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Markley characterized those minimal sets arising from a
homeomorphism of the circle without periodic points. The
removal of the condition that guarantees the space be metric
yields a larger class of minimal sets which can still be embedded
in a circle-like object. A {long} {short} circle is a compact
connected {non-metric Hausdorff} {metric} space which has no
cut points, but which is disconnected by the removal of any
two points. A circle is either a long or short circle. Theorem:
A compact Hausdorff minimal cascade can be embedded in a
homeomorphism of a circle without periodic points if and only
if it is proximally equicontinuous over the circle and Pf <= Δ9

where P is the proximal relation.

Homeomorphisms of the circle were first studied by Poincare [12].
They may be divided into two classes—transitive and intransitive—
according to whether or not there is a dense orbit. Each such homeo-
morphism has a unique minimal set and Markley has characterized
those minimal sets which could arise from such a homeomorphism.
Dropping his cardinality restriction on the proximal relation leads to
the idea of embedding such minimal sets in "long" (i.e., non-metric)
circles. In order to obtain necessary as well as sufficient conditions
for a minimal set to arise from a homeomorphism of a "long" circle
without periodic points such homeomorphisms are investigated. We
shall begin by defining "long" circles and associated spaces, describing
some of their properties and giving some examples. A study of homeo-
morphisms without periodic points of "long" circles follows. We then
proceed to state and prove the main theorem of this paper.

A linearly ordered set (X, <) together with the order topology
is a linearly ordered topological space (LOTS). A pair of disjoint
nonempty complementary subsets A, B of X such that every element
in A precedes every element in B is a cut and is denoted [A | B\. If in
a cut [A I B] A contains its least upper bound (LUB) and B contains
its greatest lower bound (GLB), we say X has a jump. If A does
not have its LUB and B does not have its GLB, we say X has a gap.
If X has no gaps, then X is order-complete. If X is order com-
plete, then every nonempty set with upper bound has a LUB. A
subset of an order-complete LOTS is compact if and only if it is closed
and order-bounded and it is connected if and only if it is order-complete
and without jumps. [9, Problems II, 5C] A connected LOTS is there-
fore locally connected and locally compact. A point x in a topological
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space X is called a cut point if X — {x} is not connected. Otherwise,
it is a non-cut point.

It is immediate that a LOTS which is order-complete without jumps
and with first and last elements is a compact connected Hausdorff space
with exactly two non-cut points. The additional condition of metri-
zability would imply the space be an arc, i.e., a homeomorph of a closed
interval of reals. This suggests the following definitions.

For the sake of brevity we shall refer to a simple closed curve
as a circle. A long {arc} {circle} is a non-metric compact connected
Hausdorff space which {has exactly two non-cut points} {no cut points,
but which disconnected by the removal of any two points}. A long
Cantor set is a non-metric compact totally disconnected Hausdorff space.
We shall precede the word {arc} {circle} {Cantor set} with the adjective
"short" in order to refer to the usual (i.e., metric) {arc} {circle} {Cantor
set} and reserve the word {arc} {circle} {Cantor set} for a space which
may be either a long or short {arc} {circle} {Cantor set}.

Let A = {(x, y): 0 ^ x9 y <, 1} be the unit square with lexicographic
order, i.e., (xl9 yx) precedes (x2, y2) if and only if χ1 < x2 or x1 — x2 and
Vi < 2/2- Then A is an arc. It is first countable but not separable
(hence, it is not metrizable) and is therefore a long arc [9, problem 5J].

If we identify points at the same height on the two vertical edges
of A we obtain a cylinder Σ which may be described analytically by
Σ = S x I, where S is the group of complex numbers of modulus one
and / = [0, 1], Then Σ is a compact connected Hausdorff space without
cut points which is disconnected by the removal of any two points.
It is first countable but not separable and so is a long circle.

