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This paper is concerned with defining Lipschifz spaces on
2._1, the surface of the unit sphere in R*. The importance
of this example is that X,_; is not a group but a symmetric
space. One begins with functions in L,(Y, ), 1< p=<c0., X,
is a symmetric space and is related in a natural way to the
rotation group SO(n). One can then use the group SO(n)
to define first and second differences for functions in L,(3,_)).
Such a function is the boundary value of its Poisson integral.
This enables one to work with functions which are harmonic.
Differences can then be replaced by derivatives.

For a brief historical survey of Lipschitz spaces, the reader is
referred to the introduction in Taibleson [18] and to the papers of
Nikolgkii [9] and Peetre [10]. For this paper, the approach of two
people stands out as being of significant importance.

The first is Zygmund [20; Chapter VII]. Zygmund draws upon
the results of Hardy and Littlewood [6]. For brevity we consider
only the case 0 < a < 1. Let fe L,[0,2x] and be extended periodi-
cally, 1 < p < o, and let

@, = sup |1 " 15w + 0 — f@)p ds}

o<n<s \ 2T

Then fe 42 if and only if @,(6) = 0(6%). For p = =, let w(d) = sup
| f(z,) — f(x,) | where the sup is over all z,, x, such that |z, — ,| < 6.
Then fe A3 if and only if w,(0) = O(6%).

An important result is that w(r, x) is the Poisson integral of a
function fe 47 if and only if (8/0x)u(r, x) = O(6*™") where 6 =1 — 7,
uniformly in z as r— 1",

The second person is Taibleson [18]. For brevity we consider
only the case 0 <a<1l Let feLy (R", 1<p=c, and let
| f(@ + h) — f(x) ||, be the L, norm of [f(x + k) — f(»)] considered
as a function of ». Then feAd(a;p,q), 1 <q< o, if and only if

{02115 + B = 7@ laclrdr ]} < oo

R?

An important result is that f(x, ¥), 0 < y < =, is the Poisson
integral of a funection fe A(e; p, q) if and only if
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Some of the results in this paper are contained in a paper of
Heideman [7]. Heideman deals with a generalization of these notions.
He considers Banach spaces of distributions.

Another paper of interest is one by Stein [16] where he has
worked out the important Littlewood-Paley theory for a compact Lie
group.

Lastly, Ragozin [11] also has defined Lipschitz spaces on %, ;.
His notion is somewhat different and he is concerned mainly with
polynomial approximation.

For the most part, the approach used in this paper is similar to
Taibleson’s approach as developed in [18], [19], and [20].

1. Preliminaries.

DEFINITION. The Poisson kernel is the function P(rz,y)=
C.(L — »)/|re — y|* where z,yel,  ={xeR"|z|=1}, 0=r<1,
and C, is a constant such that S P(rz, y)dy = 1 for each xe X, ,

z

n—1
where dy is non normalized Lebesgue measure.

NoTeE. It is often convenient to consider P to be a function of
r and 0,0 <6 <2r. Then

1 —

2rcosd + r

P(T, 0) = Cn [1 _ 2]n/z = P('i", Cos (9)

where cos § = x-y. We shall also write

11—
27‘x-y + ,,.2]%/2 .

P(r, z-y) = Cn[1 —

DEFINITION. Let fe L,(2,.), 1 £p < . The Poisson integral
of f is defined as f(rz) = S fWP(r, x-y)dy. We shall assume that

n—1

the reader is familiar with the properties of Poisson integrals. The
reader is referred to Zygmund [21] for the one dimensional case and
Stein and Weiss [17; Chapter 2] for the case of R™.

Noration. Let Yi®, I =1, ---, n(k), be an orthonormal basis for
the spherical harmonics of degree k. Let Z” be the zonal harmonic
of degree k with pole 4. For a full discussion of spherical harmonics
see Stein and Weiss [17; Chapter 4].
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The following facts are well known:
P(r, o-y) = 3,7 Z{(a) ,
k=0

o
= >,
=0

n(k
fr) = 35 0.t Y1)

and the convergence is absolute and uniform for » < r, < 1.

