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Let (X, ¢c) be a Cech closure space. By I we denote the
family of all proximities of Cech on X which induce ¢. I is
known to be a complete lattice under set inclusion as ordering.
The analogue of the E, separation axiom as defined for topo-
logical spaces is introduced into closure spaces. F,-closure
spaces are exactly those spaces for which M = ¢. Other
characterizations for R,-closure spaces are presented. The
most interesting one is: every R,-closure space is a subspace
of a product of a certain number of copies of a fixed R,-
closure space. A number of techniques for constructing
elements of I are developed. By means of one of these
constructions, all covers of any member of It can be obtained.
Using these constructions the following structural properties
of M are derived: M is strongly atomic, M is distributive,
M has no antiatoms, |M|=0,1 or | M| = 22X,

1. Introduction. E. Cech in [2] has studied a basic proximity
structure (see Definition 1.3). The closure operator induced by such
a structure is in general not a Kuratowski closure operator, since it
may fail to satisfy the condition c(c(A4)) Cc(A4), however it satisfies
the other three conditions and thus (X, ¢) is a closure space (Defini-
tion 1.1). Since Cech called his basic proximity just a “proximity”
and since this term is commonly used to denote a proximity of
Efremovié, we shall refer to the basic proximities of Cech as é—pro-
Ximities. We did not wish to use the name “Cech proximity” because
this term already has another meaning in the literature [2, p. 447].

This paper is primarily concerned with a study of the order
structure of the family I of all é’-proximities which induce the same
closure operator on a given set. Cech [2] proved that I is a com-
plete lattice. He characterized least upper bounds in IR, the least and
greatest elements in M, and those closure spaces for which M = 4.

The symbol #(X) denotes the power set of X, |A| indicates the
cardinal number of the set A, the triple bar = is reserved for defini-
tions and [ ] signals the end of a proof.

DErFINITION 1.1. [2, p.237] Let X be a set. A function ¢: & (X)—

F(X) is called a Cech closure operator on X iff it satisfies the follow-
ing three axioms:
Cl: ¢ =g
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C2: for every Ac X, AC A4;

C3: for all A/ BcX,AUB=AUB.
In stating these axioms, we have denoted ¢(4) by A. We shall also
use this notation in the following material, since from the context
one can determine whether A denotes a topological closure or a Cech
closure. The pair (X, ¢) is called a closure space. We note that Cl,
C2, C3 are three of the four Kuratowski closure axioms. The fourth
is: for every Ac X, Ac A.

DEFINITION 1.2. [2, p. 270] Let (X, ¢), (Y, d) be closure spaces
and let f: X-— Y. Then f is continuous iff, given A X, it follows
that f(4) < f(4).

DerFINITION 1.3. [2, p. 439] A relation & on Z#(X) is said to
define a é—proximity on a set X iff it satisfies the conditions:

P1: (4, B) e &# implies (B, A) € &;

P2: (A, BUC)e” iff (4, B)e & or (4, Cye &7

P3: (¢, A)¢ & for every AC X;

P4: AN B+ ¢ implies (4, B) e &.

We now list a number of basic results about C-proximities which
were established by Cech. Let & be a C’-proximity on X. The
function ¢=c¢(F): F(X)— F(X) defined by ¢ A=c(A)iff ([x], A) e &
is a Cech closure operator which satisfies: e [#] implies y € [Z]. We
say that & induces ¢ or that & is compatible with ¢. More gener-
rally, for a relation . on Z(X), we say that .&° induces ¢ if for
each Ac X, c(4) = [z:([x], A)es”]. If (X,c¢) is a closure space
satisfying x e [y] implies y € [Z], then

# =[(4,B): (AN B)U (AN B) = g]

is a (v/‘-proximity on X compatible with ¢. Let IM = M(X, ¢) be the
family of all C’-proximities on X which induce ¢. If [F:iel]C I,
then U [F:ieIleM. Let M be partially ordered by set inclusion.
Then IN has a least element .7 (defined above) and a greatest element

" = # U4, B): A and B are infinite subsets of X] .

It then follows [4, pp. 7-10] that I is a complete lattice with the

operator V = U.
The following definitions will be useful in describing some of our

results in this paper.

DEFINITION 1.4. Let (L, <) be a partially ordered set. If a,bc L,
we say a covers b or b is covered by a when a > b and a >c¢ > b is
not satisfied for any cec L. Moreover, (L, <) is said to be covered
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iff, given x € L such that there is y € L satisfying ¥ > «, then there
is ze L which covers x and satisfles 2 < y. Also (L, <) is said to
be anticovered iff the dual of (L, <) is covered.

