)|\ &$$

380

If
$$z_{q-1} \in D_1$$
, $x = z_{q-1}$ and $H = \{h_q\}_0^r$, then
 $|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)|$
 $\leq |F(x, y) + G(x, y) - F(x, h_1) - G(x, h_1)|$
 $+ |1 + F(x, h_1) + G(x, h_1)| |1 - \Pi_2^r [1 + F(h_{q-1}, h_q) + G(h_{q-1}, h_q)]|$
 $< \varepsilon/2 + B\varepsilon/3B < \varepsilon$.

If $z_q \in D_1$ and $y = z_q$, the necessary inequality follows in a similar manner. Therefore, D_2 is the desired subdivision.

THEOREM 2. If F and G are functions such that $F \in OM^{\circ}$, $F \in OP^{\circ}$, $F \in S_1 \cap S_2$ and $G \in OB^{\circ}$ on [a, b] and $\int_a^b G$ exists, then $F + G \in OM^{\circ}$ on [a, b].

Proof. We initially show that if $\varepsilon > 0$ then there exists a subdivision D of [a, b] such that if $H = \{x_q\}_0^n$ is a refinement of D and H_q is a subdivision of $[x_{q-1}, x_q]$ for $q = 1, 2, \dots, n$, then

$$\Sigma_{1}^{n} \left| 1 + F_{q} + G_{q} - \varPi_{H_{q}(I)}(1 + F + G)
ight| < arepsilon$$
 .

Let $\varepsilon > 0$. It follows from Lemma 1.1 that $G \in OA^{\circ}$ and from Theorem 1 that $F + G \in OP^{\circ}$. Thus, by employing the hypothesis and Lemma 2.1, there exist a subdivision $D_1 = \{y_q\}_0^u$ of [a, b] and a number B > 1 such that if $J = \{x_q\}_0^u$ is a refinement of D_1 , then

 $(1) \quad \Sigma_{J(I)}|G| < B,$

 $(2) \quad |\Pi_i^j(1+F_q)| < B \text{ for } 1 \leq i \leq j \leq n,$

 $\begin{array}{ll} (3) \quad \varSigma_1^n |\, G_q - \varSigma_{L_q(I)} G \,| < \varepsilon/5 \text{ and } \varSigma_1^n |\, (1+F_q) - \varPi_{L_q(I)} (1+F) \,| < \varepsilon/5, \\ \text{where } L_q \text{ is a subdivision of } [x_{q-1}, x_q] \text{ for } 1 \leq q \leq n, \text{ and} \end{array}$

(4) $|1 - \Pi_{H(I)}(1 + F)| < \varepsilon/5B$ and $|1 - \Pi_{H(I)}(1 + F + G)| < \varepsilon/5B^2$ for $1 \leq q \leq n, x_{q-1} < x < y < x_q$ and H a subdivision of [x, y]. Further, it also follows from Lemma 2.1 that there exists a subdivision $D_2 = \{z_q\}_0^v$ of [a, b] such that if $1 \leq q \leq v, z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y], then

$$|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)| < \varepsilon/10u$$
.

Let $D = D_1 \cup D_2$, and suppose $H = \{x_q\}_0^n$ is a refinement of D and $H_q = \{x_{qr}\}_0^{n(q)}$ is a subdivision of $[x_{q-1}, x_q]$ for $1 \leq q \leq n$. Let P be the set such that $q \in P$ only if $[x_{q-1}, x_q]$ has an end point in D_1 , and let $Q = \{i\}_1^n - P$. Further, to simplify notation, let $F_{qr} = F(x_{q,r-1}, x_{qr})$, $G_{qr} = G(x_{q,r-1}, x_{qr})$, $A_{qr} = \prod_{j=1}^{r-1}(1 + F_{qj})$ and $B_{qr} = \prod_{k=r+1}^{n(q)}(1 + F_{qk} + G_{qk})$. Thus,

$$\begin{split} \Sigma_{q=1}^{n} |1 + F_{q} + G_{q} - \Pi_{H_{q}(I)}(1 + F + G)| \\ & \leq \Sigma_{q \in P} |1 + F_{q} + G_{q} - B_{q0}| \end{split}$$