DErFINITION. Let FeL,(Z,.) and GeL([—1,1],d¢) where
de(s) = 0,1 — 5" PPds for —1<s=<1 and w,_, is the surface
area of X, ,. The spherical convolution of F and G is the function

FGw) = | F@)GE-v)dy.

(1.1) Let Fe L3, ) and Ge L(~1, 1], d¢) where 0 <1/p + 1/q —
l1=1t<1land 1 £p, g < . Let H(z) = S: F(y)G(z-y) dy. Then
He L(Z,-) and [[H|l; [ F{l, || G lloas-

REMARK. This is a standard result known as Young’s inequality.
See Calderon and Zygmund [4] or Askey and Wainger [1] for a more
extensive discussion of spherical convolution.

(1.2) Let f(r) be a nonnegative function definedon 0 < » <1, @ 0,

p=1. Let F(s) be defined by F(s) = g F(r) dr it &> 0and F(s) = S f(r) dr
if ¢« < 0. Then

1@ = ryperara - n]" s ar

<[ 1@ = e sorara - n]" .

REMARK. This is a standard result known as Hardy’s inequality.
See Hardy, Littlewood, and Polya [6] or Taibleson [18, Lemma 3,
p. 418].

2. Radial derivatives. In this section Lipschitz spaces are
defined. A justification for calling these spaces Lipschitz spaces will
be given in §4.

There are two questions to be decided. The first is which differ-
ential operator to use. The simplest would be 6/dr. Unfortunately,
f(rx) is not harmonic in general. However, »f.(rx) and 8/or (rf)(rx)
are harmonic. »f,(rx) has the disadvantage that the constant term in
the expansion f(rz) = 3, a,r* Y #(x) is lost. Furthermore, the operator
(rf), is related to the Bessel potential operator. Thus, the operator
(7f), will be the one most often used. However, there will be circum-
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stances in which the other operators will be useful. For this reason
the relations between these operators will be studied in this section.
The second question is: Which mixed norms are to be used?
There are essentially two approaches. One uses Zygmund [21; Chapter
VII] as a starting point and the other uses Taibleson [18] as a starting
point.
The Taibleson norm

Ll

can be transformed to

[S [Anl/r) == || rf(r2) ||5,42]° dr :luq

0 rinl/r

q i/q
] dy/y]
pydw

%f(x, v)

with the change of variables » = ¢7¥ where 1 < ¢ < <, and
f(z, ¥) = > aule™)* Vi¥(@) .

This approach also correspond to that of Stein [16] for a compact Lie
group. (Note that %,_, is the symmetric space SO(n)/K where SO(n)
is the group of rotations on R” and K is the stability group of e,.
{ey, - -+, e,} is the canonical base for R". SO(n) is, of course, a com-
pact Lie group.)

On the other hand, if one chooses Zygmund [20; Chapter VII]
as a starting point one should choose

1 = m=linrrs) s are = n "

as a norm where 1 < p< o and 1 < ¢q < co.
We now proceed to investigate the relationship between these
various norms.

DEFINITION. Let 2eR" 0<r <1, and 1 < p, 9g< . We define
(| F(ra) |lpe = || F @) ||5ae] lasaria—m

and

| FCro) o = I F(ra) lp.aal llo,aririne -

(2.1) Let feL,(2,_),1=<p=<oc. Thenif a >0 andl <¢ = o,
the following are equivalent:

(1) (@ = 7)* T f(ra) [l + [1/(@) |, where Tf = (vf). ,

(ii) |@ - Zosen)| + 1@ 1,
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(iii) @ = ) Tifra) lle + | /@) ||, where T.f = =f,,
(iv) | (Gl fr)y* Tt f (ra) [ + @) l5
(v) || (rind/r)*T* f(ra) |5 + || @)l -

REMARK 2.2. Let f(rx) be harmonic on B, = {xcR™ |z| < 1}.
Assume f(0) = 0. Thenif a >0 and 1 £ p, g < o, the corresponding
pq norms of (2.1) are equivalent.