DEFINITION 1.5. Let (L, <) be a partially ordered set. If (L, <)
has a least element ~ then ae L is an atom iff a covers . Alsoce L
is an antiatom iff ¢ is an atom in the dual of (L, £). Furthermore,
(L, £) is called atomic when each x ¢ L, x not the least element, is
the least upper bound of the atoms <xz. Moreover, (L, <) is called
strongly atomic iff, given a € L, the partially ordered set [b:a < be L]
is atomic. Also (L, £) is antiatomic iff the dual of (L, <) is atomic.

We note that if (L, <) is strongly atomic and has a least element,
then (L, <) is atomic. Also if (L, <) is strongly atomie, then (L, <)
is covered. However, if (L, <) is covered, then (L, <) may not be
atomic or strongly atomic. To verify the last statement, let N be
the set of natural numbers and define a < b iff o divides b. To see
that (N, <) is not atomic, we observe that the only atom < 4 is 2.
To see that (N, <) is covered, let a properly divide b. Then there
is prime p such that ap divides . Thus ap covers a.

DEFINITION 1.6. A lattice (L, \/, A) is infinitely meet distributive
iff, given nonempty BC L and a€ L, then a A (VB) = VY [a A b: be B].

DerINITION 1.7. A lattice (L, VV, A) with least element ~ and
greatest element « is said to be complemented iff, for each ze L,
there is ye L such that t Vy =« and x A y = ~

2. Rgyclosure spaces. Since a closure space (X, c¢) has a com-
patible C-proximity iff x e [g] implies ye [Z], it seems appropriate to
give this condition a name. Moreover, a topological space is R, iff
this condition is satisfied [3, p. 106].

DEFINITION 2.1. Let (X,¢) be a closure space. We say that
(X, ¢) is R, iff, given x,y in X such that x ¢ [y], then ye [7].

Clearly, every R -topological space is an R, closure space. The
following example of an R -closure space, which is not a topological
space, will be useful in the sequel.

ExampLE 2.1. Let S={r,s, t] and let d: F#(S) — Z*(S) be defined
by:

(9) = (9),

d([r]) = d(S) = d([r, s]) = d([r, t]) = d([s, t]) = S,

d([s]) = [r, s] and

a(t) = [r, t].
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THEOREM 2.1. Let (X, ¢) be a closure space. Then the following
are equivalent:

(a) (X, c¢) is R,

(b) There is a é—prowimity on X which induces ¢, i.e., M + ¢.

(¢) There is a semi-uniformity on X which induces c.

(d) Given Ac X and z¢ A, then [T} N A = ¢; i.e., each subset
of X 1is separated from the points excluded from its closure.

(e) Given Ac X and xe (X — A), then [x] < (X — A); i.e., each
subset of X contains the closure of the points in its interior.

(f) (X, ¢) is homeomorphic to a subspace of a product of spaces
(S, d) given in Example 2.1.

Proof. In [2] it is shown that (a), (b), and (¢) are equivalent,
although the name R, is not used. The proof that (a), (d), and (e)
are equivalent is straightforward and therefore is omitted.

(@) = (f). By Theorem 17 C.17 in [2], it suffices to show that
there is a family [f,: X — S] such that:

(1) Each f, is continuous.

(2) The family distinguishes points.

(3) If xe Xand AcC X such that x ¢ A4, then there is an « such
that f.(x) ¢ f.(4). _ _

To form such a family, if A, Bc X and (ANB) U(ANB) =g,
then we define g: X— S by

r if zeX— (AUB)
gxy =4s if zed
t if zeB.

To verify that g is continuous, it suffices to show that if Cc X and
g(C) = S, then ¢(C)cg(C). If g(C) =][s], then Cc A and Cc A.
Since ANB = ¢, it follows that ¢(C)c[r, s} = ¢(C). Similarly, if
g(C) = [t], then g(C) = ¢(C).

If yze X,y + z and ye [?], then we define h: X— S by

h) = r Tf T #E 2
s if z==2.
To see that h is continuous, it suffices to show that if Cc X and
7(C) = S, then i(C) c#(C). So we consider #(C) = [s]. Then C = [7]
and #(C) = [r, s] = A(C).

We define the family [f.] to consist of all those maps g, & which
we have specified above.

To verify (2), let y,2e X and y # 2. If ye[z], then there is
a map & which distinguishes y and z. If y¢ [z], then, since (X, ¢) is
R,, 2¢ [y] and there is a map ¢g which distinguishes y and z.
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To verify (3), let 2 ¢ A. Given ac A, then [g]c A and z¢ [a].
Since (X, ¢) is R, ¢ ¢ [Z]. Therefore, [¥] N A = ¢ and there is a map
g such that g(x) ¢ g(4).

(f) = (@). Since products (Theorem 23 D.11 in [2]), subspaces
and homeomorphic images of R,-closure spaces are R closure spaces,
the result follows. [

It is well known that in a topological space (X, .7) the R;-axiom
is equivalent to each of the following statements: given z, y € X, then
[Z] = [7] or [Z] N [#] = ¢; or, given x e Ge 7, then [F] © G. However,
these statements are not equivalent to the R-axiom for closure spaces.

