OPEN PROJECTIONS AND BOREL STRUCTURES FOR C*-ALGEBRAS

HERBERT PAUL HALPERN
In this paper the relationships existing among the Boolean σ-algebra generated by the open central projections of the enveloping von Neumann algebra \mathcal{B} of a C^*-algebra \mathcal{A}, the Borel structure induced by a natural topology on the quasi-spectrum of \mathcal{A}, and the type of \mathcal{A} are discussed. The natural topology is the hull-kernel topology. It is shown that this topology is induced by the open central projections and is the quotient topology of the factor states of $S\mathcal{A}$ (with the relativized ω^*-topology) under the relation of quasi-equivalence. The Borel field is shown to be Borel isomorphic with the Boolean σ-algebra multiplied by the least upper bound of all minimal central projections. Finally, it is shown that \mathcal{A} is GCR if and only if the Boolean σ-algebra (resp. algebra) contains all minimal projections in the center of \mathcal{B}, or equivalently, if and only if every point in the quasi-spectrum is a Borel set.

T. Digernes and the present author [10] showed that \mathcal{A} is CCR if and only if the open projections are strongly dense in the center of \mathcal{B}. They also showed that the complete Boolean algebra generated by the open central projections is equal to the set of all central projections in \mathcal{B} whenever \mathcal{A} is GCR. Recently, T. Digernes [9] obtained the converse of this result for separable C^*-algebras.

2. The Boolean algebra of open projections. Let \mathcal{B} be a von Neumann algebra with center \mathcal{K} and let \mathcal{A} be a uniformly closed *-subalgebra of \mathcal{B}. A projection P in \mathcal{K} is said to be open relative to \mathcal{A} if there is a two-sided ideal \mathcal{I} in \mathcal{A} whose strong closure is $\mathcal{B}P$. In the sequel all ideals (unless specifically excluded) will be assumed to be closed two-sided ideals. The definition corresponds to the definition of Akemann [1, Definition II.1] for C^*-algebras with identity. The set $\mathcal{P}(\mathcal{B}, \mathcal{A})$ of all open central projections of \mathcal{B} relative to \mathcal{A} contains $0, 1$ and the least upper bound (resp. greatest lower bound) of any (resp. any finite) subset [1, Proposition II.5, Theorem II.7].

Now let \mathcal{B} be the enveloping von Neumann algebra of \mathcal{A}. The algebra \mathcal{A} will be identified with its embedded image in \mathcal{B}. In this case the set $\mathcal{P}(\mathcal{B}, \mathcal{A})$ will be denoted simply by \mathcal{P} and the projection in \mathcal{P} will be called open projections. The smallest Boolean algebra (resp. σ-algebra) containing \mathcal{P} will be denoted by $\langle \mathcal{P} \rangle$ (resp. \mathcal{P}).
Let \mathcal{A} be the set of all unitary equivalence classes of irreducible representations of \mathcal{A}. The set \mathcal{A} is called the spectrum of \mathcal{A}. For every irreducible representation ρ of \mathcal{A} on the Hilbert space $H(\rho)$, let $[\rho]$ denote the class in \mathcal{A} of which ρ is the representative. If X is a subset of \mathcal{A}, let $\mathcal{A}(X) = \cap \{\ker \tau \mid \tau \in X\}$. Here $\ker \tau$ is uniquely defined by $\ker \tau = \ker \rho$ for $\rho \in \tau$. Then setting $X^- = \{\tau \in \mathcal{A} \mid \ker \tau \supset\mathcal{A}(X)\}$ for $X \neq \emptyset$ and $X^- = \emptyset$, we obtain a closure operation \mathcal{A}. The topology defined by this closure operation is called the hull-kernel topology and is the family of subsets of \mathcal{A} given by

$\{\{\tau \in \mathcal{A} \mid \ker \tau \supset \mathcal{A}\} \mid \mathcal{A} \text{ is an ideal of } \mathcal{A}\}$ (cf. [12, § 3]). Let ρ be a representation of \mathcal{A} and let ρ^- denote the unique extension of ρ to a σ-weakly continuous representation of β on $H(\rho)$ such that $\rho^-(\beta)$ is the σ-weak closure of $\rho(\mathcal{A})$. If $A \in \mathcal{A}$ and $\tau \in \mathcal{A}$ there is a unique scalar $A^-(\tau)$ such that $A^-(\tau)1_{H(\rho)} = \rho^-(A)$ for all $\rho \in \tau$. Here $1_{H(\rho)}$ is the identity operator on $H(\rho)$. With this notation, the hull-kernel topology of \mathcal{A} is given by $\{\{\tau \in \mathcal{A} \mid P^-(\tau) = 1\} \mid P \in \mathcal{P}\}$.

Let $S(\mathcal{A})$ (resp. $S(\mathcal{A})$) denote the ring (resp. σ-ring) generated by the open subsets of \mathcal{A}. Then there is a projection-valued measure γ of $S(\mathcal{A})$ onto $\langle \mathcal{P} \rangle$ such that $\gamma([\tau \in \mathcal{A} \mid P^-(\tau) = 1]) = P$ ([19, Theorem 1.9], cf. [12, 5.7.6]).

Lemma 1. Let \mathcal{A} be a C^*-algebra, let β be the enveloping von Neumann algebra of \mathcal{A} and let \mathcal{P} be the set of all open projections of the center \mathcal{Z} of β. Let Q be a minimal projection of \mathcal{Z} and let P_π be the least upper bounded of all minimal projections of \mathcal{Z}. Then βQ is a type I factor whenever Q is in the Boolean σ-algebra $\langle \mathcal{P} \rangle P_\pi$.

Proof. If X_1 and X_2 are open subsets of \mathcal{A} with $X_1 \supset X_2$, then $\gamma(X_1 - X_2)^-(\tau) = \gamma(X_1)^-(\tau) - \gamma(X_2)^-(\tau) = 1$ for every $\tau \in X_1 - X_2$ and $\gamma(X_1 - X_2)^-(\tau) = 0$ for every $\tau \notin X_1 - X_2$. Since every set X in $S(\mathcal{A})$ is the union of a finite number of mutually disjoint sets of the form $X_1 - X_2$, where X_1, X_2 are open in \mathcal{A} and $X_1 \supset X_2$, we see that $\gamma(X)^-(\tau) = 1$ if and only if $\tau \in X$. Since every element X in $S(\mathcal{A})$ is the union of a monotonally increasing sequence of sets $\{X_n\}$ in $S(\mathcal{A})$, we get that $\gamma(X)^-(\tau) = 1$ for every $\tau \in X$.

Now there is a set $X \in S(\mathcal{A})$ with $\gamma(X)^- P_\pi = Q$. If $\tau \in X$ then $Q^-(\tau) = 1$, and so $\rho^-(Q) = 1$ for $\rho \in \tau$. This means that the kernel of ρ^- is $\beta (1 - Q)$. Since ρ is irreducible on \mathcal{A} and since $\rho^-(\beta)$, which is

1 This proof was suggested by the referee. My original proof was based on the results of [10].
isomorphic to $\mathcal{B}Q$, is equal to the weak closure of $\rho(\mathcal{A})$, we conclude that $\mathcal{B}Q$ is a type I factor.

The next result characterizes a GCR algebra in terms of the open central projections of its enveloping algebra.

Theorem 2. Let \mathcal{A} be a C*-algebra, let \mathcal{B} be the enveloping von Neumann algebra of \mathcal{A}, and let \mathcal{P} be the set of open projections of the center \mathcal{Z} of \mathcal{B}. Then the following statements are equivalent:

1. \mathcal{A} is GCR;
2. $\langle \mathcal{P} \rangle$ contains all minimal projections \mathcal{Z}; and
3. $\langle \mathcal{P} \rangle$ contains all minimal projections of \mathcal{Z}.

Proof. $(1) \Rightarrow (2)$. We apply the fact that the set of open central projections in the enveloping von Neumann algebra of a CCR algebra is strongly dense in the set of central projection [10, Theorem 2].