2.3) Let feL,(2,_),1<p=<w. Thenif a>0and 1<qg=<
and if & is the smallest integer greater than « and % is any integer
greater than «, the following are equivalent:

(i) 1@ — )T  f(ra) s
and
(ii) (@ — )T f () |5 -

REMARK. The proofs of the above use (1.1) and (1.2). See Taibleson
[18] for the analogues in R".

DEFINITION. Let @ >0and 1 <p, ¢ < oo. Then Ala; », q; 2._,) =
A(er; p, @) is defined to be the set of functions fe L, (X,_;) for which
the norm || f [laipe = 1 (1 — 7)**Tf(r2) |5, + ||f(2) [l, is finite.

3. Tangential derivatives. In this section globially defined differ-
ential operators on Y, , are discussed. The reader is referred to
Ragozin [11] for a more complete discussion of these operators. Let
D be an n x n skew-symmetric matrix and let fe L(¥,_). Define
Df(z) = (d/dt) fl(exp tD)(x)] |.~.. Since d/dt (exptD)(%)|,-, = Dx, the
map from the matrix D to the differential operator D is linear. Define
an inner product by <{D,, D,y = —1/2 trace (D,D,). Let D;; be the
map which takes e; to e;, ¢; to —e;, and e, to zero if k ¢, j and
1 < j. Then {D,;} is an orthonormal basis for the skew-symmetric
matrices. Actually this is an inner product on linear transforms since
the trace is invariant under change of basis.

(3.1) Let f(rz) be harmonic on B,. Thenif a>0and1<p, ¢<co,
the following are equivalent:

(1) I (L — ) fo(r@) [lag 5
(ii) 2

i<g

(iii) @A = )V f () |log

where J, is the gradient in the tangential plane for f(rx) considered

(A — 7)*D;;f(ra)

’

pq
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as a function of x.

REMARK. The proof is similar to the proofs of (2.1), (2.2), and
(2.3). Again, the reader is referred to Taibleson [17].

4. First and second differences. In this section, first and second
differences for functions with domain %, , are defined. The equiva-
lence between the norms based on differences and the norms introduced
in § 2 is shown. It is at this point that the symmetric space property
of ¥, , is used. X,_, can be identified with SO(n)/SO(n — 1).

For this chapter only, we assume that the Lebesgue measure dy

is normalized so that S dy = 1. We also normalize the Haar meas-
Zp—1

ure du on SO(n) so that S du =1.

SO(n) ~
If f is defined on X,_,, we can construct a function f(u) = flu(x,)]

where x,€23,_, and is fixed. Then

[, =, fwa={ e,

Equality holds for any point z,€ 2,_,. For a more extensive discussion
of these notions see Coifman and Weiss [5]. This enables one to work
with the group SO(n) in attempting to define differences.

We are going to decompose SO(n) into a “polar decomposition”.
Let 0eS0(n) be such that p(e,) = ¢,. Then by an abuse of notation
we can congider o to bein SO(n — 1). For w e SO(n), it is easily seen
that the spherical distance between (upexpitD,)(e) and (u0)(e,) is t.
[The spherical distance between z,ye X, , is defined by d(z, y) =
cos™(x-y).]

DEFINITION. Let #e80(n), eSO —1), 1<9p,qg < o, and
0 <t<m We define

G, 8) [log = (1 G(%, ) []5.00) g,aere

and

T 1/q
a0, 15 = {16, 0,011,007 do bt}
fl=2g< e
=sup sup [[G(u, 0, 8)[lpau If ¢ = oo

0<t<T peSO(n—1

We consider the following first difference:

[[e7{(f[(u exp tDys)(e)] — flule)]} ln
= [[t7{f[(upo exp tDy)(e)] — fluo(e)]} |7 -
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Similarly we can define a second difference. The points
(up exptD,,)(e,), (up)(e), and (uoexp —tD,,)(e) all lie on a great circle
and are equally spaced with (up)(e,) between (up expitD,)(e,) and
(u’p exp —tDn)(el)'

We consider the following second difference:

[t *{fl(w exp tDy,)(e,)] — 2f[w(e)] + fl(u exp —EDy)(e)]} |l5
= |[t7{f(up exp tD,,)(e.)] — 2f[(u0)(e)] + fl(wpexp —tD,,)(e)]} II,
where 1 £ p,¢ £ ~ and a > 0.

