ON THE KONHAUSER SETS OF BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE POLYNOMIALS

H. M. (HARI MOHAN) SRIVASTAVA
ON THE KONHAUSER SETS OF BIORTHOGONAL
POLYNOMIALS SUGGESTED BY THE
LAGUERRE POLYNOMIALS

H. M. SRIVASTAVA

Recently, Joseph D. E. Konhauser discussed two polynomial sets \(\{Y_n(x; k)\} \) and \(\{Z_n(x; k)\} \), which are biorthogonal with respect to the weight function \(x^\alpha e^{-x} \) over the interval \((0, \infty)\), where \(\alpha > -1 \) and \(k \) is a positive integer. For the polynomials \(Y_n(x; k) \), the following bilateral generating function is derived in this paper:

\[
\sum_{n=0}^{\infty} Y_n(x; k)ζ_n(y)t^n = (1 - t)^{-(\alpha+1)/k} \exp \{x[1 - (1 - t)^{-1/k}]\} \cdot G[x(1 - t)^{-1/k}, yt/(1 - t)],
\]

where

\[
G[x, t] = \sum_{n=0}^{\infty} λ_n Y_n(x; k)t^n,
\]

the \(λ_n \neq 0 \) are arbitrary constants, and \(ζ_n(y) \) is a polynomial of degree \(n \) in \(y \) given by

\[
ζ_n(y) = \sum_{r=0}^{n} \binom{n}{r} λ_r y^r.
\]

It is also shown that the polynomials \(Z_n(x; k) \) can be expressed as a finite sum of \(Z_n(y; k) \) in the form

\[
Z_n(x; k) = \left(\frac{x}{y}\right)^{kn} \sum_{r=0}^{n} \frac{\alpha + kn}{kr} \frac{(kr)!}{r!} [(y/x)^k - 1]^r Z_{n-r}(y; k).
\]

For \(k = 2 \), formulas (1) and (4) yield corresponding properties for the polynomials introduced earlier by Preiser [4]. Moreover, when \(k = 1 \), both (1) and (4) would reduce to similar results involving the generalized Laguerre polynomials \(L_\alpha(x) \). For results analogous to (1) and (4), involving certain classes of functions, the reader may be referred to our papers [5] and [6], respectively.

2. The following results will be required in our analysis.

(i) The generating function [3, p. 803]:

\[
\sum_{n=0}^{\infty} \binom{m+n}{n} Y_{m+n}(x; k)t^n = (1 - t)^{-(\alpha+m+1)/k} \exp \{x[1 - (1 - t)^{-1/k}]\} Y_m(x(1 - t)^{-1/k}; k),
\]

where \(m \) is any integer \(\geq 0 \).

(ii) The explicit expression for \(Z_n(x; k) \):
(6) \[Z_n(x; k) = \frac{\Gamma(\alpha + kn + 1)}{n!} \sum_{j=0}^{n} (-1)^j \binom{n}{j} \frac{x^{kj}}{\Gamma(\alpha + kj + 1)} , \]

which is equation (5), p. 304 of Konhauser [2].

From (6) it follows fairly easily that

\[\sum_{n=0}^{\infty} Z_n(x; k) \frac{t^n}{(\alpha + 1)_k} = e^t F_k[-; (\alpha + 1)/k, \ldots, (\alpha + k)/k; - (x/k)^t] , \]

since \(k \) is a positive integer.

3. Proof of the bilateral generating function (1). Substituting for the coefficients \(\zeta_n(y) \) from (3) on the left-hand side of (1), we find that

\[\sum_{n=0}^{\infty} Y_n(x; k) \zeta_n(y)t^n = \sum_{n=0}^{\infty} Y_n(x; k)t^n \sum_{r=0}^{n} \binom{n}{r} \lambda_r y^r \\
= \sum_{r=0}^{\infty} \lambda_r (yt)^r \sum_{m=0}^{\infty} \binom{n+r}{r} Y_{n+r}(x; k)t^n \\
= (1 - t)^{-(\alpha + 1)/k} \exp \{x[1 - (1 - t)^{-1/k}]\} \\
\cdot \sum_{r=0}^{\infty} \lambda_r Y_r(x(1 - t)^{-1/k}; k)(yt/(1 - t))^r , \]

by applying (5), and formula (1) would follow if we interpret this last expression by means of (2).

4. Proof of the summation formula (4). In the generating function (7), if we set \(t = (y/k)^z \), we shall get

\[\sum_{n=0}^{\infty} Z_n(x; k) \frac{(y/k)^n z^n}{(\alpha + 1)_k} = \exp \{(y/k)^z\} e^t F_k[-(xy/k)^z] , \]

which, on interchanging \(x \) and \(y \), gives us

\[\sum_{n=0}^{\infty} Z_n(y; k) \frac{(x/k)^n z^n}{(\alpha + 1)_k} = \exp \{(x/k)^z\} e^t F_k[-(xy/k)^z] , \]

where, for convenience,

\[_0 F_k[\xi] \equiv e^t F_k[-; (\alpha + 1)/k, \ldots, (\alpha + k)/k; \xi] . \]

From (8) and (9) it follows at once that

\[\sum_{n=0}^{\infty} Z_n(x; k) \frac{(y/k)^n z^n}{(\alpha + 1)_k} = \exp \{z[(y/k)^z - (x/k)^z]\} \sum_{n=0}^{\infty} Z_n(y; k) \frac{(x/k)^n z^n}{(\alpha + 1)_k} , \]
and on equating coefficients of \(z^n \) in (11), we shall be led to our summation formula (4).

