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a dense subset, in the fine C° topology, of the set of topologίcal im-
beddings of U into l2.

The proof of this theorem, which requires the alternative form
of Theorem 1, is similar to the proof of Theorem 2 and is therefore
omitted. The principal modification needed consists in allowing the
maps FCfr>i>jtm, (which are now defined on l2 in the obvious way using
(9)-(9)'")> to act now on the left of the imbeddings via a suitably
defined infinite left composition, and where the positive integer j is
not subject to the condition j <̂  n of Theorem 2.

Correction to

DIMENSION THEORY IN POWER SERIES RINGS

DAVID E. FIELDS

Volume 35 (1970), 601-611

While recently answering a letter of inquiry of T. Wilhelm, I
discovered an error in Corollary 4.6. The result, as originally stated,
clearly requires that P F[[X]] c P[[X]]. However, if P is not branched,
it is possible that P F[[X]] = P[[-3Γ]J; a counterexample can be ob-
tained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the
proof of Theorem 4.7.

COROLLARY 4.6'. Let V bea valuation ring having a proper prime
ideal P which is branched. If P is idempotent, then there is a
prime ideal Q of V[[X)] which satisfies P V[[X]] S β c P [ [ I ] ] .

Proof. Since P is branched, there is a prime ideal P of V with
P c P a n d such that there are no prime ideals of V properly between
P and P [1; 173]. By passing to V[[X]]/P[[X]] (=(V/P)[[X]]), we
may assume that P is a minimal prime ideal of V.

Since P is idempotent, PVP is idempotent by Lemma 4.1; hence
VP is a rank one nondiscrete valuation ring. By Theorem 3.4, there is
a prime ideal Q of VP[[X]] such that (PFP) VP[[X]] S Qa(PVP)[[X]].
But then we see that Q a (PVP)[[X]] = P[[X]] £ V[[X]]. Hence
QΠ V[[X]] = Q and Q is a prime ideal of V[[X]] with P V[[X]] £
QcP[[X]].

The following result is now of interest.
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PROPOSITION A. Let V be a valuation ring having a proper prime
ideal P which is not branched; then P = \JλGΛ Mλ, where {Mx}λeΛ is the
collection of prime ideals of V which are properly contained in P.
In this case, P F[[X]] — P[[X]] if and only if (*) given any count-
able subcollection {Mλ.} of {Mλ}, (JΓ=i Mλ. c P.

Proof. Assuming (•), let f{X) = ΣΓ-oΛX' e P[[X]]. For each i,
fie M-λ. for some λ* e A. Let pe P, pi US=oM~λ.; since pg M-λ.9 it follows
that fie M-λ. S (p)V for each i and f(X) e (p)V[[X]] S P F[[Z]].

Conversely, assuming that (*) fails, let {JJίiJlLj. be a countable
subcollection of {Mλ}XeΛ such that UΓ=i Mλ. = P. By extracting a
subsequence of {MjJ, we may assume that Mλ.c:Mχi+1 for each i.
Let ΛeM,.+1, Λeif,, and let f(X) = Σ Γ ^ / ^ ; then / ( I ) e P [ [ I ] ]

MARSHALL UNIVERSITY

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P . M. CϋRRAN

Volume 42 (1972), 615-620

In the second paragraph of the abstract, p. 615, the first sentence,
"If G is generated by n elements, " should read "If G is a residu-
ally finite group generated by n elements, ".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Volume 42 (1973), 715-719

In [2] it is shown that, for A a conservative triangle, B a matrix
with finite norm commuting with A, B is triangular if and only if

(1) for each tel and each n, t(A — annI) — 0 implies t belongs to
the linear span of (β0, eu •••, en). On page 716 of [2] it is asserted
that

(2) (U*)n+1(A - anJ)Un+1 of type M for each n is equivalent to
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compatible with a given closure space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Frank Uhlig, The number of vectors jointly annihilated by two real quadratic forms

determines the inertia of matrices in the associated pencil . . . . . . . . . . . . . . . . . . . . 537
Frank Uhlig, On the maximal number of linearly independent real vectors annihilated

simultaneously by two real quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Frank Uhlig, Definite and semidefinite matrices in a real symmetric matrix pencil . . . 561
Arnold Lewis Villone, Self-adjoint extensions of symmetric differential operators . . . . 569
Cary Webb, Tensor and direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
James Victor Whittaker, On normal subgroups of differentiable

homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Jerome L. Paul, Addendum to: “Sequences of homeomorphisms which converge to

homeomorphisms” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
David E. Fields, Correction to: “Dimension theory in power series rings” . . . . . . . . . . 616
Peter Michael Curran, Correction to: “Cohomology of finitely presented groups” . . . . 617
Billy E. Rhoades, Correction to: “Commutants of some Hausdorff matrices” . . . . . . . 617
Charles W. Trigg, Corrections to: “Versum sequences in the binary system” . . . . . . . . 619

Pacific
JournalofM

athem
atics

1973
Vol.49,N

o.2


	
	
	