We now proceed to establish the equivalence stated earlier.

ProrosITION 4.1. Let fe L,(2,.), 1 <p < o, and let f(rx) be its
Poisson integral. If 0 <a <1l and 1< q =< o, the following are
equivalent:

(1) 1A = r)7orfu(ra) |l
(ii) e~{fT(w exp tDy,)(e)] — flule)]}se -

Proof. The proof is similar to the proof of the succeeding Propo-
sition 4.3. TFirst, write

nfD.ra) = | (Fl(wpexptDa)(e)] - Flwp)e)]) rP.Ar, cos t)dv .

One can now proceed as in Proposition 4.3 to get part of the result.
For the other part write

515w exp tD.)(e)] — s/lsu(e)]
= | @hlotuexp D)o ~ | (@) loue))do
+ rf[r(wexp tD)(e)] — 7flru(e)]
and note that

Flrw exp tD.)(e)] — flru(e)] = | DSflr(u exp sDa)(e)]ds -
The result now follows from (3.1).

LEMMA 4.2. Let feA(a;p, q) where a >0 and 1 < p,q < <.
Then || (7 f),(r) llp.ae = o(L/(L — 7)) as 7— 1~

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [17; p. 426]. The proof uses (2.3) and the fact that
I () (r®)|l,,qe. is increasing as a function of 7.
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PROPOSITION 4.8. Let fe L,(2,_,), 1l <p <o, and f(rx) its Poisson
integral. If 0 <a <2 and 1 <q =X o, the following are equivalent:

(1) 1@ = r)=r(rf)(r) |
(i) [[t7{f1(w exp tDy)(e)] — 2f[ue] + fI(u exp —tDy)(e)]}H I, -

Proof. (a) () < A, (ii).

fluel =, fluylPlry-e)dy

n—

Let A be a linear transform on R" defined by A(e,) = ¢, and A(e;)) = —e;
for ¢t =2, ---, n. Then

flue] = FlwAyIPrA@):-e)dy

n

= [ fleawipey-e)iy
- Ssozmf[(uAv)(el)]P(’r'v(el)'ex)dv .

There exists a 0 e 80(n) such that pe, = ¢, and (0 exp tD,;)(e) = v(e)
where cost = v(e,)-e, and p = p(v), t = t(v). Then A(v)(e) = (Ap exp
tD,)(e)) = (0 exp —tD,,)(e) since o(e;)-e, = 0. Therefore,

flu@ = | fl(up exp ~tDL)(@)]P(r, cos tido .
Hence

2 ) rute)] = | (Fl(up exptD.)(e)] — 2f[uel
+ flup exp —tD,)e)r(P,) (r, cos Do

since d/drg P(r, cos f)dv = 0. Therefore,
SO(n)

O

176D ) s = [170F ) L] e
= | 1110 exp tD.)(e)] - 2f1wo)e)]
+ Fl(o exp —tD)()] lpau | 7(rP2).(r, cos 1) | dv
=@ rP).(r, cost) | dv

where

9(t) = || fl(wexptDy)(e)] — 2fTue] + fl(wexp —tDy)(e)]llpau -

Case I. q = co. Let A = sup t™*g(¢). Then

o<tz
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@ — )l r(rf),(r®) ||pa0
< (1 — r)—AC, St sin"¢ | #(rP,).(r, cos t) | dt

by the previous inequality since the integrals over SO(n) and X,_, are
related. The above is bounded by

1 — r)=AC, Sl_r t*sin™*¢ | r(rP,),(r, cos t)| dt
0
+ (1 — r)AC, S t*8in"¢ | #(rP,) (r, cos t) | dt .
The first term is bounded by

(1 — 7 ACKL — 7)* (L — 7)* (L — r)(L — 1)~
X (L — 71 —1r)=2C.A

since |7(rP,)(r, cost)| < B(lL — r)*P(r, cos t). In as much as
(sin"*¢)[1 — 2r cost + ] ** < Bt™*,

the second term is bounded by

T

- r)z““AC;[S t(1 — ¥)X(1 — )Bt~*dt < AB, .

