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This paper deals with continuous irreducible representations
of a B*-algebra on a Barach space. The main result is that if
7 is a continuous irreducible representation of a B*-algebra A
or a reflexive Banach space X, and if there is a subset Sof A
such that the intersection of the null spaces of the operators
z{a) for all € S is a nonzero, finite dimensional subspace of X,
then X is a Hilbert space in an equivalent nerm and r is simi-
lar to a *-representation of A on this Hilbert space.

In [7], R. V. Kadison raised the question of whether every con-
tinuous representation of a B*-algebra on a Hilbert space is similar
to a *-representation. Recently, J. Bunce, in [4], answered Kadison’s
question affirmatively for a class of B*-algebras which includes the
GCR algebras of Kaplansky. Also, the present author proved an
affirmative result concerning this question in [2] (& new proof of this
result is given in §2; see Corollary 2.3). However, the general ques-
tion remains open. In this papsr we consider this question of Kadison
in the special case where the representation is assumed to be irredu-
cible. Actually, the problem we consider (in the irreducible case) is
more general than Kadison’s problem, since we allow the representa-
tion space to be a Banach space X. Then we prove under certain
conditions on the representation that X is a Hilbert space in an
equivalent norm, and that the given representation of the B*-algebra
is similar to a *-representation of the algebra on this Hilbert space.
A precise statement of our main result is in the abstract above. It
is an open question whether the existence of a continuous irreducible
representation of a B*-algebra on a Banach space X necessitates that
X is a Hilbert space in an equivalent norm.

At this point we introduce some notation and terminology.
Throughout this paper X ts o Banach space and A is a B*-algebra.
All norms, except for particular norms introduced in context, are
denoted by || - ||. The normed dual of X is denoted by X*. If ze¢ X
and a € X*, we often use the notation {(z, a) for a(x). ZZ(X) is the
algebra of all bounded linear operators on X. If Te .<#(X), then
Z(T) and _+(T) denote the range and null space of T, respectively.

A nonzero subalgebra B of < (X) is irreducible (or acts irredu-
cibly) on X if the only closed B-invariant subspaces of X are {0} and
X. B is strictly irreducible if the only B-invariant subspaces of X
are {0} and X. If 7 is a nonzero representation of A into % (X),
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then = is [strictly] irreducible if the image algebra 7=(A) is [strictly]
irreducible on X. Throughout this paper T is a continuous represen-
tation of A into <#(X).

2. Representation of a B*-algebra on a Banach space. As we
stated previously, = will always denote a continuous representation
of A into <Z(X). In this section we find general conditions which
imply that X is a Hilbert space in an equivalent norm, and that =
is similar to a *-representation of A on this Hilbert space (Proposition
2.2 and Proposition 2.5). Proposition 2.5 is used in the next section
to prove the main result of the paper.

LEMMA 2.1. Let H be a Hilbert space, and let B be a *-subalgebra
of <Z (H) acting strictly irreducibly on H. Let || - ||, denote the Hilbert
space norm on H, and assume that ||| s a norm on H with the
properties:

(1) there exists K > 0 such that K|z |, = || z|| for all xe H, and

(2) every TeB 1is continuous on the mnormed linear space
A, |- ).

Then ||-]| is equivalent to || - |, on H.

Proof. Assume that ae(H, || -]|))*, the dual space of (H,||-|]),
and a = 0. By (1), a is continuous on H with respect to || - ||, There-
fore, there exists ze H, z # 0, such that a(x) = (z, z) for all xe H
where (-, -) is the inner product on H. Given we H, there exists
Te B such that 7%z = w. Then the functional B(x) = (x, w) is con-

tinuous with respect to ||-||, since B(x) = (x, w) = (Tx, 2) = a(Tx),
and T is continuous on (H, |- ||) by (2). Thus the continuous linear
functionals on (H, ||-|]) are exactly the functionals « of the form

a(x) = (z, w) for some we H.

Now if ae(H,||-|)*, let @(a) be the unique we H such that
o) = (x, w) for all xe H. By the previous argument, @ is a con-
jugate linear isomorphism of (H, ||-|))* onto H. Furthermore, since
(@, w)| = llalllla)l < Klla|llz], for all seH then [&@)],=
llwil, < K||a]|]. Then by the Closed Graph Theorem, there exists
J > 0 such that J||@(a) ], = ||| for all we (H, || - |[}*. It follows that
for every we H,

Jlwl,= sup L&WIL
x e IT,x5%0 Hx”
In particular, J||w|,= ||w]|(w, w), which implies that J|jw| =
[|w]l;. Therefore, ||-|| and |||, are equivalent on H.