There is a set $\{P_i \mid 0 \leq i \leq k\}$ of projections in \mathcal{P} indexed by the ordinals such that (i) $P_0 = 0, P_k = 1$, (ii) $P_i < P_{i+1}(i < k)$, (iii) $V \{P_i \mid i < j\} = P_j$ if j is a limit ordinal with $j \leq k$; and (iv) $\mathcal{B}_i = \mathcal{B}(P_{i+1} - P_i)$ is the strong closure of a CCR ideal \mathcal{J}_i in $\mathcal{A}(1 - P_i)$ [10, proof of Theorem 3]. Let Q be a minimal projection in \mathcal{Z}. There is an ordinal $i < k$ such that $Q \leq P_{i+1} - P_i$. Let \mathcal{J} be the ideal in \mathcal{A} given by $\mathcal{J} = \{A \in \mathcal{A} \mid AP_i = A\}$. Setting $\mathcal{J}' = \{A \in \mathcal{A} \mid A(1 - P_i) \in \mathcal{A}\}$, we obtain an ideal \mathcal{J}' of \mathcal{A} containing \mathcal{J} such that \mathcal{J}'/\mathcal{J} is isomorphic to \mathcal{J}. Let ρ be the unique extension of the representation $A + \mathcal{J} \rightarrow A(1 - P_i)$ of \mathcal{J}'/\mathcal{J} onto \mathcal{A} to a σ-weakly continuous representation of the enveloping von Neumann algebra \mathcal{B} of \mathcal{J}'/\mathcal{J} onto the strong closure \mathcal{B}_i of \mathcal{J}_i on the subspace of the Hilbert space of \mathcal{B} corresponding to the projection $1 - P_i$ (cf. [12, 12.1.5]). Now, if $P \in \mathcal{P}(\mathcal{B}, \mathcal{J}'/\mathcal{J})$, we show that $\rho(P) + P_i$ is in \mathcal{J}. Indeed, there is an ideal \mathcal{K} in \mathcal{J}'/\mathcal{J} such that CP is the strong closure of \mathcal{K} in \mathcal{B}. Let \mathcal{K}' be an ideal in \mathcal{J}' with $\mathcal{K}' \supset \mathcal{J}$ such that $\mathcal{K}'/\mathcal{J} = \mathcal{K}$. Then we have that the strong closure of $\mathcal{K}'(1 - P_i) = \rho(\mathcal{K}')$ in $\mathcal{B}(1 - P_i)$ is equal to $\rho(CP) = \mathcal{B}_i\rho(P) = \mathcal{B}\rho(P)$. This means that the strong closure of \mathcal{K}' in \mathcal{B} is equal to $\mathcal{B}(\rho(P) + P_i)$. Hence $\rho(P) + P_i$ is in P. Because \mathcal{A} is CCR, the set $\mathcal{P}(\mathcal{B}, \mathcal{J}'/\mathcal{J})$ is strongly dense in the set of central projections of \mathcal{B} [10, Theorem 2]. Recalling that ρ maps the center of \mathcal{B} onto the center of \mathcal{A} [14, III, § 5, Problem 7], we obtain a net $\{R_n\}$ of projections in \mathcal{P} which majorizes P_i and is majorized by P_{i+1} and which converges strongly to $P_{i+1} - Q$. Since Q is a minimal projection, there is an n_0 such that $R_nQ = 0$ whenever $n \geq n_0$. This means that the open projection $R = V \{R_n \mid n \geq n_0\}$ is majorized by $P_{i+1} - Q$. But it is also clear that $P_{i+1} - Q \leq R$. Hence, we get that $P_{i+1} - Q = R$ and consequently
that $Q \in \langle \mathcal{F} \rangle$.

(2) \Rightarrow (3). Obvious.

(3) \Rightarrow (4). If \mathcal{A} is not a GCR algebra, then \mathcal{A} has a type III factor representation [24]. This means that there is a minimal projection $Q \in \mathcal{A}$ such that $\mathcal{A}Q$ is a type III factor. This is impossible by Lemma 1. Hence \mathcal{A} is a GCR algebra.

3. Borel structure on the quasi-spectrum. Throughout this section let \mathcal{A} be a C*-algebra, let \mathcal{B} be the enveloping von Neumann algebra of \mathcal{A}, and let \mathcal{P} be the set of open projections of the center \mathcal{Z} of \mathcal{B}. The weak (resp. strong) topology of subalgebras of \mathcal{B} will refer to the weak-operator (resp. strong-operator) topology. If ρ is a representation of \mathcal{A} on a Hilbert space $H(\rho)$, let ρ^σ be the unique extension of ρ to a σ-weakly continuous representation of \mathcal{B} on $H(\rho)$ so that the weak closure of $\rho(\mathcal{A})$ is equal to $\rho^\sigma(\mathcal{B})$ [12, 12.1.5]. If ρ is nondegenerate (i.e., the identity of $H(\rho)$ lies in the weak closure of $\rho(\mathcal{A})$), then $\rho(\mathcal{B})$ is the von Neumann algebra generated by $\rho(\mathcal{A})$ [14, I, §3, Theorem 2].

Now two nondegenerate representations ρ_1 and ρ_2 of \mathcal{A} are said to be quasi-equivalent (notation: $\rho_1 \sim \rho_2$) if ρ_1^τ and ρ_2^τ have the same kernel. The relation of quasi-equivalence partitions the set of (non-degenerate) representations of \mathcal{A} into quasi-equivalence classes. The class containing ρ is denoted by $[\rho]$. If $\rho_1 \in [\rho]$, then ker $\rho = \ker \rho_1$ and thus for every class $[\rho]$, there is a uniquely associated ideal ker $[\rho] = \ker \rho$ of \mathcal{A}. Furthermore, if ρ is a factor representation of \mathcal{A} (i.e., $\rho^\sigma(\mathcal{B})$ is a factor von Neumann algebra), then so is every ρ_1 in the class $[\rho]$ (cf. [12, §5]).

Let \mathcal{N} be the set of all quasi-equivalence classes of factor representations. The set \mathcal{N} is called the quasi-spectrum of \mathcal{A}. If $A \in \mathcal{Z}$ and $\tau \in \mathcal{N}$, then there is a unique scalar $A^\tau(\tau)$ such that $\rho^\tau(A) = A^\tau(\tau)1_{H(\rho)}$ for every $\rho \in \tau$. Here $1_{H(\rho)}$ is the identity operator on $H(\rho)$. So every $A \in \mathcal{Z}$ defines a complex-valued function A^τ on \mathcal{N} (cf. [7, §4]). Now it is clear that the map $A \mapsto A^\tau$ is a bounded *-homomorphism of \mathcal{Z} into the C*-algebra $F(\mathcal{N})$ of bounded complex-valued functions on \mathcal{N}. For each $\tau \in \mathcal{N}$ there is a unique minimal projection of the algebra \mathcal{Z} such that $Q^\tau(\tau) = 1$. Conversely, if Q is a minimal projection of \mathcal{Z}, there is a unique $\tau \in \mathcal{N}$ such that $Q^\tau(\tau) = 1$. Thus there is a one-to-one map of the set of minimal projections of \mathcal{Z} onto \mathcal{N}. Therefore, if P^τ denotes the least upper bound of all minimal projections in \mathcal{Z}, then $P^\tau = 1$. Furthermore, if \mathcal{I} is an ideal of \mathcal{A} and $P \in \mathcal{P}$ is such that $\mathcal{B}P$ is the strong closure of \mathcal{I}, then

\[(1) \quad \{ \tau \in \mathcal{N} \mid \ker \tau \not\supset \mathcal{I} \} = \{ \tau \in \mathcal{N} \mid P^\tau(\tau) = 1 \} .\]
Now let \(\tau \in \mathcal{S} \). The ideal \(\ker \tau \) is a prime ideal in the sense that \(\ker \tau \) contains the intersection of two ideals \(\mathcal{J} \) and \(\mathcal{I} \) in \(\mathcal{A} \) if and only if it contains one of them. Indeed, if \(\rho \in [\tau] \) and \(\rho(\mathcal{J}) \neq (0) \), then the strong closure of \(\rho(\mathcal{J}) \) is \(\rho(\mathcal{I}) \); otherwise, \(\rho(\mathcal{I}) \) would have a nontrivial center (cf. [11]). There is a net \(\{A_n\} \) in \(\mathcal{J} \) with \(\lim \rho(A_n) = 1 \) (strongly). Hence, for any \(A \in \mathcal{I} \), we have that

\[
\rho(A) = \rho(A) = \lim \rho(AA_n) = \lim \rho(AA_n) = 0.
\]

This means \(\rho(\mathcal{J}) = (0) \). Thus \(\ker \tau \) is a prime ideal. For any nonvoid subset \(X \) of \(\mathcal{A} \), we let \(\mathcal{J}(X) = \cap \{ \ker \tau \mid \tau \in X \} \) and we let

\[
X^- = \{ \tau \in \mathcal{A} \mid \ker \tau \supset I(X) \}.
\]

Setting \(X^- = \emptyset \), we get a unique topology on \(\mathcal{A} \), called the hull-kernel topology, such that the closure of a subset \(X \) of \(\mathcal{A} \) is \(X^- \) (cf. [12, 3.1]). The hull-kernel topology on \(\mathcal{A} \) generates a Borel structure \(S(\mathcal{A}) \) on \(\mathcal{A} \).

