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Let 7 be a self-homeomorphism of a compact n-dimensional
manifold 3/, which is not homeomorphic to an odd dimensional
sphere, such that the set N of irregular points of % is closed in
M and the set of nonwandering points of % is zero-dimensional.
One of the main results of this paper is that N is either
connected or consists of the two fixed points of 4. In the
latter case, N is homeomorphic to the #-sphere. In the former
case when n = 2, it is shown that each component of i/ — N
is an open 2-cell. If M is open and N is compact, then it is
shown that M is homeomorphic to Euclidean 7-space and N
consists of a single fixed point of /.

Let 2 be a self-homeomorphism of a metric space X with metric
d. his regular at zxe X if, for every ¢ > 0, there exists 6 > 0 such
that whenever ye X and d(x, y) < 0, then d(h"(x), h"(y)) < e for all
integers n. & is drregular at xe X if h is not regular at x. Let
E(X, h) and N(X, k) denote the set of regular and irregular points,
respectively of X. This definition was originally given by Kerékjarto
[10]. If X is locally compact and connected, it was shown by Homma
and Kinoshita [7] that if N(X, h) is a finite set which does not separate
X, then N(X, k) consists of the fixed points of % and contains at most
two points. XKaul [9] obtained a similar result with the assumption
that X be locally connected and N(X, k) be compact zero-dimensional
and not separating X. In [12], [14] Lam obtained analogous results
when N(X, %) need not be zero-dimensional and E(X, k) has a property
called indivisibility. The property of indivisibility is generally weaker
than the property that E(X, &) be connected. Asa result of [12], Kaul’s
theorem can be shown to be valid without assuming that X be locally
connected (cf. Theorem 2.11 in the following); hence, Kaul’s theorem
is a generalization of the theorem of Homma and Kinoshita. If Xis
an open connected manifold, N(X, &) is a compact set not separating
X and if & is positively regular on all of X, then it was shown by
Duvall and Husch [4] that N(X, ) is a strong deformation retract of
X and, hence, must be connected.

A point xe X is nonwandering or regionally recurrent under h,
if for every neighborhood U of x there exists a subsequence {m,}, of
the positive integers such that r™(U) N U # @; let R(X, k) be the set
of all nonwandering points of 4 in X. One of the steps in Homma
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and Kinoshita’s and Kaul’s theorems is equivalent to showing that
R(X, h) = N(X, k) and hence the zero-dimensionality of N(X, k) implies
that of R(X, h). In this paper, we assume the zero-dimensionality of
R(X, r) and obtain results which may be considered as generalizations
of [7] and [9] on phase spaces which are manifolds. Actually, as our
proofs will show, the hypothesis that R(X, ) is zero-dimensional can
be replaced by the weaker hypothesis that the set of all w-limiting
points and a-limiting points is zero-dimensional. We give examples
in §6 to demonstrate the extent of our generalizations.

THEOREM A. Let h be a self-homeomorphism of a closed n-dimen-
sional manifold M such that the set N(M, h) of irregular points of
h is a closed monempty subset of M. If the set R(M, k) of nonwander-
ing points is zero-dimenstonal, then R(M, h) & N(M, h) and

(a) N(M, ) is a continuum provided M is mot homeomorphic to
the n-sphere;

(b) N(M, k) is either a continuum or consists of the two fized
points of h when either M 1is homeomorphic to an even dimensional
sphere or M is homeomorphic to an odd dimensional sphere and h is
periodic at some x € M.

THEOREM B. If, in addition to the hypothesis of Theorem A,
n =2 and N(M, L) is a continuum, then each component of M —
N(M, k) is an open 2-cell.

THEOREM C. If, in addition to the hypothesis of Theorem A, M
s orientable, then, using homology and cohomology with field coefficients,
for all ¢ < n, H(N(M, b)) is isomorphic to the direct sum of

H, . (EM,N) and H, (M).

THEOREM D. If, in the hypothesis of Theorem A, the assumptions
that M is a closed manifold and N(M, k) is closed are replaced by
the assumption that M is an open manifold and N(M, h) is compact,
then R(M, h) = N(M, h) = the fixed point of h and M is homeomorphic
to Euclidean m-space.

In this paper a manifold is a connected separable locally Euclidean
metric space. Manifolds are therefore assumed to have no boundary
unless the otherwise is stated.

2. Preliminary results on metric spaces. Throughout this sec-
tion we let X be a metric space with metric d and let 2 be a self-
homeomorphism of X. Whereas, in general, the regularity of & at
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x ¢ X depends upon the metric d, if X is compact, the regularity of
h at xe€ X is independent of the metric.