THEOREM 2.2. Let (X, c) be a closure space. If [X] = [y] or
[ZIN[Y] = ¢ for all x,y in X, then (X, ¢) is R,; but the converse is
false.

Proof. The proof of the positive assertion is straightforward and
therefore is omitted. The converse fails in the R,-closure space given
in Example 2.1.

THEOREM 2.3. Let (X, ¢) be a closure space. If (X, ¢) is Ry, then
each open set contains the closure of each of its points; but the con-
verse is false.

Proof. The positive assertion is easily established. To see that
the converse is false, consider the following example: Let X = [a, b, ¢]
and let ¢: Z#(X) — FP(X) be defined by

g if A=¢
c(4) = {[a,c] if A=]d]
X otherwise. []

Similarly, one shows that if a closure space is R, then closed
sets are separated from the points they exclude; but the converse is
false.

3. Construction of proximites of Cech. In this section we
characterize the least member of IN in three ways, describe several
techniques for constructing members of I and derive some properties
of these constructions.

THEOREM 3.1. Let (X, ¢) be an Ry-closure space, and let & be
a relation on F(X). If FcCC ¥, then & induces ¢ and
satisfies P3 and P4.
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Proof. Obvious.

THEOREM 3.2. Let (X,c) be an Ryclosure space. Let &7 =
[(o], A):xec A, Ac X] and let & = [(C, D):3([z], A) e & such that
(xeC and ACD) or (xeD and AcCC)]. Then & = 2.

Proof. The proof is an easy verification. []

In order to analyze Theorem 8.2, let & e M(X, ¢). Since ¢ is
compatible with &7, it is necessary that & c.2? Also from that
part of P2 which insures that C > B and Ad6B implies A6C and from
P1, it follows that v c & < & What is surprising is that no
further alteration of &, to accommodate the second part of P2 as
well as P3 and P4, is necessary to obtain 2.

THEOREM 3.3. Let (X, ¢) be an Ry-closure space and let (S, d) be
the closure space in Example 2.1. Then the least é’-pmximity P in
PM(X, ¢) is defined by (A, B)y¢ G if there is a continuous function
g: (X, ¢) — (S, d) such that g(A)C [s] and g(B) C [t].

Proof. Assume (A, B)¢ <Z. Then (AN B) U (AU B) = ¢ and the
existence of a suitable function g was shown in the proof of Theorem
2.1.

Conversely, assume there is a continuous function g such that
9(A) < [s] and g(B) < [t]. Then g(4) < g(A) <[r, s], and thus AN B =¢.
Similarly AN B = ¢. Hence (4, B) ¢ .

DEFINITION 3.1. [2, 25 A.7] A mapping f from a é—proximity
space (X, &) to a é—proximity space (Y, &#*) is said to be p-con-
tinuous iff (4, B) e & implies (f(4), f(B)) e F*.

An equivalent formulation of this definition is: f is p-continuous
iff for all (C,D)¢ FP* with C,Dc Y, it is true that (f(C),
D) ¢ A

It is known [2, 25 A. 10] that every p-continuous function is
a continuous function with respect to the induced closure operators.
It is easily verified that there is only one-proximity <#? on S com-
patible with d (the space (S, d) is defined in Example 2.1) and that

~ % = [(¢, 4): ACSJU (B, ¢): B S] U [([s], [¢D] -

In this context the following theorem may be of interest.

THEOREM 3.4. Let P e M(X, ). Then P = .2 iff all functions
which are continuous from (X,c) to (S,d) are p-continuous from
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(X, &) to (S, #?%). Here # is the least Cv'-p'r'oaaimity wm M(X, ¢), (S, d)
is the space in Example 2.1 and Z¢ is the unique é—proximity i
(S, d).

Proof. Assume &7 = Z. Let f: (X, ¢) — (S, d) be continuous and
let (A, B)e &” Then ANB=~g¢or ANB =+ ¢; say AN B = ¢. Choose
a in AU B. Since f is continuous, f(a)e f(B)cf(B). Thus f(4) N
F(B) = ¢ and (f(A), f(B)) e <#°. Therefore, f is p-continuous.

Conversely, assume .Z° = <Z. Then there is (4, B)e & — .
So ANB U(ANDB) =¢. We define g: X— S by

r if zeX— (AU B)
if zeA

g(x) = {s
t if zeB.

In the proof of Theorem 2.1 we verified that g is continuous. However,
¢ is not p-continuous since (g(4), g(B)) ¢ ..

THEOREM 3.5 Let (X, c¢) be an Ry-closure space and let % =
[(4,B): AN B+ g]. Then Z.ecM iff, given Ac X and wc X such
that A N [&] = ¢, it follows that x e A.

