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The following theorem is proved: Let A be a finite-dimen-
sional simple K-algebra, K a field. If E is an extension of K
and if M is an absolutely irreducible left A (g)κ E-module with
character X: AζZ)κE->E, then X(A) is a subfield of E which is
K-isomorphic to the center of A.

The purpose of this note is to give a short demonstration of the
above theorem, proved first by Brauer [1] and later by Fein [3, 4] in
case K is a perfect field (or, more generally, when A is a separable
if-algebra). We make no assumptions on separability.

All algebras are assumed to be finite-dimensional, and all modules
are unital left modules. Let B be a ^-algebra, K a field, and let M
be a J5-module. We say M is absolutely irreducible if M(&KE is an
irreducible B (&κ JS'-module for all extensions E of K; an extension E
of K is said to be a splitting field for B if every irreducible B 0 ^
jEJ-module is absolutely irreducible (cf. [2, p. 202]). We will always
identify B with its natural image in B($ξ)κE.

LEMMA. Let A be a central simple L-algebra, L a field, and let
F be a Galois extension of L. If N is an irreducible A (&L F-module
with character X: A(&LF -+F such that X Φ 0, then X(A) = L.

Proof. For each σ e G(F/L), the Galois group of F over L, define
an L-automorphism (still denoted by σ) of A®LF by α (Σί ai ®fi) =
Σ i ai ® σ(fi)- Each such L-automorphism of A ® L F gives rise to
an irreducible A (&L jP-module σN: The additive group of σN =
{σn: n e N} is the same as that of N, but the module structure on
σNis defined by (σx)(σn) = σ(xn) for all xeA®LF and neN. One
checks that the character of σN is σXσ~\ Since A®LF is simple
[2, (68.1)], σN = N, and so σXσ~γ = X. This says that for each a e A,
σX{d) = X(a) for all σeG(F/L); hence X(A) s L. Since X(A) is a
nonzero L-subspace of L, it follows that X(A) — L, as desired.

LEMMA. Let A he a central simple L-algebra, L a field, and let
E be an extension of L. If M is an absolutely irreducible A ® L E-
module with character ζ: A®LE —> E, then ζ(A) — L.

Proof. It is well known that there is a Galois extension F of
L which is a splitting field for A. Let N be an irreducible A ® x F-
module with character X: A <g)L F-*F. Then N is absolutely irredu-

43



44 T. V. FOSSUM

cible, and X Φ 0. By the above lemma, X(A) = L.
Let W be a composition of E and .P. Now (A ® L £7) ®^ W and

( A ® ! ^ ) ® ^ TF are both isomorphic to A<g)z if, and M<$ξ>E W and
iNΓ®^ W are irreducible A ® L TF-modules with characters ζ and X,
respectively, on A. Since A ® L W is simple, M"®^ T7 ~ N<g>F W, so
ζ = X on A. It follows that ζ(A) = Z(A) = L, as desired.

Observe that the restriction ζA of ζ to A is the reduced trace of
A into its center L.

THEOREM. Let A be a simple K-algebra with center L. Let E
be an extension of K, and let M be an absolutely irreducible A 0 ^
E-module with character X: A ®# E —> E. Then X(A) is a K-subfield
of E, and X(A) ~ L as K-algebras.

Proof. Since L is contained in the center of A (&κ E, L is K-
isomorphic to a subfield of End^^Af) ~ E, and we regard this as an
identification [2, (29.13)]. It follows that M can be made into an
A ® z l?-module, and that the diagram

A >A®E,

X
. (M) > E

commutes, where T is the trace map, and where a and β are the
i?-algebra homomorphisms afforded by the module structures on M.
Since M is an absolutely irreducible A ®^ j&-module, it follows that
β is an epimorphism, and so a is also an epimorphism. Thus M is
an absolutely irreducible A ®^ £7-module, with character Ta: A ® z

E—>E. By the previous lemma, Ta{A) = L. Now a{A) = β(A), so
X(A) = Tβ{A) = Ta{A) = L, as desired.

With a little extra effort, it is possible to generalize this result
to orders. In particular, let R be a Krull domain with quotient field
K, and let A be a simple ίΓ-algebra. An ΐί-order Λ in A is a unital
.β-subalgebra of A which spans A over K, and each element of A is
integral over R. Let E be an extension of K, and let M be an ab-
solutely irreducible A ®^ j^-module with character X: A(&KE —* E.
If A is an jβ-order in A which is separable over its center, then one
can prove that X(A) is iϋ-isomorphic to the center of A.
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