Thus the construction of the hull-kernel topology for the quasi-spectrum is analogous to that of the hull-kernel topology of the spectrum. We shall see further parallels in Propositions 3 and 9. However, the greater size of the quasi-spectrum allows us to prove Theorem 11.

Proposition 3. Let \(\mathcal{A} \) be a C*-algebra, let \(\mathcal{B} \) be the enveloping von Neumann algebra of \(\mathcal{A} \), let \(\mathcal{Z} \) be the center of \(\mathcal{B} \), and let \(P_m \) be the least upper bound of all minimal projections in \(\mathcal{Z} \). Let \(\mathcal{C} \) be the weak (\(\omega \))-sequential closure of the *-subalgebra of \(\mathcal{Z} P_m \) generated by \(\mathcal{P} P_m \). Then \(\mathcal{C} \) is the C*-algebra generated by \(\langle \mathcal{P} \rangle P_m \). Also there is an isomorphism \(\lambda \) of \(\mathcal{C} \) onto the C*-algebra \(B(\mathcal{A}) \) of bounded \(S(\mathcal{A}) \)-Borel functions on the quasi-spectrum \(\mathcal{A} \) such that the image of \(\langle \mathcal{P} \rangle P_m \) is the set of all characteristic functions in \(B(\mathcal{A}) \). Furthermore, the map \(\lambda \) is bi-continuous in the sense that \(\{\lambda(C_n)\} \) converges pointwise to \(\lambda(C) \) if and only if \(\{C_n\} \) is a sequence in \(\mathcal{C} \) that converges weakly to \(C \).

Remark. On \(\mathcal{Z} P_m \) the notions of strong and weak sequential convergence coincide.

Proof. The restriction \(\lambda \) of \(A \rightarrow A^\sim \) to \(\mathcal{C} \) is a *-homomorphism of \(\mathcal{C} \) into \(F(\mathcal{A}) \). If \(\{C_n\} \) is a sequence in \(\mathcal{C} \) that converges weakly to \(C \), then \(\{C_nQ\} \) converges uniformly to \(CQ \) for each minimal projection \(Q \) of \(\mathcal{Z} \) and so \(\lim \lambda(C_n) = \lambda(C) \) in the topology of pointwise convergence of \(F(\mathcal{A}) \). Hence \(\lambda \) is continuous. If \(\lambda(C) = 0 \) for some \(C \in \mathcal{C} \), then \(C^\sim(\tau) = 0 \) for all \(\tau \in \mathcal{A} \) and so \(CQ = 0 \) for all minimal projections.
This means \(C = CP_m = 0 \) and so \(\lambda \) is an isomorphism. Clearly, the inverse is continuous. We also have that

\[
\| \lambda(C) \| = \text{lub} \{ \| \lambda(C)(\tau) \| : \tau \in \mathcal{F} \}
\]

\[
= \text{lub} \{ \| CQ \| : Q \text{ minimal} \} = \| C \| ,
\]

for every \(C \in \mathcal{C} \). Furthermore, the image of \(\mathcal{SP}_m \) under \(\lambda \) is the set of all characteristic functions of open subsets of \(\mathcal{F} \) by relation (1). Hence \(\lambda \) maps the \(*\)-algebra generated by \(\mathcal{SP}_m \) into \(B(\mathcal{F}) \). By the continuity of \(\lambda \) and the norm preserving property (2), the map \(\lambda \) takes \(\mathcal{S} \) into \(B(\mathcal{F}) \).

Now we show that \(\lambda(\mathcal{S}) \) is sequentially closed in \(B(\mathcal{F}) \). Let \(\{C_n\} \) be a sequence in \(\mathcal{S} \) such that \(\{\lambda(C_n)\} \) converges pointwise to a function \(f \in B(\mathcal{F}) \). Since \(\lambda \) is a \(*\)-isomorphism, we may assume that \(f \) and each \(C_n \) is self-adjoint. Now if \(C \) and \(D \) are self-adjoint in \(\mathcal{S} \) there is a projection \(P \) in \(\mathcal{S} \) with \(PC + (1 - P)D = C \lor D \) in the lattice of self-adjoint elements in \(\mathcal{SP}_m \). In fact, the spectral projections \(\{E(\alpha)\} \) and \(\{F(\alpha)\} \) of \(C \) and \(D \) respectively are in \(\mathcal{S} \). For example, let \(\alpha \) be given and let \(g_n \) be the function of a real variable given by \(g_n(t) = 0 \) if \(t \geq \alpha \), \(g_n(t) = 1 \) if \(t \leq \alpha - n^{-1} \), and \(g_n \) linear on \([\alpha - n^{-1}, \alpha]\]. Then \(\{g_n(C)\} \) is a monotonally increasing sequence in \(\mathcal{S} \) whose least upper bound is \(E(\alpha) \). Let \(\{r_n\} \) be an enumeration of the rationals. Then \(P \) is the least upper bound of the sequence of projections \(\{F(r_n)(1 - E(r_n)) : r_m < r_n; n, m = 1, 2, \ldots\} \). Indeed, if \(Q \) is a minimal projection with \(Q \leq P \), then \(Q \leq F(r_n)(1 - E(r_n)) \) for some \(r_m < r_n \). This means that \(Q \leq F(r_m) \) and \(Q \leq 1 - E(r_m) \), and thus that \(DQ \leq r_n Q < r_m Q \leq CQ \). Conversely, let \(Q \) be a minimal projection with \(DQ < CQ \). Then there are \(r_m \) and \(r_n \) with \(DQ < r_m Q < r_n Q < CQ \). This means that \(Q \leq F(r_m)(1 - E(r_n)) \). Since \(P_m \) is the least upper bound of minimal projections, the projection \(P \) satisfies the requirements. We notice that \(\lambda(C \lor D) = \lambda(CP) + \lambda((1 - P)D) = \lambda(C) \lor \lambda(D) \) since \(\lambda \) preserves order and since \(\lambda(P) \) and \(\lambda(1 - P) \) are characteristic functions of disjoint sets whose union is \(\mathcal{F} \). The analogous statements hold for \(C \land D \). These facts allow us to assume that \(\{C_n\} \) is bounded since we may replace each \(C_n \) by \(C_n \land \| f \| P_m \). Now let \(D_n = \bigvee \{C_k \mid k \geq n\} \). We have that \(D_n \) lies in \(\mathcal{S} \) since \(D_n \) is the strong limit of the sequence \(\{\bigvee \{C_k \mid p \geq k \geq n\}\} \) in \(\mathcal{S} \). Since \(\lambda \) is continuous, we get that

\[
\lambda(D_n) = \lim \lambda(\bigvee \{C_k \mid p \geq k \geq n\}) = \bigvee \{\lambda(C_k) \mid k \geq n\} .
\]

By the same reasoning we get that

\[
\lambda(\bigwedge D_n) = \bigwedge \bigvee \{\lambda(C_k) \mid k \geq n\} .
\]

Now \(C = \bigwedge D_n \in \mathcal{S} \) and \(f = \lim \lambda(C_k) = \limsup \lambda(C_k) \). Hence we have
that \(f = \lambda(C) \). This proves that \(\lambda \) maps \(\mathcal{C} \) onto a sequentially closed subalgebra of \(B(\mathcal{A}) \) containing the characteristic functions of all open sets. Hence \(\lambda(\mathcal{C}) \) maps onto \(B(\mathcal{A}) \).

We now show \(\lambda(\mathcal{P}P_0) \) is the set of all characteristic functions of Borel sets. However, a proof similar to the one we have already given shows that \(\lambda(\mathcal{P}P_0) \) is a \(\sigma \)-complete Boolean algebra of characteristic functions. This Boolean algebra contains all characteristic functions of open sets and hence it coincides with the set of characteristic functions in \(B(\mathcal{A}) \).