Proof. The proof is a straightforward verification. [

It is easily shown that if (X, ¢) is a closure space, then . =
[(4, B): A, BC X and if f: (X, ¢) — (X, ¢) is continuous, then f(4)N
F(B) = gl.

DEFINITION 3.2. Let (X, ¢) be an R -closure space, let EFcC X,
let m be an infinite cardinal number and let &7 e IM. We introduce
the following notations.

(i) FPE M= N(FU[A B:|ANE|=mor |BNE|= m]).

(ii) FPlE,m=F U4, B:|ANE|=mand |BNE|= m].

THEOREM 3.6. The relation F{E, m}is in M and has the follow-
tng properties:

(i) If ECF,m < m, and P < P, then FP'{E, m,} < FP{F, m}.

(ii) If | F| < m, then F{E, m} = FP{EU F, m} = F{E—F,m}.

(iii) F{E, m} N\ FP{F, m} = FP{ENF, m}.

(iv) FP{E, m}U P{F,m}c FP{EU F,m} and, in general, equality
does not hold.

(v) If m<m, and |F— E|<m, then (FP{E, m}){F, m}=
F{E, m}.

i) If mzm, and |E— F|<m, then (FP{E, mhH{F, m} =
F{F, my}.
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(viiy If & F'eM and P U P & FP{E, m}, then there exists
F*e IR such that F' & FP* & FP{E, m}.

Proof. Clearly (K, m}c 7. Since # C.F cC F{E, m}, it
follows from Theorem 8.1 that ZP{E, m} induces ¢ and satisfies P3,
P4, Clearly Pl holds in &#{E, m}. The verification of P2 is straight-
forward.

(i) Let (4, By e F#{E, m}. If (A, B)e ., then (4, B)e & C
P{F,m}. If (A,B)y¢ &', then |ANE|=m, and |BNE|=m,.
Since Fc F and m < m,, it follows that |AN F|= m and |BN F| = m.
Thus (4, B) € Z{F, m}.

(ii) Since |F'| < m and m is an infinite cardinal number, it is
known from set theory that |[ANE|zZzm iff |AN(EUF)| = m iff
lAN(E — F)| = m.

(iii) Let (A4, Bye &{E, m} N FP{F,m}. If (A, B)eF”, then
(A4, B)e Z{EN F, m}. So we assume that (A, B)¢ &”. Suppose that
|BONENF| <m. Since (4, B) ¢ .27, P2 implies that (4, BNENF) ¢ &
Thus (A, BANENF) ¢ P{E, m} N\ FP{F, m}. Because B= (BNENF)U
(B — (ENF), it follows from P2 that (4, B — (E N F)) e F{E, m} A
FP{F,m}. In as much as B— (ENF)=(B—- E)U(B— F), P2
implies that:

Case 1. (A, B— E)e ZP{E, m} A\ FP{F, m}. Then (A, B— KE)e
F{E, m}. Again, since (4, B) ¢ &7, P2 implies that (4, B — E)¢ A~
Therefore, | (B — E) N E| = m which is a contradiction.

Case 2. (A, B~ F)e P{E, m} \ F{F, m}. An argument similar
to Case 1 leads to the contradiction |(B— F)N F| = m.

As a result of the contradictions, |BN EN F|= m. Similarly,
|[ANENF|=m. Therefore, (4, B)e F#{EN F, m}, and ZP{E, m} A\
FP{F, m}c FP{EN F, m}.

By (i), L{ENF,m}c FP{E m}N FP{E m}. Since FP{E, m} A
F{F, m} is the union of all members of MM contained in FP{E, m} N
FP{F, m}, it follows that F{F N F, m} C FP{E, m} A\ FP{F, m}.

(iv) By (), F{E, m}c FP{EUF, m} and P{F, m}c FP{EUF, m}.
Therefore, F{E, m} U FP{F, m}c FP{E U F, m}.

Next we give an example where F{EUF, mlZ FP{HE m}U
F{F, m}. Let X be the set of real numbers, .7~ the usual topology on
Xm=|X|,FP=F FE=[rzecX:02r<]]and F=[zec X:2 =<2 <3].
Then (E, F)e &?{E U F, m} but (E, F) ¢ Z{E, m} U F{F, m}.

(v) Clearly F{E,m}c F{E mUN4, B:|ANF|=m, and
|BNF |z m] = (F{E, m{F, m}.

Let |ANF| = m,. We write ANF = (AN(F — E))U(ANENF).
Since | AN(F—E)| < |F—-FE|<m, it follows that | AN EN F|= m,.
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So |AN E| =m,=m. Therefore, we have shown that [(4, B); |ANF|=m,
and [BNF|zm]C[(A, B:|ANE|=m and |BN E|= m]. Thus
[(A,B):|ANE|=mand |BN E| = m]cC.F{FE, m} implies (Z{E, m})
{F, m,} C P{E, m}.