Case II. 1 <q < . By an argument similar to the one used
in Case I we have (1 — #)* || r(rf.)(7%) ||5,¢z

< Cy(1 — 7y S:”””(sinn—ﬂ £)g(t) | 7(rP,).(r, cost) | dt

+ Co(l — 7)== S( (sin"*0)g(0) | 7(rPo) dr, cos ¢) | db .

Hence, || (1 — vy r(rf).(rx)||,, = I+ II where I and II are the
L]0, 1], dr/(1 — 7)) norms of the first and second terms respectively.
Now I=<

C;{Sl[(l _ gl_rsin"'z (at)g(zt) | 7(rP.).(r, cos t) | dt:lq
0] 0
1/q
dr/(l — r)}
1 1—r q 1/q
< c;;{g [(1 - r)HS sin® (zt)g(xt) P(r, cos nt)dt] dr/(l — a»)} .
0f 0
But (sin*?*zt)[1 — 2rcoszwt + ] ™® <1 and (1 — 7)7'[1 — 2r cos 7t +
] <t since t < (1 — 7). Hencel
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1

<o

0

[(1 - q«)—agi"' t-g(xt) dt]’ ar/(t - )"
= By |10 = 0l - Dalrar/e - n} "
by (1.2). But this is equal to

T 1/q
LRI OT T
By a similar argument

/e

I < K{E[(l — r)"“Si_T t-1g(xt) dt]qdo»/(l - r)}
By (1.2) this is bounded by
K,{[ 10 = ryegle@ — )parit = n}”

T 1/q

= K| eearars)
(b) (il) <A, (?). We may assume f(0) = 0. Let ueS0(n), 0<t<m,
and r be such that 7(1 — r) = ¢.

(s2) = | (0N)len)dp + 17(ra)

= '@ = Oenmondo — = 5 p.e0)
+ @ = r)(rf).(rz) + rf(rz) .
Thus

t7 || s fls(u exp tDy)(e)] — 2sf[su(e,)]
+ sf[s(u exp —tDy)(e)] |l pau = 41 — )7 || () (52) |],0

+ 47— [ @ = 01 0N)0el02) e

+ 225l — )™ (r ) [r(w exp tDy)(e)] — (rf) [rule)] |lp,e
+ ¢ || rflr(w exp tDy)(e)] — 2r flru(e,)]
+ 7flr(u exp —tDy)(€)] [l5.au -

(I) For the first, by Lemma 2.2 we have that
lim (1 = §)[| (),(9) llpes = 0 -

(II) The L,([0, 1], dr/(1L — 7)) norm of the second term is bounded
by
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K {H:(l - fr)'“S:(l — 0) [ (0F)no0) ||,,,d,,dp:r dr/(1 — r)}”“
S K@ =77 |lpg by 1.2) if ¢ < oo

This is bounded by K,| (1 — r)**T*f(rx)|l,, by Remark 2.2 since

f(0) = 0. The above is bounded by
A @A = ) T f(r2) [|pg < Bo|| (X — )72 (rf) (1) || -

A similar argument applies if ¢ = .
(III) For the third term let D = D u™.

(rf).Ir(w exp tD,)(e)] — (f) u(e)]
= [\ L)l (exp sD)(u(e))ds
= 5 |\ buDustr ) [rw exp sD.)(e)1ds

where D = >, ;b;;D;; and 3,;;b} = 1.

Therefore,
| (r ).lr(u exp tDy,)(e)] — (rf).[ru(e)] |l
< 501 Dutr ) lru(e)] s -
Hence

e — ){(r f).[r(w exp tDyu)(e)] — (v ). [rule)]} I,
S Cu Bl @ = Y7 Dis(r f)o(ra) e

S A @ = 7P T f (o) |log = Ball (@ — 7)7r(rf) (1) |1q

by (8.1) and Remark (2.2).
(IV) For the remaining term,

flr(u exp tDy;)(e)] — 27 ru(e)] + flr(w exp —tDy)(e,)]

- S S @ fir(exp (o + 5)D)(u(e,)ldsda
o dods

with D as in (III) above. This equals

—t

> > So S: b0, D:;Dy, flr(u exp (6 + s)D,,)(e)]dods .

i<k i<j J—t
Since (1 — )& = ¢,

1 87{fIr(u exp tDys)(e)] — 2f[ru(e)] + flr(w exp —tDus)(e)]} l5
= C 2 2187 Di;Duflru(e))s, = B 2, % 1A = 7Y™ Di; Dy f(ra) |l -

1<k i<j

The above is bounded by
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Aaw 2,11 — 1Y Dy fo(r@) |lpg S Ban || (L — 7)) r(1f,),(r5) ||5q -
This completes the proof of Proposition 4.3.