PROPOSITION 2.1. For all integers k + 0,
E(X, h*y = E(X, ), N(X, h*) = N(X, k)
and
R(X, k) & R(X, h)

provided X is compact.

PRrROPOSITION 2.2. The following properties hold.

(1) If K is a minimal set in X, then either K< E(X, h) or
K & N(X, h).

(2) If X is locally compact, then the set of minimal sets con-
tained in E(X, h) is relatively closed in F(X, h).

This proposition, like some of the following statements, is proved
under more general setting in [13]. For a proof of (1) and (2) see
Remark 1.6 and Corollary 3.6, respectively, of [13].

ProrosITION 2.3. If X s locally compact separable and N(X, h)
18 compact, then the set E(X, h) is unchanged when the original metric
18 replaced by a metric induced from the one-point compactification
of X.

Proof. By the definition of irregular points and the compactness
of N(X, h) we observe that N(X, h) is at least as large after the
change of metric. That N(X, &) is at most as large after the change
of metric is proved in Proposition 2.11 of [13] or in [18].

A point xe X is almost periodic if, for every ¢ > 0, there exists
a subsequence of integers, --- < n_, < M, < n, < --- and a constant
¢ such that |n; — n,.,| < ¢ for all integers ¢ and d(z, h™(x)) < e for
all . If ze X, ycw(x)(yc a(z)) if there exists a subsequence {n.}%.,
of the positive (negative) integers such that lim, ... A"(z) =y. We
now state two propositions which follow from Lemmas 2 and 4 of [7].

ProrosiTION 2.4. If xe¢ E(X, k), then z is nonwandering if and
only if E(X, k) N [a(z) U ()] # @.

ProrosiTION 2.5. If X is locally compact and if p is an interior
point of E(X, h), then, p is nonwandering if and only if p is almost
periodic.
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ProOPOSITION 2.6. If X s locally compact and xe X, then x 1is
almost periodic if and only if the orbit closure of x

(—i.e., {Ol (h"(m)| — e < m < + oo})

18 a compact minimal set.
The proof of Proposition 2.6 can be found in [6; pp. 31-32].

ProrosITION 2.7. Let X be locally compact separable and N(X, k)
be compact. If Y = E(X, h) 1s connected, then either Y has no non-
wandering points or all points in Y are monwandering.

Proof. Let A be the set of nonwandering points of Y. By Pro-
position 2.5, A is the set of almost periodic points of Y and hence,
by Proposition 2.6, each point of A lies in a compact minimal set
which lies in E(X, h) by Proposition 2.2 (1). Let X* = X U {oo} be the
one-point compactification of X and extend % to a self-homeomorphism
of X* by letting A(cc) = o. Let d* be a compatible metric of X*.
By Proposition 2.3, E(X*, h) 2 E(X, k). Now if pe Y is a limit point
of A, then by Proposition 2.2 (2), applied to the phase space X*, we
have that the orbit closure of p in X* is a minimal set. It follows
from Proposition 2.6 that p is almost periodic. Hence the set A is
relatively closed in Y. If U is a sufficiently small neighborhood of
pec A, then by Propositions 2.5 and 2.6 the regularity of z at p and
the openness of F(X, k), the orbit closure of every ge U is a compact
set in F(X, h). It follows from Proposition 2.4 that UN Y = A. Hence
A is relatively open in Y. Since the set Y is assumed to be connected
we must have either A =Y or A = @. The assertion in Proposition
2.7 then follows.

LEMMA 2.8. Suppose that X 1s locally compact separable and that
N(X, h) 1s compact. Let Y be a connected subset of K(X, h). Then
for every sequence of distinct integers {m;), the following property
holds. If there exists y,€ Y such that the sequence {h"(y)}=, has a
limit point n E(X, L), then {h™(y)}, has a limit point in E(X, h)
for all ye Y.

Proof. The lemma is obtained in [13] under the general setting
of indivisibility. We give a different proof here, which is based on
the propositions just obtained. Let ye€ Y and {n,;}, the given sequence
of distinet integers. It is clear that the sequence {h"i(y)}z, has a
limit point in E(X, k) if and only if E(X, k) N [a(y) U o(y)] = . Ac-
cording to Proposition 2.4 this is so if and only if ¥ is nonwandering.
Lemma 2.8 then follows from Proposition 2.7.
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We remark that the assumption that X be separable in Proposition
2.7 and Lemma 2.8 can be removed by appealing to techniques of
uniform spaces.

LEMMA 2.9. Suppose that X 1is locally compact and connected
and N(X, h) is compact. If A(X, h), the set of almost periodic points,
18 totally discommected, then a(x) U w(x) & N(X, h) for all x e E(X, h).

