Pacific Journal of Mathematics

CORRECTION TO: "DIMENSION THEORY IN POWER SERIES RINGS"

DAVID E. FIELDS

Vol. 49, No. 2

June 1973

a dense subset, in the fine C° topology, of the set of topological imbeddings of U into l_2 .

The proof of this theorem, which requires the alternative form of Theorem 1, is similar to the proof of Theorem 2 and is therefore omitted. The principal modification needed consists in allowing the maps $F_{c,r,i,j,m}$, (which are now defined on l_2 in the obvious way using (9)-(9)'''), to act now on the *left* of the imbeddings via a suitably defined infinite left composition, and where the positive integer j is not subject to the condition $j \leq n$ of Theorem 2.

Correction to

DIMENSION THEORY IN POWER SERIES RINGS

DAVID E. FIELDS

Volume 35 (1970), 601–611

While recently answering a letter of inquiry of T. Wilhelm, I discovered an error in Corollary 4.6. The result, as originally stated, clearly requires that $P \cdot V[[X]] \subset P[[X]]$. However, if P is not branched, it is possible that $P \cdot V[[X]] = P[[X]]$; a counterexample can be obtained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the proof of Theorem 4.7.

COROLLARY 4.6'. Let V be a valuation ring having a proper prime ideal P which is branched. If P is idempotent, then there is a prime ideal Q of V[[X]] which satisfies $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

Proof. Since P is branched, there is a prime ideal \overline{P} of V with $\overline{P} \subset P$ and such that there are no prime ideals of V properly between \overline{P} and P [1; 173]. By passing to $V[[X]]/\overline{P}[[X]]$ ($\cong (V/\overline{P})[[X]]$), we may assume that P is a minimal prime ideal of V.

Since P is idempotent, PV_P is idempotent by Lemma 4.1; hence V_P is a rank one nondiscrete valuation ring. By Theorem 3.4, there is a prime ideal Q of $V_P[[X]]$ such that $(PV_P) \cdot V_P[[X]] \subseteq Q \subset (PV_P)[[X]]$. But then we see that $Q \subset (PV_P)[[X]] = P[[X]] \subseteq V[[X]]$. Hence $Q \cap V[[X]] = Q$ and Q is a prime ideal of V[[X]] with $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

The following result is now of interest.

616

PROPOSITION A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P = \bigcup_{\lambda \in A} M_{\lambda}$, where $\{M_{\lambda}\}_{\lambda \in A}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]] = P[[X]]$ if and only if (*) given any countable subcollection $\{M_{\lambda_i}\}$ of $\{M_{\lambda}\}, \bigcup_{i=1}^{\infty} M_{\lambda_i} \subset P$.

Proof. Assuming (*), let $f(X) = \sum_{i=0}^{\infty} f_i X^i \in P[[X]]$. For each i, $f_i \in M_{\overline{\lambda}_i}$ for some $\overline{\lambda}_i \in \Lambda$. Let $p \in P$, $p \notin \bigcup_{i=0}^{\infty} M_{\overline{\lambda}_i}$; since $p \notin M_{\overline{\lambda}_i}$, it follows that $f_i \in M_{\overline{\lambda}_i} \subseteq (p)V$ for each i and $f(X) \in (p)V[[X]] \subseteq P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\{M_{\lambda_i}\}_{i=1}^{\infty}$ be a countable subcollection of $\{M_{\lambda_i}\}_{\lambda \in A}$ such that $\bigcup_{i=1}^{\infty} M_{\lambda_i} = P$. By extracting a subsequence of $\{M_{\lambda_i}\}$, we may assume that $M_{\lambda_i} \subset M_{\lambda_{i+1}}$ for each *i*. Let $f_i \in M_{\lambda_{i+1}}$, $f_i \notin M_{\lambda_i}$ and let $f(X) = \sum_{i=1}^{\infty} f_i X^i$; then $f(X) \in P[[X]]$ but $f(X) \notin P \cdot V[[X]]$.