$$\begin{split} &+ \Sigma_{q \in Q} |1 + F_q + G_q - B_{q0}| \\ &< 2u \varepsilon / 10u + \Sigma_{q \in Q} |1 + F_q + G_q - [A_{q,n(q)+1} \\ &+ \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}] | \\ &\leq \varepsilon / 5 + \Sigma_{q \in Q} |1 + F_q - A_{q,n(q)+1}| \\ &+ \Sigma_{q \in Q} |G_q - \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}| \\ &< 2\varepsilon / 5 + \Sigma_{q \in Q} |G_q - \Sigma_{r=1}^{n(q)} G_{qr}| \\ &+ \Sigma_{q \in Q} |\Sigma_{r=1}^{n(q)} G_{qr} - \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}| \\ &< 3\varepsilon / 5 + \Sigma_{q \in Q} \Sigma_{r=1}^{n(q)} |1 - A_{qr}| |G_{qr}| \\ &+ \Sigma_{q \in Q} \Sigma_{r=1}^{n(q)} |A_{qr}| |G_{qr}| |1 - B_{qr}| \\ &< 3\varepsilon / 5 + (\varepsilon / 5B)B + (\varepsilon / 5B^2)B^2 = \varepsilon . \end{split}$$

Hence, if $a \leq x < y \leq b$ and $\varepsilon > 0$, then there exist a subdivision D of [a, b] and a number B such that if $H = \{x_q\}_0^n$ is a refinement of D and H_q is a subdivision of $[x_{q-1}, x_q]$, then

Thus, if H and H_q are defined as above, then

$$egin{aligned} &| \varPi_1^n (1+F_q+G_q) -\varPi_1^n \varPi_{H_q(I)} (1+F+G) | \ &\leq B^2 \varSigma_1^n |1+F_q+G_q -\varPi_{H_q(I)} (1+F+G) | \ &< B^2 (arepsilon/B^2) = arepsilon \ . \end{aligned}$$

Therefore, $_{x}\Pi^{y}(1 + F + G)$ exists.

It now follows that $\int_a^b |1 + F + G - \Pi(1 + F + G)| = 0$. Hence, $F + G \in OM^\circ$ on [a, b].

THEOREM 3. If $F \in OQ^\circ$, $G \in OB^\circ$ and 1 + F + G is bounded away from zero on [a, b], then $F + G \in OQ^\circ$ on [a, b].

Proof. There exist a subdivision D of [a, b], a positive number c < 1 and a positive integer m such that if $J = \{x_q\}_0^m$ is a refinement of D, then

(1) $|1 + F_q + G_q| > c$ for $1 \leq q \leq n$,

 $(2) |\Pi_i^j(1+F_q)| > c \text{ for } 1 \leq i \leq j \leq n, \text{ and}$

(3) if K is any collection of nonintersecting subsets of J(I), then the number of $k \in K$ such that $\Sigma_k |G|/c > 1/2$ is less than m. Suppose $J = \{x_q\}_0^n$ is a refinement of D and $1 \leq r \leq s \leq n$. Let $K = \{k_j\}$ be the collection of nonintersecting subsets of $\{[x_{q-1}, x_q]\}_r^s$ such that

(1) $k_1 = \{[x_{q-1}, x_q]\}_{m(1)}^{n(1)}$, where m(1) is the first integer such that $m(1) \ge r$ and $|G_{m(1)}|/c \le 1/2$ and n(1) is the largest integer such that n(1) < s, $\Sigma_{m(1)}^{n(1)} |G_q|/c \le 1/2$ and $\Sigma_{m(1)}^{n(1)+1} |G_q|/c > 1/2$ if such an integer

exists and s otherwise, and

(2) $k_j = \{[x_{q-1}, x_q]\}_{m(j)}^{n(j)}$, where m(j) is the first integer such that m(j) > n(j-1) and $|G_{m(j)}|/c < 1/2$ and n(j) is the largest integer such that $n(j) \leq s$, $\sum_{m(j)}^{n(j)} |G_q|/c \leq 1/2$ and $\sum_{m(j)+1}^{n(j)+1} |G_q|/c > 1/2$ if such an integer exists and s otherwise.