Proof. Suppose that there exist =, 2, € E(X, k) such than 2 ¢
a(x,) U o(z,) and we seek a contradiction. Without loss of generality
we may assume that z, € w(x,) N E(X, k). It follows from Proposition
2.4 that x, is nonwandering. By Proposition 2.5 and the closedness
of N(X, h) we have that x, is almost periodic. By Proposition 2.6 the
orbit closure K of z, is a compact minimal set. By Proposition 2.2
(1) we conclude that K < E(X, h). It follows that both a(x,) and
w(w,) are compact and a(x,) U w(z,) & E(X, k). Let Y be the component
of E(X, h) which contains x,. If we apply Lemma 2.8 by setting y,
to be #, and by taking arbitrary sequences of distinct integers {m;}:,,
we find that a(zr) U w(z) & E(X, h) for all e Y. (Note that a locally
compact connected metric space is separable.) It follows from Pro-
positions 2.4 and 2.5 that Y & A(X, k). Since A(X, k) is assumed to
be totally disconnected, we have that the component Y of E(X, h) is
a singleton. This is impossible due to the fact that X is connected
and N(X, h) is closed (a compact component of the locally compact
space E(X, h) has arbitrarily near relatively open and closed neighbor-
hoods). We then have a contradiction.

The proof of Lemma 2.9 is completed.

LEMMA 2.10. If X and N(X, h) are compact, X is connected and
R(X, h) is zero-dimensional, then a continuum K in E(Y, h) has the
following property. For every subsequence of integers ««- n_, < n, <
n, < -+ there exists points p, ¢ € N(X, h), not necessarily distinct, and
a subsequence {m, = n; }i= . of {n}i=. such that

lim A™(x) = p,klim hm(x) = q for all xzc K.

koo

Moreover, the convergence of the two sequences are uniform on K.

Proof. Let the sequence {n;}, be obtained from the sequence
{n;}i=.. Let & denote the space of all continuous maps from K to
X with the sup metric. If we apply the Arzela-Ascoli Theorem
[3, p. 267] to the sequence of maps {h"};, with their domains restricted
to K, we obtain a sequence in & which converges. Since & is com-
plete, we have a subsequence {m, = n;}i., of {n;}Z,, with domains
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again restricted to K, which converges to some fe &. Let x, be an
arbitrary point of K and let p = lim,.. A™*(x,). Then pe w(x), and
from Lemm 2.9 pe N(X, k). We claim that the sequence {A™(x))_.
converges uniformly to p for xz € K.

For if the claim fails then, because of the connectedness of K,
for a sufficiently small neighborhood U of p we have that 0U N hA™(K) =
@ for infinitely many terms in {m,}3,. By the hypothesis that R(X, h)
is zero-dimensional and by the hereditary normal property of the metrie
space X one can find arbitrarily small neighborhoods V of p such that
oVNR(X, h) = . We may restrict neighborhoods U above to satisfy
this condition. There then exist sequences {y;} & K, {2;} < 0U, points
ye K, 2€0U and a subsequence {a; = m, }, of {m,}i., such that

z; = h*i(y;), y = limy;, 2 = limz; .
I FAndad
Since ye E(X, h), it follows that
lim 2%(y) = lim h*i(y;) = limz; = 2.
geo oo oo

Hence ze R(X, h) N dU. This contradicts that 60U N R(X, h) = @. Our
claim is thus valid. If we apply a similar argument to the sequence
{n_;}=,, we obtain the point ¢ and the corresponding properties asserted
in the lemma.

The proof of Lemma 2.10 is completed.

In order to prove the next lemma we give a generalization of the
theorems of [7], [9].

THEOREM 2.11. If X is a compact and connected space, N(X, h)
s zero-dimensional (nonempty) and E(X, h) contains an open, dense
connected and invariant subset D, then N(X, h) equals the umion of
one or two fixed points of h. Moreover, there exist p, € N(X, h), not
necessarily distinct, such that

li{rn h™(x) = p, im h"(x) = q for all xec E(X, k).

Proof. The proof is a direct application of Theorems 2 and 8 of
Lam [12]. The theorems are applied to the discrete flow (X, Z) gen-
erated by m(Z: additive group of integers). Since the set D is now
open, it is locally compact. According to Theorem 3 (II) of [12] the
set E(X, h) is indivisible by Z. By Theorem 2 of [12], applied to the
abelian group Z, the set N(X, k) is a union of one or two fixed points.
Moreover, there exists a sequence {¢;} in Z and points p, ¢ € N(X, h),
not necessarily distinct, such that
(a) lim hii(x) = p, lim h~%(x) = q¢ for all 2ze E(X, h) .