(vi) The proof is similar to (v) and therefore is omitted.

(vii) Let (C, Dye #{E, m} - (& U &), Thus |[CNE|=m and
|DNE|=m. We partition D into two disjoint sets D,, D, such that
|D.NE|=|D.NE|=|DNE|. Then DNE=DnN(E—-D). So
|D, N (E— Dy)| = m.

We write CNE = (CNEND)UCNEND)U(CNE) — (D,NDy)).
Since |CN FE| = m, it follows that |[(CNEND)U (CNE)— (DN
D) | zZzmor | (CNEND,)UCN E)— (D, N D,))| = m; say the former
istrue. Let F=C—(END,). Then FN(E—-D)=(CNEND)U
(CNE)—(D,UD,y)) and [FN(E— D,)| = m.

Let &#* = &' {E — D,,m}. Then (F, D) e .Z”* by the above work.
Since (C, D) ¢ &', Fc C and D,c D, P1 and P2 imply that (F, D,) ¢ &'
Thus &' & F*.

Clearly (C, D,) € &*{E, m} and .&°* C Z{E, m}. Since (C, D,) ¢ &'
implies by P2 that (C, D) e &', contrary to assumption, we must have
(C, D)) ¢ &'. Also D,N (E — D,) = ¢ implies that (C, D,) ¢ &°*. Thus
F* G FPLE, m}.

THEOREM 3.7. The relation 7 (K, m) is in M and has the follow-
ing properties:

(i) If ECF,m<£m, and F' C P, then F°'(E, m,) C F(F, m).

(ii) If|F| < m, then F(E, m) = FP(EUF, m=FPE—-F,m).

(iii) FE, m) N P (F, m)DPENF, m) and, in general, equality
does not hold.

(iv) FE, m)U FPEFE,m) = FEUJF, m).

(v) If mZm and |F— E|<m, then (FE, m))(F,m) =
F(E, m).

(vi) If mz=zm, and |E— F|<m, then (FPE, m)F,m)=
P (F, m,).

(i) If & F'e and P U F S F(E, m), then there exists
F*e M such that F' & F* & F(H, m).

Proof. The proof is similar to Theorem 3.6 and therefore is
omitted.

THEOREM 3.8.

(i) <2{E, m}c F(E, m).

(ii) In general, [SZ(E,m): EC X, m an infinite cardinal] neither
contains nor is contained in [F{H, m}: EC X, m an infinite cardinal].

(iii) In general, M = [F (K, m), F{E, m}: EC X, m an infinite
cardinall.
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Proof. (i) The result is immediate by comparing the definitions
of FA{E, m} and F(E, m).

(ii) Let X be the set of real numbers, .7~ the usual topology on
X, F=[zeX:0<x<4]and t=|X|. Then SZ{F, t}¢[Z(E, m): EC
X, m an infinite cardinal] and #Z(F, t) ¢ [Z{E, m}: EC X, m an infinite
cardinal].

(iii) Let X be the set of real numbers, let &~ be the usual
topology on X and let <#Z = [(4, B): AN B+ ¢]. Then <#ZeM by
Theorem 3.5. However, <# ¢[Z(E, m), Z{E, m}: EC X, m an in-
finite cardinal].

THEOREM 3.9. If & + Z{E, m}, then FZ{E, m} covers no ele-
ment of M. If B =+ F(E, m), then FZ(E, m) covers mo element
of .

Proof. Suppose & e M and &P & FZ{E, m}. Since H# U P =7,
we appeal to Theorem 8.6 (vii) to see that <Z{F, m} does not cover
. The second statement follows from Theorem 3.7 (vii).

THEOREM 3.10. Let (X, ¢) be a closure space such that |IN| > 1.
In addition, let €M and F + . Let(C,D)e @ — P and let
F,Z be nonprincipal ultrafilters on X containing C, D respectively.
Then & = P U(F X @YU (L x F) is in M and G’ covers .

Proof. Clearly &#c & <. Z?'. Since each member of a non-
principal ultrafilter is an infinite set, .&% x & < %. Hence F'C .
By Theorem 3.1, &2’ induces ¢ and satisfies P3, P4.

Clearly &’ satisfies P1. To verify P2, let (4, BUC)e & X Z.
Hence BU Ce Z. Since ¥ is an ultrafilter, it is known [4, p. 84]
that Be & or Ce &. Thus (4, B)e & X & or (4, Ce F x Z.

Conversely, let (4, Ble # x & and CC X. Since ¥ is a filter
and BeZ, BUC isin &. Thus (4, BUC)e & X Z.

We have shown that &' e .