5. The Bessel potential operator. In this section the Bessel
potential operator is defined and some of its more elementary properties
are listed.

ProrosiTION 5.1. Let f(rx) be harmonic on B, and bounded for
0=r=<p0 where 0 <p <1 Suppose ||(1 — r)s Tk f(rz)ll,, =D for
some k> a>0, 1 <p,qg=c. Assume also that there exists an r,
such that 0 < r, <1 and || f(rz)|lpe <D for 0 <r =<7, Then f(rz)

is the Poisson integral of a function fe Ala; p, @) and
H f Halpvq é Aa.k,rOD .

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [18; p. 426]. The proof uses Proposition 2.3.

DEFINITION. Let G*(rz) = X7 r*(k + 1) Z"(x). For a >0 this
will turn out to be the Poisson integral of a function G*(z)e L,(2,_).
For a £ 0 this will be the Poisson integral of a distribution. The case
a < 0 will be discussed in a later paper.

REMARK. G* will be used to define a multiplier J* with the
property that if fe L,(2,_) and f~ >,.:a,Y{”, then

Jof ~ S ag(l + 1Y .
k,l

Multipliers similar to this have been investigated by Hirschman [8]
for L0, 27) and by Askey and Wainger [1] for L,(¥,_)).

NoraTioN. Let Pit), »>0, —1<¢ <1, be the Gegenbauer
polynomials defined by >o,2*Pi(t) = (1 — 2tz + 25)7% for |z]| < 1. It
is well known that ZP(x) = Z"(x-e) = C.(k + N)Pi(x-e;) where
N = (n — 2)/2 and C, is a constant. The following facts will be useful
in obtaining information about G*(x).

(5.2) Let a« >0 and ¢t = z-¢,. Then
(i) G%(rx) is the Poisson integral of a function G*(x)e L,(2,_)).
(ii) For ¢t =1, G*(») = lim G*(rx) in the pointwise sense.
(iii) G*(x) is continuous if t+1.
(iv) Ift=#1,
| G(ra) | £ M, (1 — t)«2 if o < 208 + 1,

| Gra) | £ M,,;ln(1 — ©) fa=2x+1,
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where M, , is a constant depending only on a and A.
(v) If a>2x+ 1, G%(x) is continuous for all x€ ¥, | and hence
G*(rz) is bounded for all xe ¥, _,.

Proof. See Askey and Wainger [1].

We shall also need some information about G%(r#) when — oo < a < 0.

(5.3) frx+1l<a<2rn+1and —1<¢<1, then
i (B + NE™ | Pit) | < M, (1 — ¥y
k=1

Proof. See Askey and Wainger [1; Lemma 5, p. 204].

(5.4) Let F.(t) = i, (b + M)(e )k + 1)™*P}t) where ¢ >0 and
—co <a<2n+ 1. Thenif -1<t<1,

|Ft)| < M, (1 — tH)le2miz,

Proof. Choose vy so large that & + 2v > (A + v) + 1. By Askey
and Wainger [1; p. 199, line 5]

F) = 3 5 Giunnle) ke PEO[GUE) + Graa(h)]

dslym k=1

where Gy(k) = maxX;ci<pes, | d/dE (1 + £)™%|, @j4,.. and b, are bounded,
l+ 37+ m=uy;l,j, m are nonnegative integers, and v — 7> 1. If «
is a nonpositive integer we assume that —a — 1 = 0. Since (e~*)*™ =
O(k~™),

| Fuol S 4y; 35 3 k- km(k + )77 | PE(0) |

iHhm k=1

B
< A, SR PR(t) | < ML (1 — g

k=1

by (5.3) for —1 <t < 1.