4—r00 i—c0
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Since z¢ N(X, k), lim,_.. |¢;| = -+ . Without loss of generality we
let lim; ., t; = + . We claim that lim,_, A"(x) = p. For otherwise
we would obtain some ze w(x) N E(X, h) near p, using the fact that
p is a fixed point. By (2.4), (2.5), (2.6), and (2.2(1)) the orbit closure
of # then is in FH(X, k), which would contradict pe w(x). Hence
lim, .. A"(x) = p. Likewise we have
lim h*(z) = ¢ for all xe E(X, 1) .

Theorem 2.11 follows.

Let (S, Z) be a discrete flow on a metric space S. If there exist
two nonempty, closed and invariant subsets EF and F such that S =
EUF and ENF = ¢, then S is said to be dynamically disconnected.

LEMMA 2.12. Suppose that X 1s compact connected and thai
E(X, h) is connected and has at least one point which is not almost
periodic. If N(X, k) is compact and dyrnamically disconnected, then
the following properties hold:

(1) N(X, h) consists of two components H and K.

(2) Either we have lim sup,...{A"(x)} S H and lim sup,._.{h"(2)} =
K for all e E(X, h) or we have lim sup, ... {k"(x)} & K and

limsup {(hx)} & H for all xeE(X, h).

Proof. We form the guotient space X, of X by identifying com-
ponents of N(X, k) as points. Since the decomposition is upper semi-
continuous, the compact space X, is metrizable. A homeomorphism
f: X, — X, (onto) is induced from h by requiring that fomw = mwoh,
where 7 is the canonical projection of X onto X,. We give X, a
metric and define sets E(X,, f) and N(X,, f). From the uniform
continuity of 7 and the openness of 7| E(X, h) we have w(H(X, h)) &
E(X,, f). We claim N(X,, f) = @. For, by our hypothesis and Pro-
positions 2.5 and 2.7, the set E(X, k) contains only wandering points.
By Proposition 2.4, we have a(x) U w(z) & N(X, k) for all v e E(X, h).
It follows that a(z) U w(z) < n(N(X, k) for all ze n(E(X, h)). Hence
T(N(X, h)) N N(X,, f) + @. Now =m(E(X, h)) is open, connected, dense
in E(X,, f) and invariant. By Theorem 2.11, we can conclude that
N(X,, f) equals the union of one or two fixed points and obtain points
p, ¢ € N(X,, f), not necessarily distinet, such that
(a) lirj_n f"x) = p, lim f"(x) = q¢ for all ze E(X,, f).

Let H and K now be two disjoint nonempty compact and invariant
subsets of X whose union is N(X, ). Then z(H) and =(K) constitute
two disjoint compact invariant subsets in X,.. According to property
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(a) we must have n(H) = p and n(K) = q or a(H) = ¢ and 7(K) = p.
Hence H and K are connected and w(N(X, b)) = N(X,, f). Lemma
2.12 then follows.

3. Structure of the set of irregular points. If U is an open
connected manifold, then U has one end if, for each compact subset C
of U, there exists a compact set D such that C&€ D& U and U - D
is connected.

ProposiTiON 3.1. If F' is a metric continuum and G is an open
subset of F' such that each component of G is a manifold with onre
end, then F — G is connected.

Proof. @G has a countable number of components, say G;, ¢ =1,
2, ---. Since each G, has one end and G; is separable, there exists
a countable sequence of compacta, {C; ;}7~:, such that C,; & intC,,;., &
G, G; — C;; is connected, and G; = U, C;,; for all ¢ and j. Let
{D.}oy = {C;;}3;=1 be a reindexing. By inductive argument the sets
F — U, D, are connected for all » =1,2, ---. F — G can then be
expressed as the intersection of a nested sequence of continua, {Cl (F —
Ui D)e-i, and hence is connected.

ProrosiTiON 3.2. If M is a closed n-manifold and if M can be
expressed as the union of two open mn-cells, thew M is homeomorphic
to the n-sphere.

Proof. This follows from [2]; see the Appendix of [11].

ProprosiTION 3.3. Let h be a self-homeomorphism of a closed n-
manifold M such that N(M, h) is a closed nonempty set and R(M, h)
18 zero-dimensional. If M is not homeomorphic to the n-sphere, then
each component of E{(M, h) has one end.