It is known that an arc is short if and only if it is separable [7],
[10]. It follows that a circle is short if and only if it is separable.
The corresponding result for Cantor sets is as follows: A Cantor
subset of a connected LOTS is a short Cantor set if and only if the
number of jumps is countable [13, Chapter 1, Theorem 20].

Unlike the topological characterizations of short arc, circle, and
Cantor sets there are nonhomeomorphic long arcs, circles and Cantor
sets. If the first uncountable ordinal, Ω, is added to the "long line"
[6, page 55] as its last element, it becomes a long arc, Ar. The last
element does not have a countable base for its neighborhoods and so
the spaces A and A' are not homeomorphic. If we identify the first
and last elements of this space we obtain a long circle Σf which is not
homeomorphic to Σ. If we use Cantor ternary sets instead of open
intervals to fill in the jumps between successive ordinals in the for-
mation of the "long line" we obtain a long Cantor set which is not
homeomorphic to any Cantor subset of A. In the opposite direction
it will be useful to observe that long arcs share the fixed point property
in common with the short arc. Further, although some points may
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not have a countable basis for their neighborhoods it is true that any
point of a separable subset S of a LOTS X will have a countable basis
for its' neighborhoods (in the order topology of X). [8, Theorems
2, 8, 2.10].

If A is a subset of a topological space, we denote its set of accumu-
lation points by A' and the closure of A by A.

We are now in a position to investigate homeomorphisms of a long
circle without periodic points and to prove results similar to some of
those in van Kampen [14] and Markley [11] for homeomorphisms of a
short circle without periodic points. It should be noted that in contrast
to the case of the short circle a long circle cannot have a transitive
homeomorphism since no countable set can be dense. Further, some
long circles do not admit homeomorphisms without periodic points.
The long circle, 2", is one such example. In the observation following
the proof of Theorem 4 we will discern something of the structure of
long circles which do admit such homeomorphisms.

If X is a topological space and φ: X —> X is a homeomorphism, then
(X, φ) is called a discrete flow or cascade. The orbit of a point x under
φ, denoted O(x, Φ), is {φn(x): n is an integer}. If O(x, Φ) = X for each
%e X, then (X, φ) is said to be a minimal discrete flow or minimal
cascade. It may also be referred to as a minimal set. If Q is a
concept or relation defined for a transformation group (X, φ) and there
is a need to specify the space to which Q applies we attach the symbol
of the space to Q, e.g., Q(X) or Qx. The points x, yeX are said to
be proximal if whenever ae U, the uniformity of X, there is an integer
n such that (φn(x), Φn(y)) e a. The proximal relation is denoted by the
letter P. If x and y are not proximal, they are said to be distal.

If (Y, ψ) and (Z, π) are isomorphic we denote this by (Y, ψ) £χ
(Z, π). By (Y, ψ) ^(Z, π) we denote that there is a homomorphism
from (Y, ψ) onto (Z, π). We use S to denote the set of complex numbers
of modulus one. An element geS is said to be a generator of S if
{gn: n is an integer} is dense in S. Define Mg: S—+S by Mg(z) = gz.
Then (S, ΛQ is an equicontinuous minimal set. A transformation group
(Y, ψ) is proximally equicontinuous if P is closed and the quotient
transformation group (Y/P,ψ/P) is equicontinuous. If (Y/P, ψ/P) ^
(S, Mg) then (Y, ψ*) is said to be proximally equicontinuous over the
short circle.

THEOREM 1. Let S* be a long circle and let φ be a homeomorphism
of S* without periodic points. There exists a Cantor set C which is
the only minimal set under φ and such that O(x, φ) — O(x, φ) = C for
all xeS* - C.

Proof. There exists a minimal set C If int(C) Φ 0, then C is
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an open and closed subset of S*, therefore C = S* which contradicts
S* not separable. Hence, int(C) = 0 . Because there are no periodic
points C is perfect. The complement of C in S* is a union of disjoint
open intervals. If J is a complementary interval, then φn(J) is a
complementary interval and / Π Φ%J) = 0 for n Φ 0. If J Π 0%/) Φ 0
for some % Φ 0, then 0%7) = /. This same identity holds for the
closure of complementary intervals which then will have a fixed point.
This in turn implies φ has a periodic point. Let x e J S S* — C. Then
O(x, φ) is a countable discrete set in S* — C. Since O(&, #) — O(x, Φ)^C
and contains a minimal set, O(#, 0) — O(x, φ) — C and C is the only
minimal set in S*.

