CORRECTION TO: “COMMUTANTS OF SOME HAUSDORFF MATRICES”

Billy E. Rhoades
PROPOSITION A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P = \bigcup_{\lambda \in A} M_{\lambda}$, where $\{M_{\lambda}\}_{\lambda \in A}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]] = P[[X]]$ if and only if (*) given any countable subcollection $\{M_{i}\}$ of $\{M_{\lambda}\}$, $\bigcup_{i=1}^{\infty} M_{i} \subset P$.

Proof. Assuming (*), let $f(X) = \sum_{i=0}^{\infty} f_{i}X^{i} \in P[[X]]$. For each i, $f_{i} \in M_{i}$ for some $\lambda_{i} \in A$. Let $p \in P$, $p \notin \bigcup_{i=0}^{\infty} M_{i}$; since $p \notin M_{i}$, it follows that $f_{i} \notin M_{i} \subseteq (p)V$ for each i and $f(X) \in (p)V[[X]] \subseteq P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\{M_{i}\}_{i=1}^{\infty}$ be a countable subcollection of $\{M_{\lambda}\}_{\lambda \in A}$ such that $\bigcup_{i=1}^{\infty} M_{i} = P$. By extracting a subsequence of $\{M_{i}\}_{i=1}^{\infty}$, we may assume that $M_{2i} \subset M_{i+1}$ for each i. Let $f_{i} \in M_{i+1}$, $f_{i} \notin M_{i}$ and let $f(X) = \sum_{i=1}^{\infty} f_{i}X^{i}$; then $f(X) \in P[[X]]$ but $f(X) \notin P \cdot V[[X]]$.

MARSHALL UNIVERSITY

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. CURRAN

Volume 42 (1972), 615–620

In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, ..." should read "If G is a residually finite group generated by n elements, ...".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Volume 42 (1973), 715–719

In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if

1. for each $t \in I$ and each n, $t(A - a_{nn}I) = 0$ implies t belongs to the linear span of $(e_{o}, e_{n}, \ldots, e_{n})$. On page 716 of [2] it is asserted that

2. $(U^{*})^{n+1}(A - a_{nn}I)U^{n+1}$ of type M for each n is equivalent to
(1). This assertion is false. Condition (2) is sufficient for (1) but, as the following example shows, it is not necessary.

Example 1. Let A be a triangle with entries $a_{nk} = p_{n-k}$, $n, k = 0, 1, \ldots$, where $p_k = 2^{-k}$. Then, for each n, $A - a_{nn}I = (U^*)^{n+1}(A - a_{nn}I)U^{n+1} = B$, where $b_{nn} = 0$ for each n, and $b_{nk} = a_{nk}$ otherwise. The only solutions of $tB = 0$ for $t \in \ell$ lie in the linear span of e_0, so that A satisfies (1). However, B is not of type M.

Since (2) is not equivalent to (1), some of the material on pages 717 and 718 of [2] must now be reworked.

We establish the following facts:

1. If a factorable triangular matrix A contains at least two zeros on the main diagonal, then $\text{Com}(A)$ in $\Delta \neq \text{Com} A$ in Γ.

2. If A is not factorable, then the number of zeros on the main diagonal gives no information about the size of $\text{Com}(A)$ in Γ.

3. Having distinct diagonal entries is necessary but not sufficient for a conservative Hausdorff matrix H to satisfy $\text{Com}(H)$ in $\Delta = \text{Com}(H)$ in Γ.

Proof of 1. Let n and k denote the smallest integers for which $a_{kk} = a_{nn} = 0$, $n > k$. Then the system $t(A - a_{kk}I) = 0$ clearly has a solution in the space spanned by (e_0, e_1, \ldots, e_n). It remains to show that there is a solution not in the subspace spanned by (e_0, e_1, \ldots, e_k). Since A is factorable, either the kth row or the kth column of A is zero. In either case we can obtain a solution of the system using $t_n = 1$, $t_k = 0$ for $k > n$, which can be used to construct a non-triangular conservative matrix B which commutes with A.

Proof of 2. Define $D = (d_{nk})$ by $d_{n0} = 1$, $d_{nk} = 0$ otherwise. Then $D \leftrightarrow B$ implies that $(DB)_{nk} = b_{nk}$, whereas $(BD)_{n0} = \sum_j b_{nj}$, and $(BD)_{nk} = 0$ for $k > 0$. Thus, if B is any matrix satisfying (i) $b_{nk} = 0$ for all $k > 0$ and (ii) $\sum_{j=0}^\infty b_{nj} = b_{00}$ for all $n > 0$, then $B \leftrightarrow D$. For example, if $b_{00} = 1$, $b_{nk} = 2^{n-k-1}$, $k \geq n > 0$ $b_{nk} = 0$ otherwise, then B is row infinite and commutes with D. D is factorable, but $A = D + I$ is not. Moreover, since $\text{Com}(I)$ in $\Gamma = \Gamma$, $\text{Com}(A)$ in $\Gamma = \text{Com}(D)$ in $\Gamma \neq \text{Com}(D)$ in Δ.