Let K be a modular maximal left ideal of A. Then there exists
a positive functional « on A such that
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K = {ac A: a(a*a) = 0}

(see [5, Théoréme (2.9.5)]). The quotient space A — K = {a + K:ac A}
is an inner product space with inner product (¢ + K, b + K) = a(b*a).
Furthermore, by [10, Theorem 2], the norms

la + K| = a(a*a)'’®
and
la + K[|, = inf{]|la + k||: ke K}

coincide on A — K. It follows that ||a + K|, is a Hilbert space norm
on A — K, and that the left regular representation of A on 4 — K
(i.e., ac A acts on b + Kby a(b + K) = ab + K) is a *-representation
on this Hilbert space.

We use these remarks in the proof of the next proposition.

PROPOSITION 2.2. Assume that w is irreducible, and assume that
there exists x € X such that the left ideal

K = {ae A: n(a)x = 0}

18 modular maximal in A. Then X 1s a Hilbert space in an equiva-
lent norm, amd 7w 1is similar to a *-representation of A on this
Hilbert space.

Proof. Let K be as in the statement of the proposition, and let
la + K|, =inf{||a + k||: ke K} .

As noted above, 4 — K is a Hilbert space in the norm |- ||;, and the
left regular representation of A on A — K is a *-representation on
this Hilbert space. Since K is a modular maximal left ideal of A,
then A acts strictly irreducibly on A — K. Define a norm, ||-||, on
A— Kby lla+ K| =||n@zx]]. If aec A and ke K, then

la + Kl =lla+k+ K|l = l[zl@+ k|l < [z]llz]lle+ k] .

Therefore, ||a + K|| = (||z||]|z]])|la + K||, for any ac A. Thus (1)
of Proposition 2.1 holds. If aec 4,

la® + K) || = || z(ab)e || = || z(a) ||| 2(B)x || = || z(@) ||| + K|| .

Thus @ acts continuously on (A4 — K, || -||), and this verifies that (2)
of Proposition 2.1 holds. Then by Proposition 2.1, ||- ||, and ||-|| are
equivalent on A — K. It follows that {m(a)x: a € A} is a closed 7(A4)-
invariant subspace of X, and since w(A) acts irreducibly on X, then
{m(a)x: a e A} = X. Define a norm ||-||' on X by ||m(e)z]|]’ = ||a + K|..
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Then ||+ |/’ is a Hilbert space norm on X, and ||-||" is equivalent to
the given norm ||-|] on X. Finally, it follows from [3, Theorem 4.1]
that =z is similar to a *-representation of A on this Hilbert space.

As a corollary we have a new proof of [2, Theorem 8].

COROLLARY 2.3. Let A be a B*-algebra, and let © be a continuous
wrreducible representation of A into B(X). Assume that A/ker (w)
contains a minimal left ideal. Thewn the conclusion of Proposition
2.2 holds.

Proof. Dencte by v the natural quotient map of A onto A/ker (7).
Let N be a minimal left ideal of A/ker (z). Choose be~y '(IN) and
ye X such that 7(b)y == 0. The set Y = {m(a)y: a € v(N)} is a non-
zero w(A)-invariant subspace of X. We prove that n(A) acts strictly
irreducibly on Y. Assume that y, y.€Y and y, 0. There exist
a,, a, € v '(N) such that y, = w(a,)y, k=1, 2. Since N is a minimal
left ideal of A/ker (x), there exists a e A such that a, — aa, € ker (7).
Then 7(a,) = w{a)n(ay, so that w(a)y, = y,.. Now an easy algebraic
argument using the fact that 7(A4) acts strictly irreducibly on Y
shows that for any nonzerc vector xe Y, K = {ecc A:w(a)x = 0} is a
modular maximal left ideal of A. Then Proposition 2.2 applies.

REMARK. Proposition 2.2 and Corollary 2.3 hold under the weaker
hypothesis that 4 is a Banach *-algebra with the property that every
modular maximal left ideal of A is the left kernel of a strictly pure
state of A. For examples of algebras with this property see [3].