Let $U = \bigcup_{k \in K} k$ and $V = \{[x_{q-1}, x_q]\}_r^s - U$. Note that K and V each has a maximum of m elements. Thus,

$$\begin{split} |\Pi_r^s (1 + F_q + G_q)| \\ &= \{\Pi_r | 1 + F + G|\} \{\Pi_U | 1 + F + G|\} \\ &\geqq c^m \Pi_U [|1 + F| - |G|] \\ &= c^m \Pi_{k \in K} \{\Pi_k | 1 + F|\} \{\Pi_k [1 - |G|(|1 + F|)^{-1}]\} \\ &\geqq c^{2m} \Pi_{k \in K} \{\Pi_k (1 - |G|/c)\} \\ &\geqq c^{2m} \Pi_{k \in K} [1 - \Sigma_k |G|/c] \geqq c^{2m}/2^m . \end{split}$$

COROLLARY 3.1. If $\int_{a}^{b} F$ exists, then the following are equivalent: (1) $F \in OQ^{\circ}$ on [a, b], and (2) $\int F \in OQ^{\circ}$ on [a, b].

Indication of proof. Since $\int_{a}^{b} F$ exists, $F \in OA^{\circ}$ [Lemma 1.1]. The result now follows by using Theorem 3.

COROLLARY 3.2. If G is a function, then the following are equivalent: (1) $G \in OQ^1$ on [a, b], and (2) if $F \in OB^\circ$ on [a, b], then $F + G \in OQ^1$ on [a, b].

Indication of proof. Since $F \equiv 0$ is in OB° , (2) implies (1). Further, it follows from Theorem 3 that (1) implies (2).

LEMMA 3.1. If $0 \leq G \leq 1$ and $G \notin OB^{\circ}$ on [a, b], then $-G \notin OQ^{\circ}$ on [a, b].

Indication of proof. If H is a subdivision of [a, b], then

$$egin{aligned} \Pi_{{}^{_{H(I)}}}(1-G) &= \exp{\left[arsigma_{{}^{_{H(I)}}} \ln(1-G)
ight]} \ &= \exp{\left[- arsigma_{{}^{_{H(I)}}} arsigma_{{}^{_{1}}}^{\infty} G^{i} / i
ight]} \;. \end{aligned}$$

Thus, $\Pi_{H(I)}(1-G) \rightarrow 0$ as $\Sigma_{H(I)}G \rightarrow \infty$.

COROLLARY 3.3. If G is a function, then the following are equivalent: (1) $G \in OB^{\circ}$ on [a, b], and (2) if $F \in OQ^{1}$ on [a, b], then $F + G \in OQ^{1}$ on [a, b]. *Proof.* Since it follows from Theorem 3 that (1) implies (2), we need only show that (2) implies (1). The function |G| is almost bounded above on [a, b] by 1/2. If this is not so, then a contradiction follows by considering the function F such that

(1) F(x, y) = 0 if $-1/2 \leq G(x, y) \leq 0$,

(2)
$$F(x, y) = -G(x, y) - 1/2$$
 if $G(x, y) < -1/2$,

(3) F(x, y) = -2 if $0 < G(x, y) \le 1/2$, and

(4) F(x, y) = -G(x, y) - 3/2 if G(x, y) > 1/2.

Thus, although $F \in OQ^1$, $F + G \notin OQ^1$ since $|1 + F + G| \leq 1$ and the number of intervals for which |1 + F + G| = 1/2 is unbounded. Now, if $G \notin OB^\circ$, a contradiction follows from Lemma 3.1 by using the function F such that

(1)
$$F(x, y) = -2$$
 if $G(x, y) \ge 0$, and
(2) $F(x, y) = 0$ if $G(x, y) < 0$.

THEOREM 4. If G is a function, then the following are equivalent:

(1) if
$$\int_{a}^{b} |F| = 0$$
, then $FG \in OB^{\circ}$,
(2) if $\int_{a}^{b} |F| = 0$, then $FG \in OP^{\circ}$,
(3) if $\int_{a}^{b} |F| = 0$, then $FG \in OQ^{\circ}$, and
(4) G is bounded on [a, b].