Finally, we show that \(\mathcal{C} \) is the \(C^* \)-algebra \(\mathcal{C}_0 \) generated by \(\langle P \rangle P_0 \). Let \(f \in B(\mathcal{A}) \) be real-valued and let \(n \) be a natural number. Then there is a partition \(\{X_k \mid k = 0, \pm 1, \ldots, \pm n\} \) of \(\mathcal{A} \) into disjoint Borel sets such that each \(X_k \) is contained in the set

\[
\{\tau \in \mathcal{A} \mid kn^{-1} \leq f(\tau) \leq (k + 1)n^{-1} \}.
\]

If we set \(g_k \in B(\mathcal{A}) \) equal to the characteristic function of \(X_k \) for every \(k \), we get \(\| \sum \alpha_k g_k - f \| \leq n^{-1} \) for suitable scalars \(\alpha_k \). Because \(\sum \alpha_k g_k \in \lambda(\mathcal{C}_0) \) and because \(\lambda \) is an isometry, we get that \(f \in \lambda(\mathcal{C}_0) \).

Due to the fact \(\lambda \) is an *-isomorphism, we get that \(\mathcal{C}_0 = \mathcal{C} \).

For the spectrum of a \(C^* \)-algebra we have the following result.

Proposition 4. Let \(\mathcal{A} \) be a \(C^* \)-algebra, let \(\mathcal{B} \) be the enveloping von Neumann algebra of \(\mathcal{A} \), and let \(\mathcal{P} \) be the set of open projections of the center \(\mathcal{Z} \) of \(\mathcal{B} \). Let \(\mathcal{A} \) be the set of equivalence classes of irreducible representations of \(\mathcal{A} \) with the hull-kernel topology. Then there is an isomorphism \(\phi \) of the \(C^* \)-algebra \(\mathcal{R} \) generated by \(\langle \mathcal{P} \rangle \) onto the algebra \(B(\mathcal{A}) \) of all bounded complex-valued Borel functions on \(\mathcal{A} \) such that the image of \(\langle \mathcal{P} \rangle \) is the set of all characteristic functions in \(B(\mathcal{A}) \). Furthermore, \(\phi \) is continuous in the sense that \(\{\phi(A_n)\} \) converges to \(\phi(A) \) whenever \(\{A_n\} \) is a sequence in \(\mathcal{R} \) that converges strongly to \(A \) in \(\mathcal{B} \).

Proof. Let \(P_0 \) be the least upper bound of all minimal projections \(Q \) in \(\mathcal{Z} \) such that \(\mathcal{B}Q \) is type I. There is an isomorphism \(\check{\phi} \) of the smallest weakly sequentially closed *-subalgebra \(\mathcal{D} \) of \(\mathcal{Z}P_0 \) containing \(\langle \mathcal{P} \rangle P_0 \) onto \(B(\mathcal{A}) \) such that \(\langle \mathcal{P} \rangle P_0 \) maps onto the set of all characteristic functions of \(B(\mathcal{A}) \). Also \(\mathcal{D} \) is the \(C^* \)-algebra generated by \(\langle \mathcal{P} \rangle P_0 \). This follows in the same way as Proposition 3.

We also have that the map \(A \rightarrow AP_0 \) is a homomorphism of \(\mathcal{R} \) onto \(\mathcal{D} \). Setting \(\phi(A) = \check{\phi}(AP_0) \), we obtain a homomorphism of \(\mathcal{R} \) onto \(B(\mathcal{A}) \) that is continuous in the specified sense.
We show that ϕ is an isomorphism. There is a projection-valued
operator γ defined on the Borel sets $S(\hat{\mathcal{A}})$ of $\hat{\mathcal{A}}$ such that $\gamma(\{\tau \in \hat{\mathcal{A}} | P^*(\tau) = 1\}) = P$ for every open projection P ([19, Theorem 1.9], cf. [12, 5.7.6]). Identifying the characteristic functions of $B(\mathcal{A})$ with their supports, we get that $\gamma \cdot \psi(PP_0) = P$ for every $P \in \mathcal{P}$ and so $\gamma \cdot \phi(P) = P$ for every $P \in \mathcal{P}$. This means that $\gamma \cdot \phi(P) = P$ for every $P \in \mathcal{P}$. Now suppose $\phi(A) = 0$ for some $A \in \mathcal{A}$. Given $\varepsilon > 0$, there exist orthogonal projections P_1, \ldots, P_n in \mathcal{P} and positive scalars $\alpha_i, \ldots, \alpha_n$ such that $\| \sum \alpha_i P_i - A^* A \| < \varepsilon$. This means that $\| \sum \alpha_i \phi(P_i) \| < \varepsilon$. Since the $\phi(P_i)$ are disjoint characteristic functions, we have that $\phi(P_i) = 0$ for every i with $\alpha_i \geq \varepsilon$. This means $P_i = \gamma \cdot \phi(P_i) = 0$ for all such i. Hence we have that $\| \sum \alpha_i P_i \| < \varepsilon$ and so that $\| A \| = \| A^* A \| < 2\varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have that $A = 0$. Hence ϕ is an isomorphism.

COROLLARY 5. Let \mathcal{A} be a C^*-algebra, let $\hat{\mathcal{A}}$ be the spectrum of \mathcal{A}, and let \mathcal{A} be the quasi-spectrum of \mathcal{A}. Suppose that both $\hat{\mathcal{A}}$ and \mathcal{A} have the hull-kernel topology. Then there is a pointwise continuous isomorphism of the algebra $B(\mathcal{A})$ of bounded Borel functions on \mathcal{A} onto the algebra $B(\hat{\mathcal{A}})$ of bounded Borel functions on $\hat{\mathcal{A}}$.

Proof. Let \mathcal{P} be the set of open projections in the center \mathcal{Z} of the enveloping von Neumann algebra \mathcal{B} of \mathcal{A}. Let P_0 be the least upper bound of all minimal projections Q in \mathcal{Z} such that $\mathcal{B}Q$ is type I and let P_m be the least upper bound of all minimal projections in \mathcal{B}. Then the C^*-algebra \mathcal{D} generated by $\langle \mathcal{P} \rangle P_0$ is isomorphic to $B(\hat{\mathcal{A}})$ under a bi-continuous map for the strong and the pointwise topology (Proposition 4), and the C^*-algebra \mathcal{D} generated by $\langle \mathcal{P} \rangle P_m$ is isomorphic to $B(\mathcal{A})$ under a bi-continuous map for the strong and pointwise topology (Proposition 3). But the C^*-algebra \mathcal{B} generated by $\langle \mathcal{P} \rangle$ is isomorphic to D under the map $A \to AP_0$. Hence the map $A \to AP_0$ is an isomorphism of \mathcal{D} onto \mathcal{B}. This isomorphism is certainly strongly continuous. Hence, there is a pointwise continuous isomorphism of $B(\mathcal{A})$ onto $B(\hat{\mathcal{A}})$.

REMARK. The set of bounded continuous complex-valued functions on $\hat{\mathcal{A}}$ has been described recently ([5], [13]). Due to the fact that $\hat{\mathcal{A}}$ need not be separated, the continuous functions do not approximate the Borel functions.

We describe a class of elements that lie in C^*-algebra \mathcal{B} generated by $\langle \mathcal{P} \rangle$. Let Z be the spectrum of \mathcal{Z}. For every $A \in \mathcal{B}$ and ζ in Z, let $A(\zeta)$ denote the image of A under the canonical map of \mathcal{B} onto the algebra \mathcal{B} reduced modulo the ideal generated by ζ. There is
an element $\psi(A) \in \mathcal{X}$ such that $\psi(A)^\vee(\zeta) = \|A(\zeta)\|$ for all $\zeta \in Z$. Here $\psi(A)^\vee(\zeta)$ is the Gelfand transform of $\psi(A)$ evaluated at ζ [18, Lemma 10].

Proposition 6. Let \mathcal{A} be a C*-algebra, let \mathcal{B} be its enveloping von Neumann algebra, let \mathcal{P} be the set of open projections of the center \mathcal{Z} of \mathcal{B}, and let \mathcal{E} be the uniformly closed *-subalgebra of \mathcal{Z} generated by \mathcal{P}. Then, for every $A \in \mathcal{A}$, the element $\psi(A)$ lies in \mathcal{E}.