5. Applications. First of all we notice that formula (4) may be rewritten as

\[
Z_n^{\alpha}(\mu x; k) = \sum_{r=0}^{n} \binom{\alpha + k n}{k r} (kr)! \mu^{k(n-r)} (1 - \mu^k)^r Z_{n-r}^{\alpha}(x; k),
\]

which provides us with a multiplication formula for the polynomials \(Z_n^{\alpha}(x; k) \).

On the other hand, by assigning suitable values to the arbitrary coefficients \(\lambda_n \) it is fairly straightforward to obtain, from our formula (1), a large variety of bilateral generating functions for the polynomials \(Y_n^{\alpha}(x; k) \). For instance, if we let

\[
\lambda_n = \frac{(-1)^n}{\Gamma(\beta + ln + 1)}, \quad n = 0, 1, 2, \ldots; l = 1, 2, 3, \ldots;
\]

and make use of the definition (6), we shall readily arrive at the bilateral generating function

\[
\sum_{n=0}^{\infty} \frac{n!}{\Gamma(\beta + ln + 1)} Y_n^{\alpha}(x; k)Z_n^{\beta}(y; l)t^n
\]

\[
= (1 - t)^{-(n+1)/k} \exp \{x[1 - (1 - t)^{-1/k}] \} H[x(1 - t)^{-1/k}, -y^k t/(1 - t)],
\]

where, for convenience,

\[
H[x, t] = \sum_{n=0}^{\infty} \frac{Y_n^{\alpha}(x; k)}{\Gamma(\beta + ln + 1)} t^n.
\]

For \(k = l = 1 \) and \(\alpha = \beta \), the generating relation (14) would evidently reduce to the well-known Hille-Hardy formula for the Laguerre polynomials.

REFERENCES

UNIVERSITY OF VICTORIA
Wm. R. Allaway, *On finding the distribution function for an orthogonal polynomial set* .. 305
Eric Amar, *Sur un théorème de Mooney relatif aux fonctions analytiques bornées* 311
Robert Morgan Brooks, *Analytic structure in the spectrum of a natural system* 315
Bahattin Cengiz, *On extremely regular function spaces* .. 335
Paul Frazier Duvall, Jr. and Jim Maxwell, *Tame Z^2-actions on E^n* 349
Allen Roy Freedman, *On the additivity theorem for n-dimensional asymptotic density* 357
John Griffin and Kelly Denis McKennon, *Multipliers and the group L_p-algebras* 365
Charles Lemuel Hagopian, *Characterizations of λ connected plane continua* 371
Jon Craig Helton, *Bounds for products of interval functions* 377
Ikuko Kayashima, *On relations between Nörlund and Riesz means* 391
Everett Lee Lady, *Slender rings and modules* ... 397
Shozo Matsuura, *On the Lu Qi-Keng conjecture and the Bergman representative domains* .. 407
Stephen H. McCleary, *The lattice-ordered group of automorphisms of an α-set* 417
Stephen H. McCleary, *σ–2-transitive ordered permutation groups* 425
Stephen H. McCleary, *o-primitive ordered permutation groups. II* 431
Richard Rochberg, *Almost isometries of Banach spaces and moduli of planar domains* ... 445
R. F. Rossa, *Radical properties involving one-sided ideals* .. 467
Robert A. Rubin, *On exact localization* ... 473
S. Sribala, *On Σ-inverse semigroups* ... 483
H. M. (Hari Mohan) Srivastava, *On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials* ... 489
Stuart A. Steinberg, *Rings of quotients of rings without nilpotent elements* 493
Daniel Mullane Sunday, *The self-equivalences of an H-space* 507
W. J. Thron and Richard Hawks Warren, *On the lattice of proximities of Čech compatible with a given closure space* .. 519
Frank Uhlig, *The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil* ... 537
Frank Uhlig, *On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms* ... 543
Frank Uhlig, *Definite and semidefinite matrices in a real symmetric matrix pencil* 561
Arnold Lewis Villone, *Self-adjoint extensions of symmetric differential operators* 569
Cary Webb, *Tensor and direct products* ... 579
James Victor Whittaker, *On normal subgroups of differentiable homeomorphisms* ... 595
Jerome L. Paul, *Addendum to: “Sequences of homeomorphisms which converge to homeomorphisms”* .. 615
David E. Fields, *Correction to: “Dimension theory in power series rings”* 616
Peter Michael Curran, *Correction to: “Cohomology of finitely presented groups”* 617
Billy E. Rhoades, *Correction to: “Commutants of some Hausdorff matrices”* 617
Charles W. Trigg, *Corrections to: “Versum sequences in the binary system”* 619