Suppose there exists F*e M and &F & F*C F'. We will show
that &* = &'. Let (F, G) belong to &#* — &2 Then (F, @) is in
G — F and (F, G) belongs to & X & or & X &, say F X Z.
To verify that & x & < &%, we let (4, B) be in &# x &. Then
G=(GNB UG- B). ByP2 (F,GNB)eZ* or (F,G— B)e F*.
Since the assumption that (F, G — B) e &°* leads to a contradiction,
we conclude that (F, G N B) € &°*.

Because & and & are filters, a similar argument shows (F N
A GNBeF* Pl and P2 imply that (4, B)e &”*. Therefore,
F X ¥cg”*. Pl implies that & x & < &”*. Hence &' c F*
and F#* = F'.
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THEOREM 3.11. Let (X, ¢) be a closure space such that || > 1.
Let eI, let P+ .# and let (C, D) belong to & — . Then
there exist nomprincipal ultrafilters 7, < on X such that (C, D) e
F X T

Proof. Fix (C,D)in .77 — <. Let & = [EF: EC D and (C, E) ¢
G — #]. Let © be the family of all subsets 27* of &7 having
the property: A, Be 27" implies AN Be o7*., We partially order
& by set inclusion. By Zorn’s lemma, © has a maximal element ..

<, is a filter base on X due to the formation of 577 and &.
Hence, there exists an ultrafilter < on X containing <7, [4, pp. 78,
79, 83]. Furthermore, Dec &, and < is a nonprincipal ultrafilter.
Also, if Ge <, then (C,GND)e & — A

Let & =[L:LcC and (L,GND)e.s” — .z for all Ge &].
Let & be the family of all subsets .&7* of &~ having the property:
S, Te &* implies SN Te . &*. We partially order ¥ by set inclusion.
By Zorn’s lemma, ¥ has a maximal element .5, which is a filter base
on X. Hence there exists an ultrafilter % on X containing ..

Moreover, Cc ., and &% 1is a nonprincipal ultrafilter. Finally,
if (F,G)isin & X 2, then (FNC,GN D)e.s” ThusPl, P2imply
that (F, G)e .22 So 9 X & C . A

THEOREM 3.12. Let (X, ¢) be a closure space such that 7, 7' ¢ IN.
Then 7' covers & iff, given (C,D) in P — 7, there exist non-
principal ultrafilters &, & on X containing C, D respectively such
that &' = F U (¥ X F)U(F X F).

Proof. Assume 7’ covers .~ Let (C, D) belong to &' — A
Since . «# .7, (C,D) is in &' — & By Theorem 3.11, there are
nonprincipal ultrafilters &, < on X such that (C, D)e & x & < .F.
Pl implies & x 7 c.&?’. Thus S F U (F X&) U (T xF)C . F.
By Theorem 38.10, # U (¥ X £)U(Z¥ x &) is in M. Since .F’
covers &, 7' = F U(F X L)U(Z X F).

The converse is a direct application of Theorem 3.10.

4. The structure of the lattice of é—proximities compatible
with a given R,closure space. In this section we first characterize
greatest lower bound in 3. Then it is shown that I is strongly
atomic and distributive. Finally, we prove that 9% has no antiatoms
and that if || > 1, then | M| > 22,

LemmaA 4.1. [2, p. 441] Let < be a C-prozimity on X and let
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(A, B e If A=Ul4:1<i<n] and B=UI[B;:1<7<m]
where n and m are integers, then there exists i, j such that (A;, B;) € .

THEOREM 4.1. Let (X, c) be an R-closure space. Let K be a
nonempty index set and F = A [P FaeM and acK]. Then
(4, By e & iff, given A =\J[Ai:ieI] and B= U [B;:jeJ] where I
and J are finite sets, it follows that there exists i, j such that (4;, B;) €
G for each ac K.

Proof. Let (A,B)e 7 let A= [A;:ic I]and let B=J[B;:jeJ]
where I,J are finite sets. We appeal to Lemma 4.1 to obtain 4, J
such that (4, B;)e &2 Since & c &, for each ac K, (4;, B;) € F,.

Conversely, let &' =[(4,B): if A=UJ[Ai:iel] and B=U
[B;:jeJ] where I,J are finite sets, then 37,5 such that (A4;, B;) ¢ &,
for each a e K. Cech has proved [2, p. 470] that &’ is a é’-proximity
on X, &' < ., for each e K and if &°* is any é—proximity on X
such that .#* c &7, for each ac K, then #* < .Z?’. We shall prove
that &’ induces ¢. It then follows that . ¢ M and F' = A[F: Fe M
and ae K].

Let (C, D) e <# and suppose C = |J [C;:te Iland D = J[D;:jeJ]
where I,J are finite sets. By Lemma 4.1 there exist ¢ and j such
that (C;, D,)e <. Since .&# C &, for each ac K, (C;, D;) € &,.. Con-
sequently (C, D)e &?'. Thus «#c F'. Since F' C FC W, we
have &# c &’ c %. By Theorem 3.1, &’ induces ¢. []

We observe that the operation of meet in (X, ¢) is the restric-
tion of the operation of meet in the family of all é—proximities on X
(no compatibility requirement). This follows from Theorem 4.1 and
[2, p. 470]. Cech has established the analogous conclusion for the
operation of join in these two lattices [2, p. 448]. Therefore, IM(X, ¢)
is a sublattice of the lattice of all C-proximities on X.

