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ABSOLUTE EXTENSOR SPACES: A CORRECTION
AND AN ANSWER

CARLOS R. BORGES

This paper has a twe-fold purpese: The first is to make
a minor correction in the proof of a result of ours, which
states that any hyperconnected space is an AE (stratifiable)
and the second is to give an affirmative answer to a question
of Vaughan: Does Dugundji’s Extension Theorem remain
valid for linearly stratifiable spaces?

1. A correction. As it stands, the proof of Theorem 4.1 of 1]
is incorrect, because the function ¢ is not well-defined. (Obviously,
for each € X — A, there is some implicit order in the selection of
Dy, ***, Dy, Such that V, ---  V, are the only elements Ve?" for
which p,(x) == 0. However, no explicit mention of it is made.) The
proof is easily corrected however, by taking the following three steps:

1. Assign a total order “ <7 to 7

2. Add to the function g the sentence “and V.V, < ... <V,.”

3. On page 615 of [1], replace

(@) “say V, -+, V,, -+, Voiui by “say W, ---, W, such that
W= oo Wi
() “(ov(®), -+, py (@), 0, ---,0)€ Py, by
“(prl(x)r ] me+k(x)) € Pm+k—1” ’

© “t—=(hni(f(ay), -+, flay,,,), 1) by
“t — hm+k(f(a’lvl)’ Tty f(awm+k)y 6",
(d) “p(y) = (vv(v), -+, Dv,_ (1) by

“ply) = (pwl(y), Tty me+k(y))” .

2. An answer. Recently, Vaughan [7] asked if Dugundji’s
Extension Theorem (Theorem 4.1 of [6]) remains valid for linearly
stratifiable spaces.! It turns out that the answer is affirmative and
it requires little effort. Indeed, all our generalizations of Dugundji’s
Extension Theorem remain valid for linearly stratifiable spaces.

THEOREM 2.1. [2; Theorem 4.1], [3; Theorem 3.1], [4; Theorem

t A Ti-space X is said to be linearly stratifiable provided there exists some infinite
cardinal number « such that to each open Uc X one can assign a family {Us}s<q of open
subsets of X such that (a) Uy c Ufor all < a, (b) Ulplg < a} =T, (¢) Us c U whenever
UcV, (d) U, cUp whenever y < g < a.
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5.2] and [5; Theorems 4.1 and 4.2] remain valid for linearly strati-
fiable spaces.

Proof. All we need do is the following two alterations in Definition
4.1 of [2] and the proof of Theorem 4.1 of [2]. (The same alterations
apply to the proofs of the other results):

1. In Definition 4.1 of [7] replace the word “integer” by the
word “ordinal”.

2. Replace the sentence “Note that m(x) < « and, in fact, m(z) <
n(W, x)” by the sentence “Note that m(x) < n(W, x)” on the fourth
line of the proof of Theorem 4.3 of [2]. The same applies to the
other proofs.
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