Proof. It follows readily that (4) implies (1). Further, it follows that (4) implies (2) and (3) by using Theorems 1 and 3, respectively. If G(x, y) as $x, y \to p^-$, G(x, y) as $x, y \to p^+$, G(x, p) as $x \to p^-$ and G(p, x) as $x \to p^+$ are bounded for each $p \in [a, b]$, then it follows from the covering theorem that G is bounded on [a, b]. If one or more of these bounds fail to exist for some $p \in [a, b]$, then there exists a sequence $\{(y_q, z_q)\}_1^{\infty}$ of distinct subintervals of [a, b] such that $|G(y_q, z_q)| > q^3$ for $q = 1, 2, \cdots$, and if $\{x_q\}_0^n$ is a subdivision of [a, b] and r is a positive integer then there exist positive integers i and j such that j > r and $x_{i-1} \leq y_j < z_j \leq x_i$. Contradictions to (1) and (2) now follow by considering the function F such that

$$F(x, y) = [G(x, y)]/[q^2 | G(x, y) |]$$

if there exists a positive integer q such that $x = y_q$ and $y = z_q$ and F(x, y) = 0 otherwise. Here $\int_a^b |F| = 0$, but FG is in neither OB° nor OP° . Further, a contradiction to (3) follows by considering the function F such that $F(x, y) = [-G(x, y)]^{-1}$ if there exists a positive integer q such that $x = y_q$ and $y = z_q$ and F(x, y) = 0 otherwise.

LEMMA 5.1. If G is a function such that (1) G is almost bounded above by 1/3 on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $FG \in OP^{\circ}$ on [a, b], then $G \in OB^{\circ}$ on [a, b].

Proof. Suppose $G \notin OB^{\circ}$ on [a, b]. It follows from Theorem 4 that G is bounded on [a, b]. There exists a set $\{C(i)\}_{i}^{\infty}$ such that

(1) C(i) is a finite set of nonoverlapping subintervals of [a, b] which can be grouped into a collection D(i) of nonintersecting pairs of adjacent intervals,

(2) no interval in C(i + 1) has an end point which is also the end point of an interval in $C(q), q = 1, 2, \dots, i$,

Let $C = \bigcup_{i=0}^{\infty} D(i)$, and let F be the function on [a, b] such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then

(a) F(u, v) = -2 if G(u, v) < 0,

(b) F(u, v) = 2 if $G(u, v) \ge 0$,

(c) F(r, x) = -1 if r = v and r < x, and

(d) F(x, s) = -1 if s = u and x < s,

and F(x, y) = 0 otherwise. Thus, $F \in OP^{\circ}$ on [a, b]. However,

 $[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)] \ge 1 + |G(u, v)|/3$.

Hence, since G is bounded and $\{\Sigma_{C(i)}|G|\}_{1}^{\infty}$ is unbounded, $FG \notin OP^{\circ}$. This is a contradiction, and therefore, $G \in OB^{\circ}$ on [a, b].

LEMMA 5.2. If G is a function such that (1) G is almost bounded below by 1/10 on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $FG \in OP^{\circ}$ on [a, b], then $G - 1 \in OB^{\circ}$ on [a, b].

Proof. Suppose $G - 1 \notin OB^{\circ}$ on [a, b]. It follows from Theorem 4 that G is bounded on [a, b]. There exists a set $\{C(i)\}_{1}^{\circ}$ satisfying conditions (1) and (2) in Lemma 5.1 plus the additional conditions

(3) if $(x, y) \in C(i)$, then G(x, y) > 1/10, and

 $(4) \quad \Sigma_{C(i)}|G-1| > i.$

Let $C = \bigcup_{i=1}^{\infty} D(i)$, where D(i) is defined as in Lemma 5.1. Note that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \geq G(r, s)$, then either

(5) $G(u, v) \ge 1$ and $|1 - G(u, v)| \ge |1 - G(r, s)|$, or

(6) G(r, s) < 1 and either G(u, v) = G(r, s) or

|1 - G(u, v)| < |1 - G(r, s)|.

