ADDENDUM TO: “SEQUENCES OF HOMEOMORPHISMS WHICH CONVERGE TO HOMEOMORPHISMS”

JEROME L. PAUL
ERRATA

Addendum to

SEQUENCES OF HOMEOMORPHISM WHICH CONVERGE TO HOMEOMORPHISMS

JEROME L. PAUL

Volume 24 (1968), 143–152

We observe that Theorem 1 remains valid when we omit the relative compactness requirement on the U_i, and add the hypothesis that M be complete. The proof of the alternative theorem is the same as that of Theorem 1, except that some conclusions which were previously based on relative compactness arguments now follow from completeness.

The alternative Theorem 1 can be used to extend certain results of the paper to the Hilbert space l_2. In what follows, M, N shall be locally convex topological (real) vector spaces, and U a locally convex subset of M having no isolated points. Given a continuous map $f: U \to N$, a point $x \in U$ is called a spiral point of f if given any hyperplane (= translate of a codimension one linear subspace) Π containing $f(x)$, and any point $y \neq x$ in U, then $f([x, y]) \cap \Pi$ is an infinite set, where $[x, y]$ denotes the (closed) line segment joining x and y.

PROPOSITION. Given a continuous map $f: U \to N$, with U, N as above, the set of nonspiral points of f is dense in U.

Proof. Let x and y be any two points such that $[x, y] \subset U$. To prove the proposition, it suffices to show that there is a point z in the open segment (x, y) such that z is not a spiral point of f. Note that if f is constant on $[x, y]$, then $[x, y]$ consists entirely of nonspiral points of f. Hence, we can assume that there is a point $w \in (x, y)$ such that $f(x) \neq f(w)$. Let Π be a hyperplane in N which separates $f(x)$ and $f(w)$. Then there is a (unique) point $z \in (x, w)$ such that $f([x, z]) \cap \Pi = f(z)$, so that z is not a spiral point of f, and the proposition is proved.

In spite of the existence of a dense set of nonspiral points for any continuous map $f: U \to N$, when $M = N = \text{the Hilbert space } l_2$, we have the following

THEOREM. Let U be a locally convex subset, having no isolated points, of the Hilbert space l_2. Then those topological imbeddings of U into l_2 which have a dense set (in U) of spiral points form
a dense subset, in the fine C^0 topology, of the set of topological im-
beddings of U into l_2.

The proof of this theorem, which requires the alternative form
of Theorem 1, is similar to the proof of Theorem 2 and is therefore
omitted. The principal modification needed consists in allowing the
maps $F_{c,r,i,j,m}$, (which are now defined on l_2 in the obvious way using
(9)-(9)'), to act now on the left of the imbeddings via a suitably
defined infinite left composition, and where the positive integer j is
not subject to the condition $j \leq n$ of Theorem 2.

Correction to

DIMENSION THEORY IN POWER SERIES RINGS

DAVID E. FIELDS

Volume 35 (1970), 601–611

While recently answering a letter of inquiry of T. Wilhelm, I
discovered an error in Corollary 4.6. The result, as originally stated,
clearly requires that $P \cdot V[[X]] \subset P[[X]]$. However, if P is not branched,
it is possible that $P \cdot V[[X]] = P[[X]]$; a counterexample can be ob-
tained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the
proof of Theorem 4.7.

Corollary 4.6'. Let V be a valuation ring having a proper prime
ideal P which is branched. If P is idempotent, then there is a
prime ideal Q of $V[[X]]$ which satisfies $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

Proof. Since P is branched, there is a prime ideal \bar{P} of V with
$\bar{P} \subset P$ and such that there are no prime ideals of V properly between
\bar{P} and P [1; 173]. By passing to $V[[X]]/\bar{P}[[X]] \cong (V/\bar{P})[[X]]$, we
may assume that P is a minimal prime ideal of V.

Since P is idempotent, PV_r is idempotent by Lemma 4.1; hence
V_r is a rank one nondiscrete valuation ring. By Theorem 3.4, there is
a prime ideal Q of $V_r[[X]]$ such that $(PV_r) \cdot V_r[[X]] \subseteq Q \subset (PV_r)[[X]]$. But then we see that $Q \subset (PV_r)[[X]] = P[[X]] \subseteq V[[X]]$. Hence $Q \cap V[[X]] = Q$ and Q is a prime ideal of $V[[X]]$ with $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

The following result is now of interest.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by
Pacific Journal of Mathematics
All Rights Reserved
Wm. R. Allaway, *On finding the distribution function for an orthogonal polynomial set* ... 305
Eric Amar, *Sur un théorème de Mooney relatif aux fonctions analytiques bornées* 311
Robert Morgan Brooks, *Analytic structure in the spectrum of a natural system* 315
Bahattin Cengiz, *On extremely regular function spaces* .. 335
Paul Frazier Duvall, Jr. and Jim Maxwell, *Tame Z^2-actions on E^n* 349
Allen Roy Freedman, *On the additivity theorem for n-dimensional asymptotic density* ... 357
John Griffin and Kelly Denis McKennon, *Multipliers and the group L_p-algebras* 365
Charles Lemuel Hagopian, *Characterizations of λ-connected plane continua* 371
Jon Craig Helton, *Bounds for products of interval functions* 377
Ikuo Kayashima, *On relations between Nörlund and Riesz means* 391
Everett Lee Lady, *Slender rings and modules* .. 397
Shozo Matsuura, *On the Lu Qi-Keng conjecture and the Bergman representative domains* .. 407
Stephen H. McCleary, *The lattice-ordered group of automorphisms of an α-set* 417
Stephen H. McCleary, *$o-2$-transitive ordered permutation groups* 425
Stephen H. McCleary, *o-primitive ordered permutation groups. II* 431
Richard Rochberg, *Almost isometries of Banach spaces and moduli of planar domains* ... 445
R. F. Rossa, *Radical properties involving one-sided ideals* 467
Robert A. Rubin, *On exact localization* ... 473
S. Sribala, *On Σ-inverse semigroups* ... 483
H. M. (Hari Mohan) Srivastava, *On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials* 489
Stuart A. Steinberg, *Rings of quotients of rings without nilpotent elements* 493
Daniel Mullane Sunday, *The self-equivalences of an H-space* 507
W. J. Thron and Richard Hawks Warren, *On the lattice of proximities of Čech compatible with a given closure space* 519
Frank Uhlig, *The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil* ... 537
Frank Uhlig, *On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms* 543
Frank Uhlig, *Definite and semidefinite matrices in a real symmetric matrix pencil* 561
Arnold Lewis Villone, *Self-adjoint extensions of symmetric differential operators* 569
Cary Webb, *Tensor and direct products* .. 579
James Victor Whittaker, *On normal subgroups of differentiable homeomorphisms* ... 595
Jerome L. Paul, *Addendum to: “Sequences of homeomorphisms which converge to homeomorphisms”* .. 615
David E. Fields, *Correction to: “Dimension theory in power series rings”* 616
Peter Michael Curran, *Correction to: “Cohomology of finitely presented groups”* ... 617
Billy E. Rhoades, *Correction to: “Commutants of some Hausdorff matrices”* 617
Charles W. Trigg, *Corrections to: “Versum sequences in the binary system”* 619