THEOREM 4.2. If &P eM and F + %, then there exists F* e M
such that & & F* & 9. Therefore, the lattice M has no antiatoms.
Also, M is not antiatomic and is not anticovered 4f | M| > 1.

Proof. Since 7 = Z{X, W} and Z U F = F & %, we appeal
to Theorem 8.6 (vii) to obtain 7* satisfying the theorem. The last
two statements follow from the appropriate definitions.

COROLLARY 4.1. If |M| > 1, then M is not lattice isomorphic
to a power set lattice.

Proof. Every power set lattice with more than one element has
antiatoms.
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THEOREM 4.3. The lattice M is strongly atomic and consequently,
atomic and covered.

Proof. Let FP el and Fc.F*ecM. If (C,D)e FP* — &,
then, by Theorem 3.11, there exist nonprincipal ultrafilters &, &
on X such that (C, D)e & xZ C &*. Pl implies & X F < F*,
Thus F,, = P U(F X @)U (¥ x F)c.e”*. By Theorem 3.10,
FPop is an atom in the lattice ([ e M: F > F], ). Since
UlF¢,0: (C, D) is in F*— F|=.F*, the lattice ([.Z7' € M: F'DF], )
is atomic.

M is atomic because every strongly atomic lattice with a least
element is atomic. I is covered since every strongly atomic lattice
is covered.

COROLLARY 4.2. If [M|>1, then M 1is not infinitely meet
distributive.

Proof. Suppose M is infinitely meet distributive. Since it is
well known that a complete, infinitely meet distributive lattice is a
complete Boolean algebra, IN is a complete, atomic Boolean algebra.
Consequently I is isomorphic to a power set lattice which contradicts
Corollary 4.1.

LeEmMmA 4.2. The lattice M 1s modular.

Proof. 1t suffices {1, p. 13] to show that I does not contain
a sublattice of the form:

T

G
F
G

G

Suppose P does contain such a sublattice. Let &, = [atoms of
9% which are contained in &% but are not contained in %] and &, =
[atoms of M which are contained in &7 but are not contained in Z7].
If NS, ¢, then A& A UM B, NG))CFH AN F. Since AU
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(U, N&,))e M, we have contradicted & = & A . Thus &, N
&, = .

Since M is atomic, there exists ' € &S,. Because 7' ¢ & and
F' ¢S, P ¢ F. Hence there exists (4, B)e & — . Since
F'¢ T, there exists (C, D) e &’ — . Because .7’ is an atom in I,
we appeal to Theorem 3.12 to obtain nonprincipal ultrafilters &, &
on X containing C, D respectively such that &' = 2 U (¥ x &)U
(z x &). Now (4, B) in &»' — & implies (4, B) belongs to & x &
or ¥ X &, say % Xx%. Thus(ANC,BND)e ¥ x & C.FCH.

Since (C, D) ¢ &, P1 and P2 imply (AN C, BN D)¢ <. Having
seen (A, By ¢ &, P1 and P2 imply (ANC,BND)¢ .. Thus (AN
C,BNnD)¢ U .F = ., which is a contradiction.

THEOREM 4.4. The lattice MM s distributive.

Proof. In view of Lemma 4.2, it suffices [1, p. 839] to show that
M does not contain a sublattice of the form:

Fs

S 0.7y

G

Suppose M does contain such a sublattice. Let &; = [atoms of M
which are contained in .27 but are not contained in 2] (1 = 2, 8, 4).
If NS, ¢, then & & . F U U®,nNGy))c. A A FH Since F U
U®,N&,y)) is in I, we have contradicted & = A A . Thus
S, NS, = ¢. Similarly, &, NS, = 4.

Since M is atomic, there exists '€ &,. Because 7' ¢ .77 and
P ¢S, P& F. Hence there exists (A, B) e &' — . Similarly,
there exists (C, D)e &’ — 7. Because ' is an atom in I, we
appeal to Theorem 3.12 to obtain nonprincipal ultrafilters &, & on
X containing C, D respectively such that &' = FU(F x ) U
(zxs). (A, Bye 7 — & implies (A, B)isin & x & or & X &,
say % X %. Therefore, (ANC,BND)e ¥ X &P CHA.

Since (C, D) ¢ &, P1 and P2 imply (AN C, BN D) ¢ <. Having
seen (A, B)¢ &%, P1 and P2 imply (ANC, BN D)¢.7. Thus (AN
C,BND)¢ U F = F, which is a contradiction.
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COROLLARY 4.3. If || > 1, then M is not complemented.