Let F be the function on [a, b] such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then

(a) F(u, v) = -2 and F(r, s) = 0 if (5) is true,

(b) F(u, v) = 1 and F(r, x) = -1/2 if (6) is true, r = v and r < x, and

(c) F(u, v) = 1 and F(x, s) = -1/2 if (6) is true, s = u and x < s,

and F(x, y) = 0 otherwise. Thus, $F \in OP^{\circ}$ on [a, b]. Observe that if (5) is true, then

$$[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)] = -\{1 + 2[G(u, v) - 1]\},\$$

and if (6) is true, then

$$[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)]$$

$$\geq [1 + G(r, s)][1 - G(r, s)/2]$$

$$> 1 + [1/20][1 - G(r, s)].$$

Hence, since G is bounded and $\{\Sigma_{C(i)} | G - 1 |\}_{1}^{\infty}$ is unbounded, $FG \notin OP^{\circ}$. This is a contradiction, and therefore, $G - 1 \in OB^{\circ}$ on [a, b].

THEOREM 5. If G is a function, then the following are equivalent: (1) $G \in OB^*$ on [a, b], and (2) if $F \in OP^\circ$ on [a, b], then $FG \in OP^\circ$ on [a, b].

Proof $(2 \to 1)$. If $a \leq \alpha < b$, then there exists a number β such that $\alpha < \beta \leq b$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. If this is false and $a \leq \alpha < \beta < b$, then it follows from Lemmas 5.1 and 5.2 that G is neither almost bounded above by 1/3 nor almost bounded below by 1/10 on $[\alpha, \beta]$; hence, there exist sequences $\{s_p\}_1^{\infty}$ and $\{r_p\}_1^{\infty}$ such that

(1) s_p and r_p are subintervals of [a, b] with a common end point,

- (2) s_p precedes r_p and r_{p+1} precedes s_p , and
- (3) $G(s_p) < 1/10$ and $G(r_p) \ge 1/10$.

Let $H = \{s_p\}_1^{\infty} \cup \{r_p\}_1^{\infty}$, and let F be the function on [a, b] such that

(1) F(x, y) = -1 if there exists an interval $(z, y) \in H$ such that x < y and G(z, y) < 1/10,

(2) F(x, y) = 2 if $(x, y) \in H$ and $G(x, y) \ge 1/10$, and

(3) F(x, y) = 0 otherwise.

Thus, $F \in OP^{\circ}$ on [a, b]. However, it follows that $FG \notin OP^{\circ}$ on [a, b] since

$$[1 + F(s_p)G(s_p)][1 + F(r_p)G(r_p)] > (.9)(1.2) = 1.08$$
 .

Similarly, if $a < \beta \leq b$, then there exists a number α such that $a \leq \alpha < \beta$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in OB^{*}$ on [a, b] by using the covering theorem.

386

Proof $(1 \rightarrow 2)$. Since $OB^{\circ} \subseteq OP^{\circ}$, if $G \in OB^{\circ}$ and $F \in OP^{\circ}$ on [x, y], then $FG \in OP^{\circ}$ on [x, y]. Note that

$$1 + FG = 1 + F + F(G - 1)$$
.

Thus, it follows from Theorem 1 that if $G - 1 \in OB^{\circ}$ and $F \in OP^{\circ}$ on [x, y], then $FG \in OP^{\circ}$ on [x, y]. Therefore, (1) must imply (2).

COROLLARY 5.1. If G is a function, then the following are equivalent:

(1) $G \in OP^{\circ}$ on [a, b], and

(2) if $F \in OB^*$ on [a, b], then $FG \in OP^\circ$ on [a, b].

Indication of proof. It follows that (1) implies (2) by using Theorem 5 and that (2) implies (1) by considering the function $F \equiv 1$.

LEMMA 6.1. If G is a bounded function such that

(1) G is almost bounded above by 1/3 on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b], then $G \in OB^{\circ}$ on [a, b].

Proof. Suppose $G \notin OB^{\circ}$ on [a, b]. There exist a subdivision D of [a, b] and a positive integer m such that if J is a refinement of D and $u \in J(I)$ then |G(u)|/m < 1/2. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$, and let F be the function such that

(1) F(u) = -2 if $u \in H$ and $0 \leq G(u) \leq 1/3$,

(2) F(u) = 1/m if $u \in H$ and G(u) < 0, and

(3) F(x, y) = 0 otherwise.

Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, it follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G \in OB^{\circ}$.

LEMMA 6.2. If G is a bounded function such that

(1) G is almost bounded below by 1/10 on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b], then $G - 1 \in OB^{\circ}$ on [a, b].

Proof. There exist a subdivision D of [a, b] and a number B such that if J is a refinement of D and $u \in J(I)$ then |G(u)| < B. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$. Let H_1 and H_2 be the subsets of H such that $u \in H_1$ only if $G(u) \leq 1$ and $u \in H_2$ only if G(u) > 1. For i = 1, 2, let $G_i(x, y) = G(x, y)$ if $(x, y) \in H_i$ and $G_i(x, y) = 0$ if $(x, y) \notin H_i$. Suppose $G_1 - 1 \notin OB^\circ$ on [a, b]. Let F be the function such that (1) F(u) = -2 if $u \in H_1$ and G(u) < 5/12 or $7/12 < G(u) \le 1$, (2) F(u) = -3 if $u \in H_1$ and $5/12 \le G(u) \le 7/12$, and

(3) F(x, y) = 0 otherwise.

Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, it follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G_1 - 1 \in OB^{\circ}$.

Suppose $G_2 - 1 \notin OB^\circ$ on [a, b]. There exist a set $\{C(i)\}_{i}^{\infty}$ and an integer m > 1 such that

(1) C(i) is a finite set of nonoverlapping subintervals of [a, b] which can be grouped into a collection D(i) of nonintersecting pairs $\{(u, v), (r, s)\}$ of adjacent intervals such that either G(u, v) > 1 or G(r, s) > 1,

(2) no interval in C(i + 1) has an end point which is also the end point of an interval in $C(q), q = 1, 2, \dots, i$,

(3) if $(x, y) \in C(i)$ then G(x, y) > 1/10 and G(x, y)/m < 1/2, and (4) $\Sigma_{C(i)} |G_2 - 1| > i$.

Let $C = \bigcup_{i=1}^{\infty} D(i)$, and let F be the function such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$ then F(u, v) = -1/m, F(r, x) = 1/(m-1) if r = vand F(x, s) = 1/(m-1) if s = u, and F(x, y) = 0 otherwise. Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then

$$egin{aligned} 0 < [1+F(u,v)G(u,v)][1+F(r,s)G(r,s)] \ &\leq [1-G(u,v)/m][1+G(u,v)/(m-1)] \ &< 1+[1-G(u,v)]/m(m-1) \ . \end{aligned}$$

It follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G_2 - 1 \in OB^{\circ}$.

Thus, since $G_i - 1 \in OB^\circ$ on [a, b] for i = 1, 2, it follows that $G - 1 \in OB^\circ$ on [a, b].

THEOREM 6. If G is a bounded function, then the following are equivalent:

(1) $G \in OB^*$ on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b].

Proof $(2 \to 1)$. If $a \leq \alpha < b$, then there exists a number β such that $\alpha < \beta \leq b$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. If this is false, then it follows from Lemmas 6.1 and 6.2 that there exist sequences $\{s_p\}_1^{\infty}$ and $\{r_p\}_1^{\infty}$ and a set H defined as in Theorem 5. Let F be a function on [a, b] such that if (u, v) and (v, s) are intervals in H such that $G(u, v) \leq 1/10$ and $G(v, s) \geq 1/10$, then

(1) 1 + F(u, v)G(u, v) = 1/2 and F(v, s) = 0 if G(u, v) < -1/10,

(2) $F(x, v) = 1, -1/2 \leq F(v, s) < 0 \text{ and } 1/2 \leq 1 + F(v, s)G(v, s) \leq$.95 if $-1/10 \leq G(u, v) \leq 0$, and

(3) $F(x, v) = -3, -1/2 \leq F(v, s) < 0$ and $1/2 \leq 1 + F(v, s)G(v, s) \leq$.95 if 0 < G(u, v) < 1/10,

and F(x, y) = 0 otherwise. Since F is a bounded function in OQ° such that 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However,

 $|[1 + F(s_p)G(s_p)][1 + F(r_p)G(r_p)]| \leq .95$.