Proof. Let D be a component of FE(M, k) and suppose that D
does not have one end; — i.e., there exists a compact set C & D such
that for each compact set K, CS K< D, D — K is not connected.
By Lemma 2.10, there exists a subsequence {m,};=... of the integers
and points p and ¢ such that lim,__ 2™(C) = p and lim,__. 2™(C) = q.
Hence h™«(C), k sufficiently large, lies in an open n-cell U in M. By
replacing D with A™#(D) we may assume that Cc U. It follows that
some neighborhood of C in UN E(M, h) can be triangulated as a
piecewise linear manifold and hence there exists a compact n-manifold
W with boundary such that CEW S UN D. By the choice of C, the
set D — W is not connected. Hence there exists a component W’ of



HOMEOMORPHISMS OF MANIFOLD 117

bdry W such that W’ is not the boundary of a compact submanifold
of D. Let W" be the component of U — W’ whose closure in U is
compact. Let W’ be the complement of W’ U W"” in M. Then W'
is a connected #n-manifold with bdry W'’ = W’. By the way C is
chosen in D neither W nor W' is contained in E(M, h).

Let ze W’ N N(M, h); by definition of N(M, k), there exists a
sequence of integers {a;}7,, |a;| < |y, | for all 4, a sequence {y;}3, S
M, a point we M and 6 > 0 such that
(*) limy; = @, lim 2%(x) = w and d(w, lim h%(y;)) = 0 .

jotoo Jotoe Gt
By symmetry we may assume that each «; is positive. By replacing
{a;} with a subsequence, if necessary, we obtain from Lemma 2.10 a
point ve M such that lim; ., A%(W’) = v. If U’ is an open n-cell in
M such that ve U’ and J is chosen such that A%(W') < U’ for all
j > J, then either r*(W") S U’ or h*(W'")< U* for j > J. Choose
U’ to be so small that diameter (U’) < /2. By (*) we must have
hei(W") < U’ for j > J and j sufficiently large. Let &, be one of such
integers j. _

We now proceed with '€ W’ N N(M, h) to get, by a similar
argument an open n-cell U” in M and an integer k, such that r*(W’ U
wW"y< U”. Then

M=W UW'yuw" = h_ki( U') U h—-kz( U/r)

and hence must be a n-sphere by Proposition 3.2. The contradiction
establishes Proposition 3.3.

PRrROPOSITION 3.4. Let h be a self-homeomorphism of a closed n-
manifold M such that N(M, h) is a closed nonempty set, R(M, h) is
zero-dimensional and h is periodic at some ze M; —i.e., there exists
g > 0 such that h'(z) = z. If some component D of E(M, h) does not
have one end, then M — D consists of two points.

Proof. As in the proof of Proposition 3.3, there exists a closed
connected (7 — 1)-manifold W’ in D such that M — W’ consists of two
components W and W' such that W’ N N(M, k) = @ = W' N N(M, h).
W UW” and W U W' are n-manifolds with boundary such that
boundary (W' U W"”) = W’ = boundary (W’ U W’”’). By Lemma 2.10,
there exists a positive integer m such that W’ N AY(W’) = @ for all
integers » such that |n| = m. Let f = A*™; note that f(2) = 2. By
Lemma 2.9, z¢ E(M, h). Without loss of generality we suppose z¢ W',
There are three cases to consider.

Case 1. f(W') S W"”. Hence f(W") <= W", since the fixed point
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(of f) ze W'. 1t follows that the invariant sets H = lim,._., f*(W")
and K = lim,_.., f®(W’) are connected, since each is a limit of connected
sets. By using the fact that W’ & E(M, h) = E(M, f), one easily sees
that H = U, a(z) and K = U,y ©(x). Then HU K< R(M, f) =
R(M, ). Since R(M, h) is zero-dimensional, H and K are fixed peints
of f. If xe M—{H, K}, then lim,__,, f*) = H and lim,_ .., f*(z) = K;
by [8], E(M, h) = E(M, f) = M — {H, K}.

Case 2. W' < f(W”). The argument is similar to Case 1.

Case 3. W'N fAIW”")=@. Since W'NN(M, f) =+ &, we can choose
xe W’ N N(M, ). There exists a sequence of integers {a;}5, 0 <|a,| <
|a,| < -+, asequence {y;}2, & M, we Mand d >0 such that lim, ., y; =
x, lim, .. fx) =w and d(w, lim; ., f“(y,)) = 6. Without loss of
generality assume that each «; is positive. By Lemma 2.10 there

exists a subsequence {8; = a;,} of {a;} and pe M such that
lim; ... fA9 (W) =p .

Since the elements of { (W' U W")}i=,., are pairwise disjoint, it follows
that lim;. .. /(W' U W"”) = p and hence p = w. But lim,.,. f%i(y;)
is also p and we get a contradiction and Case 3 cannot exist.