Proof. If M is complemented, then I is a complete Boolean
algebra, and thus is infinitely meet distributive [1, p. 118]. This con-
tradicts Corollary 4.2.

THEOREM 4.5. Let (X, ¢) be an Ry-closure space. Then D] =1
iffs given two infinite subsets of X, at least one of them contains a
point in the closure of the other.

Proof. Assume || = 1. Let A, B be two infinite subsets of X.
Then (A4, B)e . |M| =1 implies Z = %. Thus (ANB U(AN
B) = ¢.

The converse is true because the assumption says <% = %#°
Therefore, || < 1. Since (X, ¢)is R, || =1 by Theorem 2.1. []

We note that | M| = 1 for each of the following topological spaces:
any R, topology on a finite set, any set with the indiscrete topology,
any set with the minimum 7T, topology and any atom in the lattice
of T, topologies on a fixed set. We also note that the characteriza-
tion given in Theorem 4.5 can be expressed as: || =1 iff any two
infinite subsets of X are not separated.

THEOREM 4.6. Let (X, ¢) be an R,closure space. Then |IM| =1
or 270 < |M| < 2. Furthermore, if | X|= W, and m is a cardinal
number such that YW, < m < | X|, then there is a T, topology .7 on X
such that | M(X, 77)| = 2*".

Progf. Theorem 2.1 implies || =1. If || > 1, then there
exists (C, D)e %~ — 2. Thus C, D are infinite and CND = ¢. We
appeal to Theorem 3.11 to obtain nonprincipal ultrafilters 7, 7" on X
containing C, D respectively. Then . Z U(Z X 7)Y U (Y X %) is in
M by Theorem 3.10. We note that if 2, # are distinct nonprincipal
ultrafilters on X containing C, then &2 U (% X ) U (7 X %) and
FPU(F X 7)U(T x &) are distinct. From [2, p. 212] there are
229 distinet ultrafilters on X containining C. Since there are |C|
principal ultrafilters on X containg C, there are 2¥°' distinct non-
principal ultrafilters on X containing C, and it follows that 2™ <
2210I < | m I'

On the other hand, since there are 2**' families of ordered pairs of
subsets of X, and since each C-proximity is such a family, | I | <2°%,

To form .7, choose subsets S, T of X such that SN T = ¢ and
|S|=|T|=m. Then [¢, X — S, X — T, X — any finite subset of X]
is a subbase for the desired topology .7. Since (S, T)e % -
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Z, | M(X, 77)| > 1. By the above argument, | M(X, 77)| = 2*°.

Let .7’ be the relative topology on SU T. Then f: M(X, 77) —
MSU T, 7") defined by f(F)=FN(FSUT)x FSOUT)) is
a 1:1, onto map. Thus |MX, 7)|=|DMSUT, 7| By the
argument above |MES U T, o) | < 2¥°Y", which establishes our result
since |SU T'| = m.

THEOREM 4.7. Let (X, ¢), (X, d) be Ryclosure spaces. Let 2,
be the least members of M(X, ¢), M(X, d) respectively. If c(A) C d(A)
for each AC X, then #,C FH;.

Proof. The verification is straightforward.

THEOREM 4.8. Let (X, ¢), (X, d) be R,-closure spaces. Let Z, &,
be the least members of M(X, ¢), M(X, d) respectively. If & C A,
then |M(X, d) | < [M(X, o) [.

Proof. Let % be the family of atoms of M(X, d). By Theorems
3.11 and 3.10, if .7 € ¥, then there are nonprincipal ultrafilters Z/, 7~
on X such that & = B U (¥ X ") U (¥ X %). Since &, c .,
by Theorem 3.10 2, U(Z X 7°) U (7" X %) is an atom in M(X, c¢).

Define f: W — M(X,e¢) by (FZU(Z X 7)U (T X %)) = #, U
(Z X YU X Z). Also, define g: M(X, d) — M(X, ¢) by

_(UIft=): et and S CF] it F +
T e if P =,

To verify that g is 1:1, let & &' eN(X,d) and F = F'.
Since M(X, d) is atomic, there exists &’ e such that (&’ < & and
L' ¢ FP)or (&' and &’ ¢ FP); say the former is true. Then
f(&7) C g(&) by the definition of g. Let (A, B) belong to &' — 7',
Since #Z,c &', (4, B)¢ “#,. By Theorems 3.11 and 3.10 there are
nonprincipal ultrafilters %/, 7 on X such that (4, Bl e % X 7" and
F' =B U (% X )V X #%). Hence (4, B) e f(&") < g(&P).

On the other hand, (4, B) ¢ &’ implies that (4, B) is not a mem-
ber of any atom contained in .Z#’. Therefore, (4, B) ¢ g(&'), and
9(Z) # g(F).

9(Z)
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