COROLLARY 1. Each point in the complement of C is doubly
asymptotic to C.

Proof. Let xeS* — C and let U be the unique uniformity of £*.
If x is not doubly asymptotic to C, then there is a sequence {%} with
I nt I —> oo such that {#**(&)} Π Cα = 0 for some ae U. This implies
the existence of y e O(x, φ) — O(x, φ) such that j / ίC, which is impossible.
Thus, x is doubly asymptotic to C.

THEOREM 2. Le£ S* &e a long circle, let φ: S* ~* S* 6e α homeo-
morphism without periodic points and let C be the unique Cantor
minimal set in S*. Then (x, y) e {P(S*)} {P(C)} if and only ifx — y
or {x and y are in the same closed complementary interval} {x and y
are endpoints of the same complementary interval}. Thus, {P(/S*)}
{P(C)} is an invariant closed equivalence relation and {(S*, φ)} {(C, ΦJC)}
is proximally equicontinuous over the short circle.

Proof. Define the relation R on S* by (x, y)eR if and only if
x = y or x and y are in the same closed complementary interval. It
is easily seen to be an invariant equivalence relation. We show
R £ P(S*), R is closed and (S*/JB, Φ/R)Z> (S, Mg) for some generator
geS. These imply P(S*) = B.

We shall denote intervals of Si*, open, closed, etc. by (x, y), [x, y],
etc. Whether (x, y) is an open interval or an ordered pair will be clear
from the context.

Denote by (α, b) an interval of S* proceeding from a to b in the
clockwise direction. Let (xQf y0) be a complementary interval. Let {wj,
i ;> 0, be a sequence with n0 — 0 and | n{ \ —* oo such that φni(x0) —*x
and Φni(y0) —* y. Since x, y are in C, a separable subset, such sequences
exist. Denote φni(x0) by a?4 and ^Wί(^/0) by #4. We may assume without
loss of generality that y£(y0, x), i.e., when we proceed from y0 in a
clockwise direction we do not reach y before x. Since neighborhoods
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of points on a long circle are connected LOTS (i.e., intervals) we shall
think of these neighborhoods as having a linear order induced by the
clockwise direction on the circle. Thus, we may speak of being to the
left or right of a point. Since a subsequence of {̂ } must converge to
x from one side or the other, we shall assume that it converges from
the right. If it converges from the left the proof is slightly easier
due to the order we have assumed for xθ9 y0, x, and y. To avoid too
complicated notation we shall denote the subsequence by {xι} and we
shall assume, without loss of generality, that {#J is monotonically
decreasing. Complementary intervals being disjoint, {t/J also is a
monotonically decreasing sequence which converges to y. Since y is
not in any complementary interval, we conclude all the intervals (xi9 y^)
(or (yif x{)) are to the right of yyXi\y and x = y. Clearly, for all
z e (α?o, yd, Φni(z) -> » = y Thus, R S P(S*).

If we use a sequence of endpoints of complementary intervals
rather than the iterates of a single complementary interval, we may
mimic the proof of R s P(S*) to derive a proof that Rr £ Δ and there-
fore, that R is closed.

S*/R is compact, connected, remains connected upon the removal
of a single point but is disconnected by the removal of two points.
The proof of this is the same as that for the case of a short circle and
depends only upon the non-metric properties of <S* and the nature of
R [14]. (S*/B, Φ/R) is a minimal set. Therefore, S*/R is separable
and metrizable. Thus, (S*/R, φjR) £X (S, Mq) for some generator geS.
It follows that P(S*) S R and therefore, P(S*) = R.