Proof of Theorem A. By Lemma 2.9, R(M, h) = N(M, h). If M
is not the n-sphere, N(J, k) is a continuum by Propositions 3.1 and 3.83.
If M is the n-sphere S™ and each component of E(M, h) has one end,
N(M, 1) is a continuum by Proposition 3.1. If n is even and some
component of FE(M, h) does not have one end, then, since A* is
orientation preserving, 7* has a fixed point and by Proposition 3.4,
S™ — E(S™ h) consists of two points which, by [7], are fixed points of
h. If m is odd and & is periodic at some ze S", then Proposition 3.4
and [7] again applies.

4. Structure of the set of regular points. If V is an open 2-cell
in a 2-manifold M and v is a simple closed curve in V, we let I(7) be
the component of V — v whose closure in V is compact. From the
classification theory of 2-manifold, we have the following.

REMARK 4.1. Awn open connected 2-mawifold U is an open 2-cell
if and only if each simple closed curve im U is the boundary of a
closed 2-cell i U.

Pioof of Theorem B. Let D be a component of E(M, h) and let
v be a simple closed curve in D. Let us first consider the case when
M is not the 2-sphere. It follows from Lemma 2.10 that there exists
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an open 2-cell V in M and an integer k such that W' (v) V. If
I(k* (7)) & E(M, h), we are through by Remark 4.1. Suppose there
exists x € I(h*(v)) N N(M, k); hence there exists a sequence of integers
{a;}, 0 < || < |az| < -+, a sequence {y;} & M, we M and 6 > 0 such
that

(*) limy; = @, lim A%(x) = w and d(w, lim A%(y;)) = ¢ .
Joteo Jortoo Jotoo
Let 7" = h*(v). By Lemma 2.10, there exists a subsequence {8; = «;;
of {a;} such that lim;, . h%(v') = p for some pe M. For j sufficiently
large, h%i(7') bounds a closed 2-cell B; such that lim; . B; = p and
R(I(v) N B; = @. Then M = B; U h#i(v' U I(7")) is a 2-sphere, a con-
tradiction.

If M is a 2-sphere and N(M, 4) is a continuum, then by Proposition
3.4, each component of E(M, k) has one end. If D is a component of
E(M, h), then S* — D is connected. By [17], D is an open 2-cell.

PROPOSITION 4.2. Let M and h be as in Theorem A. If U is a
component of E(M, k), the kernel of i.: (U, u) — w,(M, u), the homo-
morphism induced on the ith homotopy groups by the inclusion map,
is all of wy(U, w),1=1,2, +--.

Proof. Let f:(S} ) — (U, ) represent an element of z,(U, u).
By Lemma 2.10, there exists pe M and a subsequence {n,}z, of the
positive integers such that lim;.,. 2"(f(S?)) = p. Let V be an open
n-cell in M such that pe V and let j be chosen such that A"i(£(S%)) =
V. Since h™(f(S?) is inessential in V, f(S’) is inessential in 2~"(V) &
M.

Similarly, if we use singular homology with any coefficients, we
have the following.

ProPoOSITION 4.3. Let M and h be as in Theorem A. The homo-
morphism iy H(E(M, h)) — H(M) induced by inclusion is the zero
homomorphism for i =12 ---.

Proof of Theorem C. If we consider the long exact homology
sequence of the pair (M, E(M, h)), we get a sequence of short exact
sequences by Proposition 4.3

0 — H(M) — H{M, E(M, b)) — H;_,(E(M, h)) —> 0
fori=2,3, .--. Since M is connected, we get the short exact sequence
0 — H,(M)—— H/(M, E(M, h)) — H(E(M, h)) — 0 .

By [20; p. 296], HYN(M, h)) is isomorphic to H,_, (M, E(M, k)) and
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since we are using field coefficients, the theorem follows.
5. Open manifolds. We state a result of [12] which we need.

ProroSITION 5.1. Let h be a self-homeomorphism of an open
manifold X of dimension n = 2. If N(X, h) is compact and zero-
dimensional, then X 1s homeomorphic to n-dimensional Euclidean
space and N(X, h) consists of a fized point.