Next we apply Corcllary 2.3 to the case where A is a GCR algebra
as defined by I. Kaplansky.

COROLLARY 2.4. If A is ¢ GCR algebra and © is a continuous
wrreducible representation of A into 2 (X), then X is a Hilbert space
. an equivalent norm and w is similar to a *-representation of A
on this Hilbert space.

Proof. The quotient algebra A/ker (7) has no ideal divisors of zero
by [8, Lemma 2.5]. Therefore, by [8, Lemma 7.4], A/ker () contains
a minimal left ideal. Then the result follows from Corollary 2.3.

As mentioned in the Introduction, J. Bunce has proved that every
continuous representation of a GCR algebra on a Hilbert space is
similar to a *-representation [4, Theorem 1].

Now for each positive integer =, let A, = {acA:||la|| £ n}. If
xe X, let [7(A,)x] denote the weak closure of the set 7(4,)r in X.
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PrOPOSITION 2.5. Assume that w is irreducible and there exists
xe X such that

X = (j [2(4.,)a] -

Then X is a Hilbert space in an equivalent norm, and 7w is similar
to a *-representation of A on this Hilbert space.

Proof. By the Baire Category Theorem, [7(4,)x] must have non-
empty interior for some n#. Note that since 7(4,)x is a convex subset
of X, then by [6, Corollary 14, p. 418] the norm closure of z(A4,)w
is [z(A,)xz]. Then an easy computation shows that there exists an
integer m such that [n(A,)xr] contains the closed unit ball of X.
Define 2 map 7' A — X by T(a) = n(a)x, ac A. We have shown that
if y is in the closed unit ball of X, then there exists ae¢ 4 such that
la]] £ m and

1 T(a) — vyl = [[m(a)r — gyl <1/2.

Then a direct application of a theorem of W. Bade and P. Curtis [1,
Theorem 1.2] proves that 7T is onto. Therefore w(A)r = X.

Let K={acA:n(a)x =0}. Let A — K be the quotient space
{a + K:ae A} equipped with the usual quotient norm. Define a map
@: A~ K— X by @a + K) = n(a)x. Then @ is one-to-one, continuous,
and onto (since w(A)x = X). Therefore, by the Open Mapping Theorem
@ maps closed subsets of A — K onto closed sets in X. By [5, Théoréme
2.9.5] there exists a modular maximal left ideal J of A such that
KcJ. Then @(J) is a closed mw(A)-invariant subspace of X. There-
fore K =.J. By the remarks preceding Proposition 2.2, A — K is a
Hilbert space in the usual quotient norm. Therefore, X is a Hilbert
space in an equivalent norm. Then x is similar to a *-representation
of A on this Hilbert space by [3, Theorem 4.1].

3. Some preliminary lemmas. In this section we prove several
lemmas which we apply subsequently in the proof of the main result.

LEMMA 3.1. Assume that X 1s reflexive and that A has an
identity. Assume that o = a*c A. Then
X = Z(7(a)) @ 4 (7(a)) -

Let E be the projection in < (X) with B (E) = 4" (n(e)) and 4" (K) =
A((a)y. 1If 47 (zw(a)) + {0}, then there ewists a sequence {a,} C A
such that |ja,|| =1, n =1, and

st. op. lim z(a,) = E .
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In this case || E|| < |||

Proof. Let sp(a) denote the spectrum of @ in A. If \¢sp(a),
let B\) = (v — a)”'. Since a = a*, then sp(e) is real and || R(\) || =
(d(2\))"* where d(\) = inf{{N — a|:aesp(a)}. Set n, = i1/n), n=1.
Then »,¢sp(a), » =1, and {N.E(\,)} is a bounded sequence in A.
It follows from [6, Corollary 5, p. 597] that

X = Z(7(a) © 4 (@) ,

and that {\,7(R(\,))} converges in the strong operator topology to
the projection F defined above. For # =1, let a, = N, RO,). If
A" (w(a)) # {0}, then Oesp(a), so that d(»,) = 1/n, n=1. Therefore,
lanll =[x ld(h)™ =1 and ||7(a,) || < |[z]|] for n = 1. Then [[E] =
.

Let A+ denote the set of positive elements of A. If « is a
positive functional on A, the left kernel of « is the set

K, ={acA:a(a*a) = 0} .

LeMMA 3.2.