The companion remarks about P(C) and (C, φ/C) follow from slight
modifications of the above remarks.

This result as well as the next two were obtained for the short
circle by making use of its usual metric. Since the arc length of the
unit circle is 2π the sum of the lengths of a sequence of disjoint
intervals must converge which implies that the sequence of lengths
converges to 0.

COROLLARY 2. The proximal relation of (C, φjC) is given by
{x, y) e P(C) if and only if x — y or x and y are endpoints of some
complementary interval. Thus P(C) is an invariant closed equivalence
relation and (C, Φ/C) is a proximally equicontinuous minimal set over
the short circle.

THEOREM 3. Let φ be a homeomorphism of along circle S* without
periodic points. Then, P'(S*) S 4(S*) and P'{C) S

Proof. In the proof of Theorem 2 we showed Rr g A. Hence,
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PW) S AS*). Since P(C) = P(S*) Π(Cx C), we have P'(C)

We now come to the main theorem of this paper.
If (Xa, ψa)(a e I) is a collection of cascades we define the product

cascade (X, ψ) by X = Π*ei Γ̂* and ψ((α?α)) = (#««)). A property P
of cascades is said to be admissible if (i) there is at least one minimal
set having the property and (ii) if (Xai ψa)(a e I) is a collection of
minimal cascades, each of which satisfies P, and if M is a minimal
subset of the product cascade, then (ikf, ψ/M) satisfies P. This is a
specialization of the definition in [2]. We shall have occasion to speak
of a property as if it were the collection of sets satisfying the property,
e.g., we shall say (X, ψ) e P instead of (X, ψ) satisfies P. If a collec-
tion of cascades is admissible, then there is a universal minimal cascade
(Z, ψ) for the property in the sense that (Z, ψ) ~> (X, ψ) for all (X, ψ)
which satisfy the property. Such a minimal set is unique up to iso-
morphism.

Define the property (collection) of minimal cascades Pg (g is a
generator of S) as follows: (X, ψ) e Pg if and only if (X, ψ) is proxi-
mally equicontinuous over the short circle and Pr s Δ. This is an
admissible property and the universal minimal for Pg is the Ellis minimal
set (E, Mg) [5]. This minimal set is defined in [4], but we shall use
the description of it in Section 2 of [5]. It is a locally almost periodic
regular minimal set.

In [11] Markely proved the following theorem: Let (X, φ) be a
minimal cascade where X is a compact Hausdorff space. Then (X, φ)
can be embedded in some (S, ψ) where ψ has no periodic points if and
only if Pr £ Δ, P — A is countable and (X, φ) is proximally equicontinu-
ous over the short circle. It appears that the condition " P — A is
countable" in the hypothesis of the theorem is needed only to insure
the minimal set (X, φ) is metric so that it may be (embedded as) a
subspace in S. Indeed, Markley remarks that it may be replaced by
"X is metric". One may hope therefore to drop this countability re-
striction and extend the theorem to the class Pg, maintaining the
embedding in a non-metric object which could be a short circle when
the restriction holds.

THEOREM 4. Let (X, φ) be a minimal cascade where X is a compact
Hausdorff space. Then (X, φ) can be embedded in some (Σ*, Φ*) where
Σ* is a circle and Φ*: Σ* —> Σ* is a homeomorphism without periodic
points if and only if (X, φ) e Pg for some generator geS.

REMARK. We can be more specific about the circle Σ* in which
(X, φ) can be embedded. It can be obtained as a certain kind of
decomposition space of the long circle Σ.
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The proof will be preceded by a series of propositions. We shall
use the cylinder picture of Σf i.e., Σ = S x I — {(z, r): z e S, 0 ^ r <̂  1}.
For a generator of geS define the function μg: S x I~*S x / by
Λ(fe r)) = (#2> r) where gz is complex multiplication. It is a homeo-
morphism of Σ without periodic points which spins each horizontal short
circle and therefore the cylinder by the amount arg (g). Thus, (Σ, μg)
is a cascade.