Proof of Theorem D. Let M* = M U {c} be the one point compact-
ification of M. Note that, in general M* is not a manifold and so
Theorem A does not apply. Let h* be the extension of h to M*.
Let W be a compact neighborhood of < such that Wn N(M, k) = ©.
Using the compactness of bdry W, one easily sees that the number
of components of E(M, h) which intersects bdry W is at most finite.
One also observes that N(M, h) meets the closure of every component
of E(M, h). It follows readily that there exists a component G of
E(M, h) such that « e Cl(G) and Cl(G) N N(M, k) + @, where Cl(G)
is the closure of G in M*. Since {co}and N(}, k) are invariant under
h* and G is connected, hi(G) N bdry W == @ for all integers 7. Hence
there exists a positive integer k& such that #*(G) = G. Let X be the
decomposition space obtained from Cl (G) by shrinking the components
of N(M, k) N C1(G) to points and if ¢: Cl(G) — X is the natural pro-
jection, then define f: X — X so that fo¢ = go(h*)*. Since ¢ is
uniformly continuous and ¢|G is open, E(X, f) 2 4¢(G). By Lemma
2.10, applied to the space Cl(G), we easily see that N(X, f) # @.
By Theorem 2.11, N(X, f) consists of the union of one or two fixed
points of f and
(a) 1i1+n f™x) = p, lim fx) = ¢ for all ze E(X, f),
where N(X, f) = {p, ¢} and p may be equal to ¢q. Without loss of
generality we may assume that ¢(c) = p. We show that under the
present hypothesis ¢ 5= p. Since < ¢ N(M, h) N C1(G), it follows that
if ye o(N(M, k) N C1(G)), then ¢(c) is not in the orbit closure of y.
Hence we must have g = ¢(N(M, k) N Cl (G)) by (a). This shows ¢ = p
and that N(M, h) N C1(G) is connected. We have two cases to consider.

Case (i). N(M, h) N C1(G) = {qg}, a singleton. Since a point cannot
separate n-manifold, n =2, M = G U {¢} and the theorem follows from
Proposition 5.1.

Case (ii). N(M, k) N C1(G) is a nondegenerate continuum A. By
Proposition 8.1, G does not have one end. There then exists a compact
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set C & G such that for each compact set K, C=S K< G, G — K is
not connected. By (a) we have lim,, .. #*(C) = ~ and
lim sup A*(C) = A .

Applying Lemma 2.10 to M* and (h*)*, there exists a point we 4 and
a subsequence {n;}}=>. of the integers such that lim, .. 2*"(C) = o
and lim;,_, 2*"i(C) = w. The second equation implies that 2™(C) lies
in an open n-cell U in M for an integer m. As in the proof of
Proposition 3.3 we obtain some closed connected (% — 1)-manifold
W’ < G such that the two complementary components W’ and W'
of M* — W' have W’ as their common boundary and neither W’ nor
W™ is contained in E(M*, h). Note that R(M*, (h*)*) = R(M*, h*) is
zero-dimensional and (A*)* has a fixed point . As in the proof of
Proposition 3.4 we have three cases. Case 1. (A*)*(W') S W"”. Case
2. W< B(W”). Case 3. W’'Nh*)*(W")=@. The argument for
Proposition 3.4 for these three cases also applies here, though M* now
fails to be locally FEuclidean at the point o. Hence Case 3 can be
shown to be impossible under the given hypothesis and either one of
Cases 1 and 2 implies that N(M, %) is a singleton which also leads to
a contradiction. Hence Case (ii) cannot oceur. Theorem D follows.

6. Examples. We give some examples here to justify our results.
Examples are to be given for dimensions 2 and 3, but higher dimen-
sional ones can be constructed from these models. First Theorems
A and D would fail if the restriction on nonwandering points is
omitted.

ExampPLE 6.1. Let points in the plane R? be given representation
of complex numbers:

» = (n + r)e??; n: nonnegative integers, 0 <r <1, 056 < 2x.
Define a homeomorphism g: R*— R® by

9(p) = (m + e for p = (n + r)e?.

Then N(R? g) consists of the circles C,; n=0,1,2, ..., where C,={pe
R*||p| =n}. Hence N(R? g) has infinitely many components. By
adding the point at infinity to get S* and by extending g naturally
to S%, we have that N(S? g) has infinitely many components.

The next three examples show the generality of the class of
homeomorphisms which satisfy Theorem A or Theorem D.

ExAMPLE 6.2. Let I be the closed unit interval [0, 1] and let f:
I— I be an order preserving self-homeomorphism whose fixed point
set is {0, 1}. Note that f is regular except on {0, 1}. Let g be the
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product homeomorphism on I X I. Then the set N(I x I, g) equals
the boundary of I x I. By identifying points (x, 0) with (x, 1) and
(0, y) with (1, ) for all |z| =<1, |y| =1 the set I x I becomes a torus
S* x S* and ¢ induces a homeomorphism A on S*' x S'. It is readily
verified that N(S* x S' g) is the union of a vertical circle with a
horizontal circle if the torus S* x S'is placed stably on a table. Note
that the intersection of the two circles is the only nonwandering point
of the torus. This process can be modified to get a homeomorphism
of any closed 2-manifold which fails to be regular on a one-dimensional
polyhedron and with a finite nonwandering set.

The set of regular points in Example 6.2 is connected. The next
example is one such that this set has infinitely many components.