(1) Let M be a closed left (or right) ideal of A. If a,bec A*
and a + be M, then ae M.

(2) Ifa be A", then F(n(a)) C H(w(a + b)) and 4~ (7(a + b))
A (7(a)).

(8) If acA, 1 (n(a)) = A (w(a*a)).

Proof. Let a, b, and M be as in the statement of (1). Let a be
an arbitrary positive functional on A such that M c K,, where K, is
the left kernel of a. Then a(a + b) = 0, so that a(e) = 0. Then
ac K,. By [5, Théoréme (2.9.5)], M is the intersection of the collec-
tion of all K, such that M c K,. Therefore ac M.

Now assume that a, be A*. Let

M = {ce A: F(n(c)) < H(n(a + b))} .
M is a closed right ideal of A and ¢ + be M. By (1), a € M. There-
fore, F#(n(a))c FH(x(a + b)). Similarly, ¢ + b is in the closed left ideal
N={ced| 4+ (n(a + b)) 4 (%))} .

Thus 47 (z(a + b)) < A (7(a)).
If acA, then _# (z(a)) c A4 (7(a*a)). Consider the closed left
ideal

N = {be A: ()4 (n(a*a)) = {0} .
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Since a*a € N, then by [9, Corollary (4.9.3)], ae€ N. This proves (3).

If xe X and fe X*, let (f|z) denote the operator defined on X
by (fla)y) = f(y)s. If © =+ 0 and f =+ 0, then the operator (f|x) has
one dimensional range. Conversely, every bounded operator on X
with one dimensional range is of the form (f|z) for some z ¢ X and
feX*. Note that [[(fl2)]| = |IfIl|=]].

LEvMMA 3.3. Let X be reflexive. Assume that {E,} is a sequence
of projections in <& (X) such that

(i) there exists M > 0 such that ||E,|| < M, n =1, and

(ii) there ewxists a positive integer m such that dim (Z(E,)) = m,
n = 1.

(1) Then there exists a subsequence {E, .} of {E,} and an operator
Ee Z(X) with finite dimensional range such that

wk.op. lim (&, = E .
k

(2) Furthermore, if {y,}) <X, ¥, — ¥y, and E(y,) = Y, for n =
1, then E(y) = y.

Proof. First assume that m = 1. Then there exist sequences
{z.} c X and {f,} c X* such that E, = (f.|2,), » = 1. By hypothesis,
MzZ(fulz)l|=1Ffullll2.|]. Therefore, we may assume that ||z, || =
land ||f,|| < Mfor n = 1. Then, since X is reflexive, we can choose
a subsequence {n,} of the positive integers such that wk.lim,®,, =
@ and wk.* lim, f,,, = f for some xe X and fe X* [6, Theorem 28, p.
68]. Then it is immediate that (f.,|.,) converges in the weak op-
erator topology to (f|«). Thus the conclusion of the lemma holds
when m = 1.

Now we proceed to prove (1) by induction. ILet m > 1 be a fixed
integer, and assume that (1) holds for m — 1. Let {E,} be a sequence
of projections satisfying (i) and (ii). For each » = 1, choose %, € #(F,)
such that ||z,|| = 1. By (i), for an arbitrary ze . +"(%,) we have

E"<||§:i:||>“: |1xni—zl! '

This implies that d, = 1/M where d, is the distance from %, to _+#"(¥,).
Choose ¢, € X* such that g.(x,) = d., [[9.1] = 1, and g, (4 (&,)) = {0}.
Let f, = di'g,. Then [[(f.la)ll = [Ifull =di*< M for n=1. Set
G.=E,— (f.|®,). By the choice of f, and xz,, G, is a projection.
Furthermore, dim (<#(G,)) = m — 1 and ||G,|| <2M for all n = 1.
If follows from the induction hypothesis and the argument in the first
paragraph of the proof that there exists a subsequence {F, } of {E,}
and an operator E with finite dimensional range, such that {E,}

Mgl
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converges to K in the weak operator topology.
Now we prove (2). Assume that E.(y,) = y, for n = 1 and y, —
y In X. Let « be an arbitrary functional in X*. Then

[{By — vy, )| = [KE(y) — E,(Yn,), | + [{Yu, — ¥, & |
SKE - By, ay| + [{E, (Y — ¥n), @]
+ [ {Yu, — ¥, @]
SKE-EDy, o+ M+ Dily — v, 0l lall .