Example 1 with $p_0 = 0$ is a nonfactorable matrix with an infinite number of zeros on the main diagonal, and yet $\text{Com}(A)$ in $\Gamma = \text{Com}(A)$ in Δ.

The following examples establish 3.

Example 2. Let H be the Hausdorff matrix generated by $\mu_n = -2n(n-1)/(n+1)(n+2)$, $B = (b_{nk})$ with $b_{0k} = b_{1k} = 1$ for all k, $b_{nk} = 0$ otherwise. Then $B \leftrightarrow H$, but $B \not\in \Delta$ since $b_{01} \neq 0$.

EXAMPLE 3. Let \(H \) be generated by \(\mu_n = \frac{n(n - 1/2)}{(n + 1)(n + 2)} \). We can regard \(H \) as the product of two Hausdorff matrices \(H_a \) and \(H_b \), with generating sequences \(\alpha_n = \frac{(n - 1/2)}{(n + 1)} \) and \(\beta_n = \frac{n}{(n + 2)} \), respectively. From Theorem 1 of [1], the sequence \(t = \{t_n\} \), with \(t_0 = 1, t_n = (-1)^n(1/2)(-3/2) \cdots (-n + 3/2)/n! \), \(n > 0 \) satisfies \(tH_a = 0 \). Therefore \(tH = 0 \). Let \(B \) be the matrix with the sequence \(t \) as each row. Then

\[
(HB)_{nk} = \sum_{j=0}^{m} h_{nj}b_{jk} = t_k \sum_{j=0}^{m} h_{nj} = t_k \mu_0 = 0 ,
\]

and

\[
(BH)_{nk} = \sum_{j=k}^{\infty} b_{nj}h_{jk} = \sum_{j=k}^{\infty} t_jh_{jk} = 0, \quad \text{so that } B \leftrightarrow H .
\]

REFERENCES

INDIANA UNIVERSITY

Corrections to

VERSUM SEQUENCES IN THE BINARY SYSTEM

CHARLES W. TRIGG

Volume 47 (1973), 263-275

Line 12 should read “the universal verity of the conjecture [5, 6]”. Instead of the universal verity of the conjecture [1, 2].

The first page should be 263 instead of 163.
Wm. R. Allaway, *On finding the distribution function for an orthogonal polynomial set* .. 305
Eric Amar, *Sur un théorème de Mooney relatif aux fonctions analytiques bornées* .. 311
Robert Morgan Brooks, *Analytic structure in the spectrum of a natural system* .. 315
Bahattin Cengiz, *On extremely regular function spaces* .. 335
Kwang-nan Chow and Moses Glasner, *Atoms on the Royden boundary* .. 339
Paul Frazier Duvall, Jr. and Jim Maxwell, *Tame Z^2-actions on E^n* .. 349
Allen Roy Freedman, *On the additivity theorem for n-dimensional asymptotic density* .. 357
John Griffin and Kelly Denis McKennon, *Multipliers and the group L_p-algebras* .. 365
Charles Lemuel Hagopian, *Characterizations of λ connected plane continua* .. 371
Jon Craig Helton, *Bounds for products of interval functions* .. 377
Ikuko Kayashima, *On relations between Nörlund and Riesz means* .. 391
Everett Lee Lady, *Slender rings and modules* .. 397
Shozo Matsuura, *On the Lu Qi-Keng conjecture and the Bergman representative domains* .. 407
Stephen H. McCleary, *The lattice-ordered group of automorphisms of an α-set* .. 417
Stephen H. McCleary, *o – 2-transitive ordered permutation groups* .. 425
Stephen H. McCleary, *o-primitive ordered permutation groups. II* .. 431
Richard Rochberg, *Almost isometries of Banach spaces and moduli of planar domains* .. 445
R. F. Rossa, *Radical properties involving one-sided ideals* .. 467
Robert A. Rubin, *On exact localization* .. 473
S. Sribala, *On Σ-inverse semigroups* .. 483
H. M. (Hari Mohan) Srivastava, *On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials* .. 489
Stuart A. Steinberg, *Rings of quotients of rings without nilpotent elements* .. 493
Daniel Mullane Sunday, *The self-equivalences of an H-space* .. 507
W. J. Thron and Richard Hawks Warren, *On the lattice of proximities of Čech compatible with a given closure space* .. 519
Frank Uhlig, *The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil* .. 537
Frank Uhlig, *On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms* .. 543
Frank Uhlig, *Definite and semidefinite matrices in a real symmetric matrix pencil* .. 561
Arnold Lewis Villone, *Self-adjoint extensions of symmetric differential operators* .. 569
Cary Webb, *Tensor and direct products* .. 579
James Victor Whittaker, *On normal subgroups of differentiable homeomorphisms* .. 595
Jerome L. Paul, *Addendum to: “Sequences of homeomorphisms which converge to homeomorphisms”* .. 615
David E. Fields, *Correction to: “Dimension theory in power series rings”* .. 616
Peter Michael Curran, *Correction to: “Cohomology of finitely presented groups”* .. 617
Billy E. Rhoades, *Correction to: “Commutants of some Hausdorff matrices”* .. 617
Charles W. Trigg, * Corrections to: “Versum sequences in the binary system”* .. 619