Proof. Since \mathcal{E} is a C*-algebra and since $\psi(A) = \psi(A^*A)^{1/2}$, it is sufficient to show $\psi(A) \in \mathcal{E}$ for every A in \mathcal{A}. We have that there is a projection P in \mathcal{Z} such that $\{\zeta \in Z \mid P^\vee(\zeta) = 1\} = \text{clos} \{\zeta \in Z \mid \psi(A)^\vee(\zeta) > 0\}$

since Z is extremally disconnected. But it is clear that P is an open projection since $\mathcal{B}P$ is the strong closure of the principal ideal generated by A. Now, for any $\alpha > 0$, let f_α be the continuous function of a real-variable given by $f_\alpha(t) = 0$ if $t \leq \alpha$ and $f_\alpha(t) = t - \alpha$ for $t > \alpha$. Then there is an open projection P with $\{\zeta \in Z \mid P^\vee(\zeta) = 1\} = \text{clos} \{\zeta \in Z \mid \psi(f_\alpha(A))^\vee(\zeta) > 0\}$

and so $\{\zeta \in Z \mid P^\vee(\zeta) = 1\} = \text{clos} \{\zeta \in Z \mid \psi(A)^\vee(\zeta) > \alpha\}$.

Now let n be a natural number. Let $P_{k}(k = 0, 1, \ldots, n - 1)$ be the open projections given by $\{\zeta \in Z \mid P_{k}^\vee(\zeta) = 1\} = \text{clos} \{\zeta \in Z \mid \psi(A)^\vee(\zeta) > n^{-k} \|A\|\}.$

Let $Q_{k} = P_{k-1} - P_{k}$ for $1 \leq k \leq n - 1$ and $Q_{n} = P_{n-1}$. Then we have that $\|\psi(A) - \sum n^{-k} \|A\|Q_{k}\| = \text{lub} (\|\psi(A)^\vee(\zeta) - \sum n^{-k} \|A\|Q_{k}\| \mid Q_{k} \in Z \mid \zeta \in Z) \leq n^{-1} \|A\|.$

Hence, the element $\psi(A)$ is in \mathcal{E}.

For a separable C*-algebra, we have a better result. We preserve the same notation as the preceding proposition.

Corollary 7. Let \mathcal{A} be a separable C*-algebra, then the C*-algebra \mathcal{R} in \mathcal{Z} generated by $\langle \mathcal{P} \rangle$ is equal to the weak sequential closure of the C*-algebra generated by $\{\psi(A) \mid A \in \mathcal{A}\}$.

Proof. Let $P \in \mathcal{P}$ and let \mathcal{I} be an ideal in \mathcal{A} whose strong closure is \mathcal{B}P. The ideal \mathcal{I} is a principal ideal generated by an
element A of \mathcal{A} [23, 6.5, Corollary]. This means that P is smallest projection in \mathcal{K} with $P\psi(A) = \psi(A)$. Hence P is in the weak sequential closure \mathcal{B}_0 of the C^*-algebra generated by $\psi(\mathcal{A})$. This proves that \mathcal{P} and thus \mathcal{R} is contained in \mathcal{B}_0.

Conversely, each element $\psi(A)$ is contained in \mathcal{F} (Proposition 6). Let P_0 be the least upper bound of all projections Q in \mathcal{A} such that $\mathcal{B}Q$ is a type I factor. The map $A \mapsto AP_0$ of the weak sequential closure \mathcal{S}^\sim of \mathcal{A} in \mathcal{B} is a weak sequentially continuous isomorphism onto the weak sequential closure of $\mathcal{A}P_0$ [6, Theorem 3.10]. Since $\mathcal{R}_0 \subset \mathcal{A}^\sim$ and $\mathcal{B} \subset \mathcal{A}^\sim$ and since $\mathcal{R}P_0 = \mathcal{B}$ is weakly sequentially closed (cf. Proposition 4), we may find, for each $A \in \mathcal{R}_0$, a $B \in \mathcal{B}$ such that $AP_0 = BP_0$. This means that $A = B$. Hence $\mathcal{R}_0 \subset \mathcal{B}$. Thus we get that $\mathcal{R} = \mathcal{R}_0$.

Now let \mathcal{A} be a separable C^*-algebra and let \mathcal{A}^\sim be the weak sequential closure of \mathcal{A} in its enveloping algebra \mathcal{B}. The center $\mathcal{Z}(\mathcal{A}^\sim)$ is contained in the center \mathcal{Z} of \mathcal{B}. As is pointed out by E. B. Davies (cf. [6, p. 154] for the analogous statement for \mathcal{A}) each open projection in \mathcal{Z} is in $\mathcal{Z}(\mathcal{A}^\sim)$. This means that $\mathcal{B}(\mathcal{A}^\sim)$ is contained in the algebra $\{A^* | A \in \mathcal{Z}(\mathcal{A}^\sim)\} \subset F(\mathcal{A})$. Thus the Davies Borel structures on A (i.e., the weakest Borel structure such that all functions $\{A^* | A \in \mathcal{Z}(\mathcal{A}^\sim)\}$ are Borel on \mathcal{A}) is finer than the structure $S(\mathcal{N})$ induced by the hull-kernel topology. In fact the Davies Borel structure separates points whereas the Borel structure $S(\mathcal{N})$ does not in certain cases (for example, a separable uniformly hyperfinite C^*-algebra). The C^*-algebra \mathcal{B} generated by the Boolean σ-algebra $\langle \mathcal{P} \rangle$ is contained in $\mathcal{Z}(\mathcal{A}^\sim)$. In order that $\mathcal{Z}(\mathcal{A}^\sim) = \mathcal{B}$, a necessary and sufficient condition is that the Davies and hull-kernel Borel structure on \mathcal{A} coincide. Now, if \mathcal{A} is a GCR algebra, then all the Borel structures on \mathcal{A} coincide [12, 3.8.3] and so $\mathcal{Z}(\mathcal{A}^\sim) = \mathcal{B}$. We note that a special case of this result is mentioned by Glimm [19, p. 899]. Conversely, if the Davies and the hull-kernel Borel structure coincide on \mathcal{A}, then \mathcal{A} is GCR. Indeed, it is sufficient to show that two irreducible representations ρ_1 and ρ_2 with the same kernels are equivalent [20]. It is this result, which is unavailable in the nonseparable case, that O. Dignerness [9] used to characterize a separable GCR algebra. We have that $P^\sim([\rho_1]) = P^\sim([\rho_2])$ for every open projection P in \mathcal{Z}. Indeed, if \mathcal{J} is an ideal in \mathcal{A} whose strong closure is $\mathcal{B}P$, then $P^\sim([\rho_1]) = 0$ if and only if \mathcal{J} is contained in the kernel of ρ_2. Thus we have $P^\sim([\rho_1]) = P^\sim([\rho_2])$ for all P in $\langle \mathcal{P} \rangle$ and thus the Davies Borel structure fails to separate $[\rho_1]$ and $[\rho_2]$. This implies that $[\rho_1] = [\rho_2]$ [8, Theorem 2.9]. Hence the algebra \mathcal{A} is GCR. It is to be noted that Effros [15] proved that A is GCR if and only if the Mackey
Davies Borel structure coincides on \mathcal{A}.

We now examine the hull-kernel topology of the quasi-spectrum more closely. We show that this topology is induced by the canonical mapping of the factor states into the quasi-spectrum.

Let \mathcal{A} be a C*-algebra and let f be a state of \mathcal{A}. Let $L(f)$ be the left ideal of \mathcal{A} given by $L(f) = \{ A \in \mathcal{A} \mid f(A^*A) = 0 \}$, let $H(f)$ be the completion of the residue class $\mathcal{A} - L(f)$ with the inner product $(A - L(f), B - L(f)) = f(B^*A)$, and let ρ_f be the (nondegenerate) representations of \mathcal{A} on the Hilbert space $H(f)$ induced by left multiplication of \mathcal{A} on $\mathcal{A} - L(f)$. The representation ρ_f is called the canonical representation of \mathcal{A} induced by f. There is a cyclic unit vector x_f under $\rho_f(\mathcal{A})$ for $H(f)$ (equal to $1 - L(f)$ if \mathcal{A} has identity 1 or equal to $\lim A_n - L(f)$ if $\{A_n\}$ is an increasing approximate identity in the positive part of the unit sphere of \mathcal{A} if \mathcal{A} has no identity) such that $\omega_{x_f} \cdot \rho_f(A) = (\rho_f(A)x_f, x_f) = f(A)$ for all $A \in \mathcal{A}$. The state f is called a factor (or primary) state if ρ_f is a factor representation of \mathcal{A}. Let $\mathcal{F}(\mathcal{A})$ be the space of all factor states of \mathcal{A} with its relativized w^*-topology. We write $f \sim g$ for f, g in $\mathcal{F}(\mathcal{A})$ to denote $\rho_f \sim \rho_g$.