Since the right hand side of this inequality approaches zero as &k —
+ oo, then E(y) = y.

4. The main result. In this section we prove the main result,
the statement of which follows.

THEOREM 4.1. Let X be a reflexive Banach space. Assume that
A is a B*-algebra and that m is a continuous irreducible representa-
tion of A into Z(X). Assume that there is a nonempty subset S of
A such that the intersection of 4 (zw(a)) for ae S is a nonzero finite
dimensional subspace of X. Then X is a Hilbert space in an equiva-
lent norm and 7 is similar to a *-representation of A on this Hilbert

space.

We assume throughout the proof of the theorem that A has an
identity. It is not difficult to verify that there is no loss of generality

in making this assumption.
Now let S be the nonempty subset of A hypothesized in the
statement of the theorem. Then

W= @)

is a nonzero subspace of X. Let T ={acA*: Wc .+ (z(a))}. By
Lemma 3.2(3),

aOT A (wl(a)) = W.

The set T is partially ordered in the usual ordering of positive ele-
ments of A. Furthermore, T is a directed set since if a, be T, then
a+beT, a+b=a, and @ + b>=5b. By Lemma 3.1, for each ac T
there exists a projection E, such that <Z(F,) = _+#"(n(a)) and _# (E,)=
F(n(a)). Let Z be the closure of .., .+ (E,). We begin the proof
of Theorem 4.1 with two lemmas.

LemMMA 4.2. The net {E,},.r converges im the strong operator
topology to a projection Ee ZF(X) with #(E) = W and 4 (E) = Z.
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Proof. The collection {E,: a€ T} is ordered in the usual ordering
of projections, i.e., E=F if EF = FE=F. If a,be T, then a+b
e T, and by Lemma 3.2(2), we have #(n(a))C F#(n(a + b)) and
A (@w(a + b)) C A" (7(a)). It follows that FE,.,(I — E,) = 0 and that
({— E)E,., = 0. Therefore, E, = K, ,, and by symmetry, £, = E,,,.
This proves that when ¢, de T and d = ¢, then E, = E;. Also by
Lemma 3.1, there exists M > 0 such that || E,|| < M for all ae T.

By the construction of {E,},.,, we have that W = .., Z(E.).
Let Y = U.er ¥ (H,). Note that Y is a subspace of X since when
a, beT, then 4 (E,)U A4 (E)C A" (E,s). Recall that Z is the
closure of Y. Let zeZ, and let ¢ > 0 be arbitrary. Choose ye Y
such that ||z — y|| <e. Choose ae T such that E,y = 0. Then if
beT and b = a, we have that E, = E,, so that E,y = 0. Thus for
all b=a, ||Ez| =] E(z —y)]| = Me. This proves that the net
{E,2},.r converges to 0 whenever ze Z. Also if ae T and we W,
then K, (w) = w. This proves that the net {K,w},., converges to w
whenever we W. It follows that Zn W = {0}. Next we prove that
X =7Z& W. Assuming this result, the previous argument implies
that {£,},.r converges strongly in <Z(X) to the projection E with
F(E) = W and " (K) = Z.

Let » be a vector in X. The net {F,x),., is bounded in X. Since
X is reflexive, it follows from [6, Corollary 8, p. 425] that there ex-
ists a vector ve X and a subnet of {E.,x},., that converges weakly
to v. Thus there exists a directed set (@, =) and a map m: @ — T
such that {E, . x},.o converges weakly to v, and such that for each
ac T, there exists ge @ such that when pe @ and p = ¢, then m(p) =
a. If beT, let @, be the cofinal subset of @ defined by @, =
{ge Q: m(q) = b}. Then the net {E,,x},.q, converges weakly to », and

E,,’U B Eb(Wk. ].im Em(q)x)
acQy
= wk. lim (E,E,, )

qeQp

= wk. lim (¥, %)
g€y

=,

Thus ve W. Let a be an arbitrary functional in Z', the annihi-
lator of Z. Then since » — E,,,xc Z for all ge @, we have lim,.q
ax— E,,x)=0. Thus a(x—v) =0 for all @ ¢ Z*. Therefore, x —ve Z,
sothat x = (@ —v) +veZ + W. As we noted previously, the fact
that X = Z@ W implies that the bounded net {E,},., converges
strongly to the projection E with range W and null space Z.