Hence, $FG \notin OQ^{\circ}$. Similarly, if $a < \beta \leq b$, then there exists a number α such that $a \leq \alpha < \beta$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in OB^*$ on [a, b] by using the covering theorem.

Proof $(1 \rightarrow 2)$. This follows from Theorem 3 by a procedure similar to that used in Theorem 5.

References

1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo, Series 2, 11 (1962), 154-156.

2. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.

3. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann., 103 (1930), 654-696.

4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.

Received May 10, 1972.

ARIZONA STATE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California

Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. DUGUNDJI*

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

K. YOSHIDA

ASSOCIATE EDITORS

E.F. BECKENBACH

B.H. NEUMANN

F. Wolf

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY * * UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY **OSAKA UNIVERSITY** NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 49, No. 2 June, 1973

Wm. R. Allaway, On finding the distribution function for an orthogonal polynomial set	305
Eric Amar, Sur un théorème de Mooney relatif aux fonctions analytiques bornées	311
Robert Morgan Brooks, Analytic structure in the spectrum of a natural system	315
Bahattin Cengiz, On extremely regular function spaces	335
Kwang-nan Chow and Moses Glasner, <i>Atoms on the Royden boundary</i>	339
Paul Frazier Duvall, Jr. and Jim Maxwell, <i>Tame</i> Z^2 -actions on E^n	349
Allen Roy Freedman, On the additivity theorem for n-dimensional asymptotic	549
density	357
John Griffin and Kelly Denis McKennon, <i>Multipliers and the group</i> L_p -algebras	365
Charles Lemuel Hagopian, <i>Characterizations of</i> λ <i>connected plane continua</i>	371
Jon Craig Helton, <i>Bounds for products of interval functions</i>	377
Ikuko Kayashima, On relations between Nörlund and Riesz means	391
Everett Lee Lady, Slender rings and modules	397
Shozo Matsuura, On the Lu Qi-Keng conjecture and the Bergman representative	591
domains	407
Stephen H. McCleary, <i>The lattice-ordered group of automorphisms of an</i> α <i>-set</i>	417
Stephen H. McCleary, $o - 2$ -transitive ordered permutation groups	425
Stephen H. McCleary, <i>o-primitive ordered permutation groups</i> . II	431
Richard Rochberg, Almost isometries of Banach spaces and moduli of planar	431
domains	445
R. F. Rossa, Radical properties involving one-sided ideals	467
Robert A. Rubin, <i>On exact localization</i>	473
S. Sribala, $On \Sigma$ -inverse semigroups	483
H. M. (Hari Mohan) Srivastava, On the Konhauser sets of biorthogonal polynomials	105
suggested by the Laguerre polynomials	489
Stuart A. Steinberg, <i>Rings of quotients of rings without nilpotent elements</i>	493
Daniel Mullane Sunday, <i>The self-equivalences of an H-space</i>	507
W. J. Thron and Richard Hawks Warren, <i>On the lattice of proximities of Čech</i>	201
compatible with a given closure space	519
Frank Uhlig, The number of vectors jointly annihilated by two real quadratic forms	
determines the inertia of matrices in the associated pencil	537
Frank Uhlig, On the maximal number of linearly independent real vectors annihilated	
simultaneously by two real quadratic forms	543
Frank Uhlig, Definite and semidefinite matrices in a real symmetric matrix pencil	561
Arnold Lewis Villone, Self-adjoint extensions of symmetric differential operators	569
Cary Webb, Tensor and direct products	579
James Victor Whittaker, On normal subgroups of differentiable	
homeomorphisms	595
Jerome L. Paul, Addendum to: "Sequences of homeomorphisms which converge to	
homeomorphisms"	615
David E. Fields, <i>Correction to: "Dimension theory in power series rings"</i>	616
Peter Michael Curran, Correction to: "Cohomology of finitely presented groups"	617
Billy E. Rhoades, Correction to: "Commutants of some Hausdorff matrices"	617
Charles W. Trigg, Corrections to: "Versum sequences in the binary system"	619