We let (μg)
n = (μg») be μg iterated n times and define Σ(rl9 r2, ,

rn) = {(z, r): r = ri9 i = 1, 2, . . . , n}.

PROPOSITION 1. T%e o?% minimal set of (Σ, μg) is Σ(0, 1). For
(z,r)£ Σ(0,1) we have (z, r) doubly asymptotic to Σ(0,1) and 0{{z, r), μg) —
O((z, r), μg) — 1̂ (0, 1). Furthermore, the points {(z, r): rel} are uni-
formly doubly asymptotic to each other and to Σ(0, 1) and therefore
the proximal relation of (Σ, μg) is defined by <(z, r), (w, s)) e P(Σ) if
and only if z = w.

Proof. Since μg[Σ(r)] = Σ(r) we have O((z, r), μg) S I'(r). The
orbit O((z,r),μg) is a countable dense (in the usual topology of S) subset
of Σ(r) and its set of accumulation points is 2X0, 1). Thus, ^(0, 1) is
the only minimal set of (Σ, μg) and every point of Σ other than those
of 2X0, 1) is doubly asymptotic to ^(0, 1). It is equally clear that all
points of {(z, r):rel] are uniformly doubly asymptotic to each other
and to 2X0, 1) and that P{Σ) is as described.

To avoid too complicated notation we shall not indicate that μg

is restricted to 1/(0, 1). Which space μg is acting on will be clear from
the context.

PROPOSITION 2. For each generator geS we have (Σ(0, 1), μg) ~

(E, Mg). Thus, (E, Mg) is embedded as a compact, perfect, nowhere

dense set in (Σ, μg).

Proof. Obvious. See description of E in Section 2 of [5].

Let 4 g S . Define R(A) in Σ x Σ by φlf rx\ (z2, r2)> e R(A) if
and only if (i) z1 = z2 and r1 = r2 or (ii) z1 = z2eA, i.e., we identify
all points on the same vertical line segment if their first coordinate
is in A. Then R(A) is a closed equivalence relation. The proof of the
next proposition is straight forward.

PROPOSITION 3. The space Σ/R(A) is a circle and if μg(A) = A,
the map μg/R(A) is a homeomorphism without periodic points.

If enough intervals are "squashed down", then ΣJR(A) is homeo-
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morphic to S. Once again we shall not introduce further notation to
distinguish between μg/R(A) acting on Σ/R(A) or on the image of Σ(0,1)
in Σ/R(A) which we shall denote by Σ(0, 1)/R(A).

PROPOSITION 4. If S — A is countable, then Σ/R(A) is a short
circle and 2(0, 1)/R(A) is a short Cantor set.

Proof. Think of the decomposition space Σ/R(A) as a circle with
"fibers" only over those points not in A, the other "fibers" being
collapsed down to their "base points". Thus, in denoting the points
of Σ/R(A) we adopt the notation: for zί A, the i£(A)-equivalence class
of (z, r) is {(z, r)} which we denote (z, r); for z e A, the R(A)-equivalence
class of (z, r) is {(z, s): se 1} which we denote (z, 0). For each z$A9

let Dz be a countable dense subset of {(z, r):rel} and let Do be a
countable dense subset of {(z, 0): z e S}. Then, D = (\JztA Dz) U Do is a
countable dense subset of Σ/R(A) which is separable and therefore a
short circle. For zgAwe may regard the space obtained by removing
the open interval ((z, Q),(z, 1)) from Σ/R(A) as a connected LOTS. Then
2X0, 1)/R(A) is a Cantor subset of it with only countably many jumps.

PROPOSITION 5. For each invariant closed equivalence relation
HE S PE there is a corresponding invariant closed equivalence relation
RΣ S PΣ{RΣ — R(A) with μg(A) — A for some 4 e S ) such that
(Σ(0, 1)/R(A), μg/R(A)) ~ (E/RE, MJRE). Thus, we may regard (E/RE,
Mg/RE) embedded (as a minimal set) in (Σ/RΣf μgjRΣ).