LEMMA 4.8. Assume that xc W, x = 0. IfyeZande > 0, then
there exists am invertible element uc A such that ||y — w(w)x || <e.
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Proof. It suffices to prove the lemma when ye _#"(&,) for some
ac T. In this case z € 7 (7(a)), y € H#(n(a)), and 17" (n(a)) D .2 (w(a))
= X (Lemma 3.1). Let ¢ > 0 be arbitrary. There exists z¢ X such
that ||y — n(a)z|| <e. Since n(A) acts irreducibly on X, there exists
be A such that

[|r(ab)r — w(a)z]] < e .
Then ||y — mw(ab)z || < 2¢, and since w(b*a)r = 0,
|y — m(ab + b*a)x|| < 2.

Since ab + b*a is self-adjoint, we can choose a number )\ with
IN[l2]l <e and such that u =\ + (ab + b*a) is invertible in A.
Then ||y — w(u)xz|| < 3. This proves the lemma.

Now we complete the proof of Theorem 4.1. By hypothesis W is
finite dimensional, say m dimensional. Fix xe W, 0. Agsume y€ Z.
By Lemma 4.3, there exists a sequence of invertible elements {u,} C
A such that lim, #(u,)x = y. For each n =1, let

W, = m@)(W) = () A (w(au;?) .

Set vy, = w(u,)x. Then W, is a m dimensional subspace of X and
Y€ W,forn =1, Let T, ={acA*: W,< 4" (n(a))}. ForeachacT,
there exists a projection E, with Z(&,) = 7 (z(a)) and 47(&,) =
F#(m(a)). By Lemma 4.2 there exists a projection F, with <Z(FE,) =
W., |E, |l <[], and such that

(1) st.op. lim K, = &, .

ael,

By Lemma 3.3 we may assume (by passing to a subsequence if neces-
sary) that there is an operator F' with finite dimensional range such
that

(2) wk.op. lim K, = F,

and y€.<#(¥). The subspace n(A)x is dense in X. Then since F has
finite dimensional range, ye€ F(w(A4)x). Choose be A such that y =
Fr(b)z. Fix an integer n = || b|, and let 4, = {ac A: ||a]| < n}. We
now prove that y is in the weak closure of 7(A4,)x. Let U be a weak
neighborhood of 0 in X, and choose V a weak neighborhood of 0 in
X such that V+ V + Vc U. By (2) we can choose an integer % so
large that

Erxby —yeV.
By (1) we can choose an element a € T, such that

By — Exbse V.
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By Lemma 3.1 we can choose an element ¢ e 4 such that ||¢|| £ 1 and
w(ch)x — K, m(byxe V.

Then 7(e¢b)x — ye Uand ||¢b|| <n. Therefore, y is in the weak closure
of m(A,)z, as asserted.

Now let E be the projection with <Z(E) = W as in the state-
ment of Lemma 4.2. Assume yc W. Since E has finite dimensional
range and 7(A)x is dense in X, then there exists be A such that y =
Ern(b)z. By Lemma 4.2,

st.op.lim E, = FE .
aeT
Let ¢ > 0 be arbitrary. Choose a € T such that ||y — E,z(b)z || <e. By
Lemma 3.1, there exists a sequence {a,} © A such that ||a,|/ =1 and

st. op. lim z(a,) = £, .

Now choose k so large that ||y — m(a,b)x|| < 2¢. Since ¢ > 0 was
arbitrary, this proves that y is in the norm closure of 7(4,)x where
% is any integer such that »n = || b]|.

By Lemma 4.2, X = Z¢@ W. The arguments given above imply
that given any ye X, there exists a positive integer n sufficiently
large such that y is in the weak closure of 7(A4,)x. Therefore, the
theorem follows from Proposition 2.5.

Added in proof. We have found a proof of Theorem 4.1 which
is considerably simpler than the one presented here. Using a modifi-
cation of an argument due to P. G. Spain in [J. London Math. Soc.
(2), 7 (1973), p. 385], we can show that a continuous representation
7 of a B*-algebra A on a reflexive Banach space X can be extended
to a continuous representation 7% of the second dual of 4 on X. Also,
7 is continuous with respect to the appropriate weak topologies.
Then combining this result with arguments similar to those appearing
in §2, it is not difficult to derive Theorem 4.1.
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