REMARK. If we set » = ¢, we have from the above that
| G (ro) | = Ma (1 — t7)emnr
if —oo <@ <2v+1fort+ +1 where ¢t = z-e,.
(5.5) G*(x) =0 if @ > 0.

Proof. In view of (5.2), it suffices to show that G*(rz) = 0.
P(rz, e) = 252, r*ZP(x) = 0. Hence >\, rte™*ZP(x) = 0 and so

0 =I'(@)™ rt"e“<§‘, rke-tkz;p(x))dt/t
0 k=0

= I 570w | emear.
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This is justified since the series converges absolutely and uniformly
for 0 < r < 1. The above is equal to

i r*ZE (@) M ()™ S” telgT k1 gt
k=0 0

= 3 rZ0(@) (@)™ r AN
i=o ! o (kb + 1)« E+1
= S 2@y (k + 1) = G(ra) .
k=0
(5.6) L Gw)ds =1 if @>0.
(5.7) Gutea(z) = Gu*Goe(x) if a, > 0.

Proof. (5.6) and (5.7) are clear since G*(rz) — G*(x) as r — 1~ in
L(2,_).

(5.8) Ga(x)e/l<a——(_n____'.ll;p,oo> if0<a——(n"1)<1_
» D

’

Proof. Let » = (n — 2)/2. We are going to apply Proposition 5.1
to G*(rx),
(a) Suppose @ < 2\ + 2. G*(rx) = X, (k + 1)™°Z"(x) and

TG(re) = ki (& + 1)~ZP(x) = G(ra) .

By (5.4) with t =w.e, if t% *1,|TG(rz)| < Myl (1 — )20,
Thus if p < oo, H TG"(’I‘:U) ”pq

[ (1—(1—r)2 1p
<M, S | TG(r, £) P (L — £3)F dt]

—1+(1—7)2
ip

+ M., S | TG(r, £) | (L — 20 dt]
LJi—(1—r)2

[ (—14+(1—r)2 1/p
+ M, S | TGo(r, £) |7 (1 — tZ)HIZdt] .

The pth power of the first term is bounded by

Msx——(l—r)z (1 . tz)(a—-zz—zuz(l _ t2)1—1/2 dt < M(l _ ,r)(a-—21-—2)p+21+1 .

—1+(1—7)2
Hence the first term is bounded by
Mll(l — 7-)(&"'21"2)+(2R+1)p“1 — M"(l _ T)a—‘(n/p’)—u'“/p’)

since 2x + 1= @2x + 1)/p + »n/p’ — 1/p" and thus 1/p' — n/p’ — 1 =
@\ + 1)/p — 20 — 2. For the last two terms we use the fact that
| Z:¥(x)| < Bk*. So the pth power of the second or third terms is
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bounded by

=1

i »
’ 1=a ]2 0k ) = BT ) @—22—2)p+2a+1
B(kz‘,k k7'>(1 PR+ < B'(L — 7)

since > kfr* < AL — r)# if 8> —1. Hence, the second and third
terms are bounded by

B'"(l — T)a—zz—z+(zz+nr1 —_ B”'(l — ,,-)a—(w/p')—1+mp') .

estimates for the second and third terms we have

Thus (1 — r)t=e+=02 | TGH(rx) ||pe. < K if p<< o, If p = oo, ag in the

| TG*(r®) ||wyae < K1 — 7)™ = K1 — 1)*".

Hence 1 — 7)* || TG*(r%) ||w,4s < K. The result now follows from (5.2)
and Proposition (5.1).
(b) If =2\ 4+ 2, a similar argument applies.

’

(5.9) Ga(x)e/1<a~(’”°_",ll;p, ) if a—2=1s9.
Db D
Proof. The proof is similar to the corresponding result by Taibleson
[8; p. 428]. One can write G* = G**...*G° where a =a, + -+ + a5,

0<a,—(n—1/p"<1,and 0 <a,=--- =az<1. The result easily
follows from (5.8).

DEFINITION. For & > 0 and fe L, (3,.), 1 < p < «, define J* by
Jef(x) = G** f(x). Since G*e¢ L,(Z,_)), this convolution is well-defined.