Now suppose that \mathcal{A} is a C*-algebra without an identity. Then an identity 1 may be adjoined to \mathcal{A} to obtain a C*-algebra \mathcal{A}_e with identity so that \mathcal{A}_e is a maximal ideal of \mathcal{A} (cf. [12, 1.2.3]). Each state f on \mathcal{A} has a unique extension f_e to a state of \mathcal{A}_e obtained by setting $f_e(1) = 1$. The Hilbert spaces $H(f)$ and $H(f_e)$ can be identified with each other so that ρ_{f_e} restricted to \mathcal{A} is precisely ρ_f. Furthermore, the identity of \mathcal{A}_e gets carried into the identity operator on $H(f)$ (cf. [12, 2.1.4]). Therefore, the state f_e is a factor state if and only if f is. Furthermore, if f and g are factor states of \mathcal{A}_e, then $f \sim g$ if and only if $f_e \sim g_e$. Now let f_0 be the unique factor state of \mathcal{A}_e that vanishes on \mathcal{A}. If f be a factor state of \mathcal{A}_e not equal to f_0, then the ideal $\rho_f(\mathcal{A}_e)$ of $\rho_f(\mathcal{A}_e)$ is nonzero and therefore is strongly dense in $\rho_f(\mathcal{A}_e)$ (cf. [11]). For any $\varepsilon > 0$ there is a net $\{B_n\}$ in \mathcal{A} with $\lim \|B_n\| \leq 1 + \varepsilon$ such that $\{\rho_f(B_n)\}$ converges strongly to the identity [22]. Hence, the restriction g of f to \mathcal{A}_e has norm not less than $(1 + \varepsilon)^{-1}$ since

$$\| g \| \geq (1 + \varepsilon)^{-1} \lim \sup |g(B_n)|$$

$$= (1 + \varepsilon)^{-1} \lim \sup |(\rho_f(B_n)x_f, x_f)| \geq (1 + \varepsilon)^{-1}.$$
Since $\mathcal{F}'(\mathcal{A})$ is open in $\mathcal{F}(\mathcal{A})$, we may conclude that $e(\mathcal{V})$ is open in $\mathcal{F}(\mathcal{A})$. So the map e is also an open map.

We now prove that quasi-equivalence is an open relation in the space $\mathcal{F}(\mathcal{A})$ by showing the saturation \mathcal{U}^\sim of an open subset \mathcal{U} of $\mathcal{F}(\mathcal{A})$ given by $\mathcal{U}^\sim = \{ f \in \mathcal{F}(A) \mid f \sim g \in \mathcal{U} \}$ is open.

Lemma 8. The saturation under the relation of quasi-equivalence of an open subset of the space of factor states of a C^*-algebra is open.

Proof. Let \mathcal{V} be an open subset of the space $\mathcal{F}(\mathcal{A})$ of factor states of the C^*-algebra \mathcal{A}. We assume that \mathcal{A} has an identity, and later we remove this assumption. Let g be a factor state in the saturation \mathcal{V}^\sim of \mathcal{V}. We construct a neighborhood \mathcal{W} of g such that $\mathcal{W} \subset \mathcal{V}^\sim$. There is an element $h \in \mathcal{V}$ with $g \sim h$. There are elements C_1, C_2, \ldots, C_n in \mathcal{A} and a δ with $0 < \delta < 1$ such that

$$\{ f \in \mathcal{F}(\mathcal{A}) \mid |f(C_i) - h(C_i)| < \delta, i = 1, \ldots, n \}$$

is contained in \mathcal{V}. Without loss of generality we may assume that $C_1 = 1$. Due to the fact that $g \sim h$, there is an isomorphism ϕ of the von Neumann algebra $\rho_g(\mathcal{A})''$ generated by $\rho_g(\mathcal{A})$ on $H(g)$ onto the von Neumann algebra $\rho_h(\mathcal{A})''$ generated by $\rho_h(\mathcal{A})$ on $H(h)$ such that $\phi(\rho_g(\mathcal{A})) = \rho_h(\mathcal{A})$ for every $A \in \mathcal{A}$ (cf. [12, § 5]). Since an isomorphism of von Neumann algebras is σ-weakly continuous, [14, I, § 4, Theorem 2, Corollary 1], the functional $\omega_{x_k} \cdot \phi$ is a σ-weakly continuous state of $\rho_g(\mathcal{A})''$ such that $\omega_{x_k} \cdot \rho_g = h$. This means that there is a sequence $\{x_k\}$ in $H(g)$ such that $\sum ||x_k||^2 < +\infty$ and such that $\sum \omega_{x_k} \cdot \omega_{x_k} \cdot \phi$ on $\rho_g(\mathcal{A})''$ [14, I, § 3, Theorem 2]. Setting $\eta = \delta(6\max \{|C_i||1 \leq i \leq n\})^{-1}$, we may find a natural number m such that

$$||\sum \omega_{x_i} | m + 1 \leq i < +\infty || < \eta .$$

Since each x_i lies in the closure of $\rho_g(\mathcal{A})x_k$, there are A_1, A_2, \ldots, A_m in \mathcal{A} such that the vectors $\rho_g(A_i)x_k = y_i$ in $H(g)$ satisfy

$$||\omega_{x_i} - \omega_{y_i}|| < m^{-1}\eta$$

for $i = 1, \ldots, m$.

Now let $\varepsilon = m^{-1}\eta$. We show every f in the neighborhood \mathcal{W} of g given by

$$\mathcal{W} = \{ f \in \mathcal{F}(\mathcal{A}) \mid |f(A_i^*C_jA_i) - g(A_i^*C_jA_i)| < \varepsilon \}
\text{ for all } i = 1, \ldots, m; j = 1, \ldots, n$$

is contained in \mathcal{V}^\sim. Setting f' equal to
\[f'(A) = \sum \{ f(A_i^* A_i) \mid 1 \leq i \leq m \]
for all \(A \in \mathcal{A} \), we obtain a positive functional on \(\mathcal{A} \) whose norm is given by \(\| f' \| = f'(1) = \sum f(A_i^* A_i) \). Because \(C_i = 1 \), we get
\[|f'(1) - \sum g(A_i^* A_i)| \leq \sum |f(A_i^* A_i) - g(A_i^* A_i)| < \eta. \]
But we have that
\[|\sum g(A_i^* A_i) - 1| = |\sum g(A_i^* A_i) - \sum \omega_{x_i}(1)|
= |\sum \{\omega_{x_i}(1) \mid 1 \leq i \leq m\} - \sum \{\omega_{x_i}(1) \mid 1 \leq i < +\infty\}|
\leq \sum \{|\omega_{x_i} - \omega_{x_i}| \mid 1 \leq i \leq m\}
+ |\sum \{\omega_{x_i} \mid m + 1 \leq i < +\infty\}| < 2\eta \]
by relations (3) and (4). This means that
\[f'(1) - 1 < 3\eta < 1. \]
Hence, we have \(f'(1) \neq 0 \). Setting \(f'' = f'/\| f' \| \), we obtain a state \(f'' \) of \(\mathcal{A} \) such that \(f'' \sim f \) ([4] and [12, 5.3.6]).