ExampLE 6.3. We take the example of Massey [16, p. 167].
Consider the system of differential equations in the (x, y) plane:

dx .
— = cos’w
dt

dy .

—= =singx .
dt

The integral curves are then the curves y = secx + ¢. A continuous
flow on the plane is then generated from the autonomous system of
differential equations. The acting group is then the real numbers.
Restricting to the integers, we then have a discrete flow. Call the
generating homeomorphism k. It is readily verified that N(R? k) is
the union of all vertical lines whose w-coordinates are integers. By
considering the 2-sphere as the one-point compactification of R?, we
see that the extended homeomorphism 4 on S*is such that N(S? &) =
{co} U N(R? h) and o is the only nonwandering point in S* (see figure
on p. 168 of [16]).

The number of nonwandering points in the previous examples are
finite. The next example is such that the nonwandering points are
infinite and zero-dimensional.

ExXAMPLE 6.4. Let % be a self-homeomorphism of the unit circle C
which has neither periodic points nor dense orbits. It is then known
that the discrete flow on C generated by & has a unique minimal set K
which is homeomorphic to the Cantor set (cf. for example [15]). [Iis
a complementary interval of K, then IN (A"(I)) = @ for all integers
n #= 0. It follows from argument of finite measure that lim,,_., diameter
[R"(I)] = 0. Hence I < E(C, h). Since K is a minimal set, by Pro-
position 2.2 (1) we have either K & E(C, h) or K < N(C, k). The first
alternative is impossible, since it is well-known that a homeomorphism
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regular everywhere in C is topologically conjugate to either a rotation
or to a reflection with respect to the xz-axis. The assumption for %
shows that it is impossible.

We let A(z) denote the segment which joins the origin to a point
ze C. Extend & to the entire unit disc by requiring that A(H(z)) =
h(A(z)), ze C. It is clear that N(D, h) = U {A(z)|z€ K} — {0}, where
D is the unit disc. Every point in N(D, k) is nonwandering.

We next modify the homeomorphism % as follows. Let g: D— D
be the restriction of the homeomorphism given in Example 6.1. We
let f =goh =hog. It is readily verified that

ND, f) = ND, ) {0} = U {A(R)|ze K} .

The only nonwandering points of f are the origin and points of K.

Finally the homeomorphism f can be extended to the 2-sphere by
combining two dises. The resulting homeomorphism has a connected
one-dimensional N(S? f) and its set of nonwandering points is uncoun-
table and zero-dimensional.

EXAMPLE 6.5. Define a homeomorphism %' of Euclidean 3-space
R? by
(@2, u2,52) =0

h =
@08 =\, ypo, 42)  w=0

and extend A’ to a homeomorphism % of S®*= R®U {«} by defining
h(ee) = . Note that N(S® h) = {(x, ¥, 2)|x =0 or y =2z = 0} U {0}
and R(S? k) = {(0, 0, 0), «o}. Let D; = {(z, , 2)|2* + 4* + 2* = 2% and
x = 0} where 7 is an integer; note that 2'(D;) = D,_, for all 7. Let
4:10,1] — R® be an embedding such that ¢(0) = (0, 0, 3/2), the z and
z coordinates of ¢(t) for 0 < ¢t <1 are positive, 4([0,1]) is locally tame
except at ¢(1), and ¢([0, 1)) N D; = @ for all . Let £:]0, 1] — R® be
an embedding such that £(0) = (0, 0, —3/2), the x and z coordinates
of &(t) for 0 < t <1 are positive and negative respectively, &([0, 1]) is
locally tame except at &(1) and &([0, 1)) N D; = @ for all <. By [19],
([0, 1]) and A'¢(]0, 1]) are cellular subsets of S® for each 7. Let X
be the decomposition space obtained by shrinking the components of
{D,, h&([0, 1]), A'¢([0, 1]); — o= < % < + oo} to points and let p: S*— X
be the natural projection. By [1], X is homeomorphic to S:. Define
f: X — X such that fop = poh; note that f is a homeomorphism of
X onto itself such that N(X, f) = pN(S®, k) and R(X, f) = pR(S?, k).
U= {9212+ y + 2 <2 and 2 = 0}, then the components
of X — N(X, f)areint fi(pU), — o < i< + oo, and p({(z, v, 2) |2 < 0} —
{(z, y, 2)|ly = 2 =0}). By [19], int fi(pU) is not an open 3-cell and if
we choose ¢ and & such that =, (U — (4([0, 1]) U&([0, 1]))) is infinitely
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generated [5], m,(int fi(pU)) would also be infinitely generated. Hence
it appears that there is not hope of characterizing the components of
E(M, h) in higher dimensions as is done in Theorem B for dimension 2.
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