Proof of Theorem 4. Suppose (X, φ) is embedded in (2*, Φ*) where
Φ* is a homeomorphism without periodic points of the circle Σ*. By
Theorems 2 and 3 (X, φ) 6 Pg for some generator g e S. Conversely,
suppose (X/P, ΦlP) ci (S, Mg) for some generator geS and P' £ Δ.
There is an invariant closed equivalence relation RE <ϋ PE such that
(E/RE, MJRE) - (X Φ) by Theorem 2.1 of [5]. Now apply Proposition 5.

Observation. The proof provides a description of those circles which
admit homeomorphisms without periodic points.

It follows that the long circle in which (X, φ) may be embedded
is not unique.

COROLLARY 3. Under the hypothesis in Theorem 4 2* can be a
short circle if and only if Px — Δx is countable. Otherwise, it can
be obtained as a long circle of a particular form.

Proof. Suppose Px — Δx is countable. Theorem 2.1 of [5] enables us
to conclude that the set of intervals in Σ/RΣ which are not "squashed
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down" is countable. Thus, Σ/RΣ is a short circle. Conversely, if 2**
is a short circle, it can contain no more than a countable number of
disjoint open intervals. If Px — Δx is uncountable, J* = Σ/RΣ will
contain uncountable many disjoint intervals that are not "squashed
down" and will therefore be non-metric.

REMARK. The first part of this corollary is the theorem of Markley
alluded to earlier. The proof given here is consistent with develop-
ments in this paper, but is not independent of Markley's work since
Theorem 2.1 of [5] made use of his theorem.

COROLLARY 4. Under the hypotheses in Theorem 4 X can be
embedded as a short Cantor set if and only if Px — Δx is nonempty
and countable. If Px — Δx is uncountable, it will be embedded as a
long Cantor set and its complement in Σ* will be the union of un-
countably many disjoint open intervals.

COROLLARY 5. Under the hypotheses in Theorem 4 (X, φ)^(S, Mg)
for some generator g e S if and only if Px — Δx is empty. {This is
the transitive case first studied in [12].)

COROLLARY 6. Under the hypotheses in Theorem 4 the points in
the closure of any complementary interval are uniformly doubly
asymptotic to each other and to X {considered as a subspace of Σ*)
and for any yeΣ* — X, 0{y, Φ*) — 0{y, Φ*) — X. The proximal rela-
tion P* of (I7*, Φ*) is given by: {x, y) e P* if and only if (i) x — y or (ii)
x and y are in the closure of a complementary interval] and the proximal
relation P of (X, φ) is given by: (x, y)e P if and only if (i) x = y (ii)
x and y are endpoints of a complementary interval when X is con-
sidered as a subspace of Σ*.

COROLLARY 7. Under the hypotheses in Theorem 4 each point of
X is a locally almost periodic of (Σ*, Φ*) when X is considered as a
subspace of Σ*.

We are now able to add another equivalent condition to those of
Theorem 4.4 in [5].

THEOREM 5. Let {X, φ) be a proximally equicontinuous regular
minimal set over the short circle. Then (X, φ) ̂ x {E, Mg) if and only
if {X, φ) can be embedded in {Σf μg) for some generator ge S.

Proof. If (X, φ) is embedded in {Σ, μg)> then RΣ = ΔΣ implying
(X, φ) ~ (1X0,1), μg)) - {E, Mg) be Proposition 2. Conversely, if (X, φ) ~
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(E, Mg), then (X, φ) e Pg by Proposition 2.1 of [5]. By Theorem 4 we
can embed (X, φ) in (Σ/RΣ, μg/RΣ) with RΣ s P*. It is clear, in fact,
that RΣ = ΔΣ. Thus, (X, φ) is embedded in (Σ, μg).

I would like to thank Professor Nelson Markley for conversations
helpful in writing this paper.
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