We shall now show that \(f'' \in \mathcal{V} \). First we have that
\[|f''(C_i)| \leq f'(1)^{i/2} f'(C_i C_i)^{i/2} \leq f'(1) \| C_i \| \]
for all \(i = 1, \ldots, m \). By relation (5) this yields
\[|f''(C_i)| = |1 - f'(1)| f'(1)^{-1} f'(C_i)|
\leq |1 - f'(1)| \| C_i \| < \delta/2, \]
for every \(i = 1, \ldots, n \). Furthermore, for all \(i \), we get
\[|f''(C_i) - h(C_i)| \leq \sum \{|f(A_i^* C_i A_j) - g(A_i^* C_i A_j)| \mid 1 \leq j \leq m\}
+ \sum \{|\omega_{x_j}(\rho_{x}(C_i)) - \omega_{x_j}(\rho_{x}(C_i))| \mid 1 \leq j \leq m\}
+ |\sum \{\omega_{x_j}(\rho_{x}(C_i)) \mid m + 1 \leq j < +\infty\}|
< me + \eta \| C_i \| + \eta \| C_i \| \leq \delta/2 \]
by relations (3) and (4). Combining (6) and (7), we obtain
\[|f''(C_i) - h(C_i)| \leq |f''(C_i) - f'(C_i)|
+ |f'(C_i) - h(C_i)| < \delta/2 + \delta/2 = \delta, \]
for all \(i = 1, \ldots, n \). This proves that \(f'' \in \mathcal{V} \). Hence, the lemma is true for \(C^* \)-algebras with identity.

Suppose \(\mathcal{A} \) is a \(C^* \)-algebra without identity. Let \(\mathcal{A} \) be the \(C^* \)-algebra obtained from \(\mathcal{A} \) by adjoining the identity. We use the notation developed in the paragraph preceding this lemma. If \(\mathcal{V} \) is an open subset of \(\mathcal{F}(\mathcal{A}) \), then \(e(\mathcal{V}) \) is open in \(\mathcal{F}(\mathcal{A}) \). But the
saturation \(e(\mathcal{H})^* \) of \(e(\mathcal{H}) \) in \(\mathcal{F}(\mathcal{A}) \) is \(e(\mathcal{H})^* \). By the first part of the proof \(e(\mathcal{H})^* \) is open. Thus the set \(\mathcal{H}^* = e^{-1}(e(\mathcal{H})^*) = e^{-1}(e(\mathcal{H})^*) \) is open in \(\mathcal{F}(\mathcal{A}) \).

Proposition 9. Let \(\mathcal{A} \) be a C*-algebra. The map \(f \rightarrow [\rho_f] \) is a continuous open mapping of the space \(\mathcal{F}(\mathcal{A}) \) of factor states of \(\mathcal{A} \) onto the quasi-spectrum \(\mathcal{A} \) of \(\mathcal{A} \) with its hull-kernel topology.

Proof. Let \(\phi \) denote the map \(f \rightarrow [\rho_f] \). Let \(\rho \) be any nondegenerate factor representation of \(\mathcal{A} \) on a Hilbert space \(H \). There is a unit vector \(x \in H \) such that \(f(A) = (\rho(A)x, x) \) is a state of \(\mathcal{A} \). There is an isometric isomorphism \(U \) of \(H(f) \) onto the invariant subspace \(K = \text{closure } \rho(A)x \) of \(H \) defined by \(U(A - L(f)) = \rho(A)x \) that carries \(\rho \) onto the subrepresentation \(\rho \upharpoonright K \) of \(\rho \). Since \([\rho \upharpoonright K] = [\rho] \) [12, 5.3.5], we get that \([\rho_f] = [\rho] \). Hence, the image of \(\phi \) is equal to \(\mathcal{A} \).

Now let \(\{f_n\} \) be a net in \(\mathcal{F}(\mathcal{A}) \) that converges to \(f \) in the \(\omega^* \)-topology. Let \(X \) be an open subset of \(\mathcal{A} \) containing \([\rho_f] \). There is an ideal \(I \) in \(\mathcal{A} \) with \(X = \{\tau \in \mathcal{A} \mid \ker \tau \supseteq I \} \). This means there is an \(A \in \mathcal{A} \) such that \(f(A) = 0 \). There is an \(n_0 \) such that \(f_n(A) \neq 0 \) whenever \(n \geq n_0 \). Hence, the classes \([\rho_{f_n}] \) are in \(X \) whenever \(n \geq n_0 \). This means \(\{[\rho_{f_n}]\} \) converges to \([\rho_f] \). Thus \(\phi \) is continuous.

For the proof that \(\phi \) is an open map, we consider two cases: (1) \(\mathcal{A} \) has an identity, and (2) \(\mathcal{A} \) has no identity. First assume \(\mathcal{A} \) has an identity. Let \(Y \) be an open subset of \(\mathcal{F}(\mathcal{A}) \). We prove \(\phi(Y) \) open in \(\mathcal{A} \). By Lemma 8, we may assume that \(Y \) is saturated. The complement \(Y' \) of \(Y \) in \(\mathcal{F}(\mathcal{A}) \) is also saturated. It is sufficient to show that \(\phi(Y') \) is closed in \(\mathcal{A} \) since \(\phi(Y) = \mathcal{A} - \phi(Y') \). In fact, we shall show that \(\phi(Y') = \{\tau \in \mathcal{A} \mid \ker \tau \supseteq I \} \). This means \(\phi(Y') \) contains \([\rho_f] \) whenever \(f \) is a pure state with \(\ker \rho_f \supseteq I \). Now let \(f \) be an arbitrary factor state of \(\mathcal{A} \) with \(\ker \rho_f \supseteq I \). Then we have that \(\mathcal{A} = \ker \rho_f \) is a prime ideal containing \(I \) (cf. introductory paragraphs of § 3). Let \(g \) be the state of the C*-algebra \(\mathcal{A}/I = \mathcal{C} \) given by \(g(A + I) = f(A) \). Let \(\mathcal{H} \) be the maximal GCR ideal of \(\mathcal{C} \). Then the state space and the pure state space of \(\mathcal{C} \) coincide [25, Theorem 2]. There is a net \(\{g_i\} \) of pure states of \(\mathcal{C} \) that converges
in the w^*-topology to g. Setting $f_4(A) = g(A + \mathcal{J})$ for all $A \in \mathcal{A}$, we get a net $\{f_4\}$ of pure states in \mathcal{A} that converges to f in the w^*-topology. Since each $f_4 \in \mathcal{W}$ by the first part of the proof, we get $f \in \mathcal{W}$ and thus $[\rho_f] \in \phi(\mathcal{W})$. Now let $\mathcal{W}_f \neq (0)$. We then have that the representation ρ_f of \mathcal{A} is quasi-equivalent to an irreducible representation. Indeed, we have that $\rho_f(\mathcal{W})x_0$ is dense in $H(\mathcal{A})$ since ρ_f is a factor representation of \mathcal{A}. But the von Neumann algebra $\rho_f(\mathcal{W})''$ generated by $\rho_f(\mathcal{W})$ on $H(\mathcal{A})$ is a type I algebra (cf. [12, 5.5.2]). This means that $\rho_f(\mathcal{W})''$ has a nonzero abelian projection E. However, the projection E is also an abelian projection for the von Neumann algebra generated by $\rho_f(\mathcal{W})$. Hence ρ_f is quasi-equivalent to an irreducible representation (cf. [12, 5.4.11]). Since the representation ρ_f defined by $\rho_f(A) = \rho_f(A + \mathcal{J})$ is unitarily equivalent to ρ_f, we see that ρ_f is quasi-equivalent to an irreducible representation. Now let \mathcal{W} be the C^*-algebra obtained from C^* by the adjunction of the identity. Let Φ' be the map of \mathcal{W} onto \mathcal{W} given by $\Phi'(\rho) = [\rho_f]$. Let \mathcal{W} be open in $\mathcal{W}(\mathcal{A})$. By using Lemma 8, we may assume that \mathcal{W} is saturated. We have that $e(\mathcal{W})$ is an open saturated set in $\mathcal{W}(\mathcal{A})$, whose image $\phi(e(\mathcal{W}))$ is an open subset in \mathcal{A}. There is an ideal \mathcal{J} in \mathcal{A} with $\phi(e(\mathcal{W})) = \{\tau \in \mathcal{A} | \ker \tau \not\subseteq \mathcal{J}\}$. We show that $\phi(\mathcal{W}) = \{\tau \in \mathcal{A} | \ker \tau \not\subseteq \mathcal{J} \cap \mathcal{A}\}$. Indeed, let $f \in \mathcal{W}$; then $\ker \rho_f \not\subseteq \mathcal{J}$ and so there is an $A \in \mathcal{J}$ with $g(A) \neq 0$. If ρ_f is an increasing approximate identity in the unit sphere of \mathcal{A}, we have that $\lim f(A_n) = \lim g(A_n) = g(A)$ because $A_n A \in \mathcal{J} \cap \mathcal{A}$ for all n. This means that $\ker [\rho_f] \not\subseteq \mathcal{J} \cap \mathcal{A}$. Conversely, if $\ker [\rho_f] \not\subseteq \mathcal{J} \cap \mathcal{A}$, then $f(\mathcal{J} \cap \mathcal{A}) \neq 0$ and $\ker [\rho_f] \not\subseteq \mathcal{J}$. There is an $h \in \mathcal{A}$ such that $e(h) \sim g$. This implies that $h \sim f$ and $[\rho_f] \in \phi(\mathcal{W})$. So $\phi(\mathcal{W}) = \{\tau \in \mathcal{A} | \ker \tau \not\subseteq \mathcal{J} \cap \mathcal{A}\}$. We can interpret Proposition 9 in terms of representations. An infinite dimensional Hilbert space H is said to have sufficiently high dimension for the factor states of \mathcal{A}, if there is a faithful represen-
tation ρ_0 of \mathcal{A} on H such that, for any factor state f of \mathcal{A}, there is a unit vector $x \in H$ with $f = \omega_x \cdot \rho_0$. Now let H be a Hilbert space of sufficiently high dimension. (If \mathcal{A} is separable, any infinite dimensional space has sufficiently high dimension.) Let CFac (\mathcal{A}, H) be the family of all representations ρ on H for which there is a unit vector $x \in H$ such that $f = \omega_x \cdot \rho$ is a factor state and such that ρ vanishes on the orthogonal complement of the closure of the linear manifold
A topology may be defined on $\text{CFac}(\mathcal{A}, H)$ by allowing a net \(\{\rho_n\} \) converge to \(\rho \) if and only if \(\{\rho_n(A)\} \) converges to \(\rho(A) \) in the strong topology on \(H \) for every \(A \in \mathcal{A} \).