MARSHALL UNIVERSITY

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. CURRAN

Volume 42 (1972), 615-620

In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, \cdots " should read "If G is a residually finite group generated by n elements, \cdots ".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Volume 42 (1973), 715-719

In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if

(1) for each $t \in l$ and each n, $t(A - a_{nn}I) = 0$ implies t belongs to the linear span of (e_0, e_1, \dots, e_n) . On page 716 of [2] it is asserted that

(2) $(U^*)^{n+1}(A - a_{nn}I)U^{n+1}$ of type M for each n is equivalent to

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California

Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. DUGUNDJI*

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

K. YOSHIDA

ASSOCIATE EDITORS

E.F. BECKENBACH

B.H. NEUMANN

F. Wolf

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY * * UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY **OSAKA UNIVERSITY** NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 49, No. 2 June, 1973

Wm. R. Allaway, On finding the distribution function for an orthogonal polynomial set	305
Eric Amar, Sur un théorème de Mooney relatif aux fonctions analytiques bornées	311
Robert Morgan Brooks, Analytic structure in the spectrum of a natural system	315
Bahattin Cengiz, On extremely regular function spaces	335
Kwang-nan Chow and Moses Glasner, <i>Atoms on the Royden boundary</i>	339
Paul Frazier Duvall, Jr. and Jim Maxwell, <i>Tame</i> Z^2 -actions on E^n	349
Allen Roy Freedman, On the additivity theorem for n-dimensional asymptotic	549
density	357
John Griffin and Kelly Denis McKennon, <i>Multipliers and the group</i> L_p -algebras	365
Charles Lemuel Hagopian, <i>Characterizations of</i> λ <i>connected plane continua</i>	371
Jon Craig Helton, <i>Bounds for products of interval functions</i>	377
Ikuko Kayashima, On relations between Nörlund and Riesz means	391
Everett Lee Lady, Slender rings and modules	397
Shozo Matsuura, On the Lu Qi-Keng conjecture and the Bergman representative	591
domains	407
Stephen H. McCleary, <i>The lattice-ordered group of automorphisms of an</i> α <i>-set</i>	417
Stephen H. McCleary, $o - 2$ -transitive ordered permutation groups	425
Stephen H. McCleary, <i>o-primitive ordered permutation groups</i> . II	431
Richard Rochberg, Almost isometries of Banach spaces and moduli of planar	431
domains	445
R. F. Rossa, Radical properties involving one-sided ideals	467
Robert A. Rubin, <i>On exact localization</i>	473
S. Sribala, $On \Sigma$ -inverse semigroups	483
H. M. (Hari Mohan) Srivastava, On the Konhauser sets of biorthogonal polynomials	105
suggested by the Laguerre polynomials	489
Stuart A. Steinberg, <i>Rings of quotients of rings without nilpotent elements</i>	493
Daniel Mullane Sunday, <i>The self-equivalences of an H-space</i>	507
W. J. Thron and Richard Hawks Warren, <i>On the lattice of proximities of Čech</i>	201
compatible with a given closure space	519
Frank Uhlig, The number of vectors jointly annihilated by two real quadratic forms	
determines the inertia of matrices in the associated pencil	537
Frank Uhlig, On the maximal number of linearly independent real vectors annihilated	
simultaneously by two real quadratic forms	543
Frank Uhlig, Definite and semidefinite matrices in a real symmetric matrix pencil	561
Arnold Lewis Villone, Self-adjoint extensions of symmetric differential operators	569
Cary Webb, Tensor and direct products	579
James Victor Whittaker, On normal subgroups of differentiable	
homeomorphisms	595
Jerome L. Paul, Addendum to: "Sequences of homeomorphisms which converge to	
homeomorphisms"	615
David E. Fields, <i>Correction to: "Dimension theory in power series rings"</i>	616
Peter Michael Curran, Correction to: "Cohomology of finitely presented groups"	617
Billy E. Rhoades, Correction to: "Commutants of some Hausdorff matrices"	617
Charles W. Trigg, Corrections to: "Versum sequences in the binary system"	619