ProposITION 5.10. Let a, 3> 0,1<1p,q =< . Then J* maps
A(a; », q) isomorphically onto Alx + B; , ).

Proof. (a) J* maps A(«; p, g) continuously into A(a + B; p, 9).
The proof is analogous to the proof of the corresponding part of Theo-
rem 5 of Taibleson [19; p. 429]. The proof uses (5.9).

(b) J? maps A(a; p, g) isomorphically onto A(x + B; »,q). For
B>0and feL,(X,_,) let

JEf(ra) = GTHr, -)* f(@) .

This is well-defined since for fixed r < 1, G™#(rz) is a bounded function
of x. It suffices to prove the proposition for 0 < 8 < 1. G #rx) =
TG *rx) and 1 >1 - 8>0. By (6.9), G*eAl — B; p, q). Again,
proceeding as in the proof of Theorem 5 of Taibleson [19; p. 429], one
can show that J™*f € A(a: p, q) for fe A(a + B; p, ¢). We need to show
that J*(J*f)(z) = f(x) for almost every ze X, if fe A(a; p, q). This
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follows from the fact that
[Gﬁﬁ(rly .)*Gﬁ(,rb ')](ﬂ?) = P(/rﬂ”zx‘el) .

Similarly J#Jf)(x) = f(x) for almost every wxe X, if feAla + B;
?, @). This finishes the proof of the proposition.

REMARK. In view of the above, it follows that J* is an elliptic
pseudodifferential operator of order -a. See Seeley [14] for a more
extensive discussion of these operators.

6. Further remarks. In this section we would like to discuss
another way of defining Lipschitz spaces on X,_,. It involves the use
of local coordinates. For brevity we consider only the case 0 <a <1
and p = = q. The reader is referred to Ragozin [12].

Let B=B,_, ={zeR%|z| <1}. For fe L,(B), we say fe 4,(B)
if the norm

S Mt = I1f llee + ezslszzsgllgpizl — 2| f(z) — f(z) | < oo

REMARK 6.1. The following are easily seen to be linear transforms
of A,(B) into itself:

(a) multiplication by C= functions and

(b) f+ fo® where : B— B is any C* map.

We now define 4,(2,_,) to be {f € L.(2,-,): For eachxzeX,_, there
exists a C= chart ®: B— JY,_, such that zecint ®(B) and fo® € 4,(B)}.

REMARK 6.2. In view of Remark 6.1, ifp;: B— 2, ,i=1, -+, n,
are a finite collection of C= charts with Y,_, = |J.,int ¥,(B), then
fed (2,.) if and only if fo@; e A,(B) for each 7. Moreover, one can
define a norm

1 Wit = 3 1 ol ayem

We would like to show that this definition is equivalent to A(a; <,
oo; 3,_,). By virtue of Proposition 4.1, A(a; o, oo; 5,_,) is the collection
of functions for which the norm
1 Nesomree = 11 F 1l + ess sup d(x, y)~| f(e) = fW) ] < oo

“n—1

The following is well known.

REMARK 6.3. Let ® be a C~ chart: B— X, ,. Then
(a) d(z, y) is equivalent to |z — y| for all z, ye ¥,
(b)) [P(z)— P(z)| < M|z — 2| for all z, z,¢ B, and

(¢) P7(x) — P'(W) | = M|x — y| for all x,ye 3, _..
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REMARK 6.4. In view of Remark 6.3, it easily follows that
ess sup (| /(@) | + dlz, )| F@) — FB)) < =

if and only if || fo® ||, < 0. Thus, the two definitions agree locally.
One can then use the Lebesgue number for the covering {int #,(B), ---,
int @,(B)} to show that the definitions agree globally. Let ¢ > 0 be
such that if z, ye 3,_, and d(z, y) < ¢, then there exists ¢ such that
reintPy(B). Thenifx, ye X, andd(z, y) Z¢,| f(®) — fW)| =2||fll.=
2(|] fllofe9)e < Md(, y)*.

It is easy enough to see that the norms corresponding to the two
definitions are equivalent also.
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