Proposition 10. Let \(\mathcal{A} \) be a C^*-algebra, let \(H \) be a Hilbert space of sufficiently high dimension for the factor representations of \(\mathcal{A} \). Let \(\psi \) be the map that carries each \(\rho \in \text{CFac}(\mathcal{A}, H) \) into its class \([\rho]\) in \(\mathcal{A} \). Then \(\psi \) is a continuous open map of \(\text{CFac}(\mathcal{A}, H) \) onto \(\mathcal{A} \).

Proof. It is clear that \(\phi \) maps \(\text{CFac}(\mathcal{A}, H) \) continuously onto \(\mathcal{A} \).

We show that \(\psi \) is an open mapping. Let \(\mathcal{U} \) be an open subset of \(\text{CFac}(\mathcal{A}, H) \). Using virtually the same proof as K. Bichteler [3, Proposition 2.4(i)], we can find an open subset \(\mathcal{V} \) of \(\mathcal{A} \) such that \(\psi(\mathcal{U}) = \phi(\mathcal{V}) \). However, we have shown that \(\phi(\mathcal{V}) \) is open in \(\mathcal{A} \) (Proposition 9). Thus \(\psi(\mathcal{U}) \) is open in \(\mathcal{A} \) and \(\psi \) is an open map.

Remark. An infinite dimensional Hilbert space \(K \) is said to have sufficiently high dimension for the irreducible representations of \(\mathcal{A} \) if there is a faithful representation \(\rho_0 \) of \(\mathcal{A} \) on \(K \) such that, for every pure state \(f \) of \(\mathcal{A} \), there is a unit vector \(x \in K \) for which \(f = \omega_x \cdot \rho_0 \). A space \(H \) that has sufficiently high dimension for the factor representations certainly has sufficiently high dimension for the irreducible representations. Then let \(K \) have sufficiently high dimension for the irreducible representations. Let \(\text{Irr}(\mathcal{A}, K) \) be the family of all representations \(\rho \) of \(\mathcal{A} \) on \(K \) for which there is a unit vector \(x \) in \(K \) such that \(\omega_x \cdot \rho \) is a pure state and \(\rho \) vanishes on the orthogonal complement of the closure of \(\rho(\mathcal{A})x \). Then L. T. Gardner [17] proved \(\rho \to [\rho] \) is a continuous open map of \(\text{Irr}(\mathcal{A}, K) \) onto the spectrum of \(\mathcal{A} \) (with the hull-kernel topology). Notice that \(\text{Irr}(\mathcal{A}, H) \subset \text{CFac}(\mathcal{A}, H) \).

We now characterize a GCR algebra in terms of the Borel structure on the quasi-spectrum.

Theorem 11. Let \(\mathcal{A} \) be a C^*-algebra. The following are equivalent:

1. \(\mathcal{A} \) is a GCR algebra; and
2. every point of the quasi-spectrum \(\mathcal{A} \) of \(\mathcal{A} \) is a Borel set in the Borel structure induced by the hull-kernel topology.

Proof. (1) \(\Rightarrow \) (2). If \(\tau \in \mathcal{A} \), let \(Q \) be the unique minimal projection of the center \(\mathcal{Z} \) of the enveloping von Neumann \(\mathcal{B} \) algebra of \(\mathcal{A} \) such that \(Q^*(\tau) = 1 \). By Theorem 2, the projection \(Q \) is in the Boolean algebra generated by the open central projections \(\mathcal{P} \) of \(\mathcal{B} \). By Proposition 3 we conclude that the characteristic function of the set
\{\tau\} is in the algebra of bounded Borel function on \mathcal{A}. Hence, the set \{\tau\} is a Borel set of \mathcal{A}.

(2) \Rightarrow (1). Let Q be an arbitrary minimal projection in \mathcal{A}. The image of Q under the map \lambda defined in Proposition 3 is the characteristic function of a point set in \mathcal{A}. If \(P_m\) is the least upper bound of the minimal projection of \mathcal{A}, then \(Q \in \mathcal{P}P_m\) (Proposition 3). By Lemma 1 we have that \mathcal{B}Q is type I. Because Q is arbitrary, the algebra \mathcal{A} must be GCR [24].

Added May 1, 1973. For separable C*-algebra \mathcal{A}, I have proved that the quotient Borel structure on \mathcal{A} induced by the map \(f \mapsto [\rho_f]\) of the factor states of \mathcal{A} with the relativized \(w^*\)-topology into \mathcal{A} is the Mackey Borel structure of \mathcal{A}.

Acknowledgment. The author wishes to thank T. Digernes for discussions concerning the material in § 2.

REFERENCES

Received September 25, 1972. This research was supported by the National Science Foundation.

UNIVERSITY OF CINCINNATI
Gail Atneosen, *Sierpinski curves in finite 2-complexes* .. 1
Bruce Alan Barnes, *Representations of B*-algebras on Banach spaces* 7
George Benke, *On the hypergroup structure of central Λ(p) sets* 19
Carlos R. Borges, *Absolute extensor spaces: a correction and an answer* 29
Tim G. Brook, *Local limits and tripleability* .. 31
Philip Throop Church and James Timourian, *Real analytic open maps* 37
Timothy V. Fossum, *The center of a simple algebra* 43
Richard Freiman, *Homeomorphisms of long circles without periodic points* .. 47
B. E. Fullbright, *Intersectional properties of certain families of compact convex sets* 57
Harvey Charles Greenwald, *Lipschitz spaces on the surface of the unit sphere in Euclidean n-space* .. 63
Herbert Paul Halpern, *Open projections and Borel structures for C*-algebras* .. 81
Frederic Timothy Howard, *The number of multinomial coefficients divisible by a fixed power of a prime* 99
Lawrence Stanislaus Husch, Jr. and Ping-Fun Lam, *Homeomorphisms of manifolds with zero-dimensional sets of nonwandering points* 109
Joseph Edmund Kist, *Two characterizations of commutative Baer rings* 125
Lynn McLinden, *An extension of Fenchel’s duality theorem to saddle functions and dual minimax problems* .. 135
Leo Sario and Cecilia Wang, *Counterexamples in the biharmonic classification of Riemannian 2-manifolds* 159
Saharon Shelah, *The Hanf number of omitting complete types* 163
Richard Staum, *The algebra of bounded continuous functions into a nonarchimedean field* .. 169
James DeWitt Stein, *Some aspects of automatic continuity* 187
Tommy Kay Teague, *On the Engel margin* .. 205
John Griggs Thompson, *Nonsolvable finite groups all of whose local subgroups are solvable, V* 215
Kung-Wei Yang, *Isomorphisms of group extensions* 299