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The marginal subgroup for any outer commutator word
has been characterized by R. F. Turner-Smith. This paper
considers the marginal subgroup E(G) of G for the Engel
word e,(x, ¥) = [z, ¥, ¥] of length two. The principal result
is that an element ¢ of G is in E(G) if and only if
[z, ¥, alla, ¥, ] is a law in G. The method of proof relies
upon properties of Engel elements established by W. Kappe.

Among other results are the following: (a) E(G)/Z,(G)
is an elementary Abelian 3-group of central automorphisms
on the commutator subgroup G'. (b) If Z(G) Nys(G) has no
elements of order 3 or if G’ is Cernikov complete, then E(G) =
Z(G). (c) If [G:E(G)] = m is finite, then the verbal subgroup
¢,(G) is finite with order dividing a power of m.

1. Notation and assumed results. Let ¢(z;, ---,2,) be any word
in the variables «,, ---, 2,. The verbal subgroup ¢(G) is the subgroup
of G generated by all elements of the form ¢(a,, ---, a,) with a,, «+-, a,
in G. We say ¢ is a law in G, or that G is in the variety determined
by ¢, if ¢(G) = 1.

The associated marginal subgroup ¢*(G) of G consists of all ¢ in
G such that ¢(g, -+-, ag;, *++, 9.) = ¢(gy, **+, 9, *++, g:) for every g;
in G,1=71=<n. We also refer to ¢*(G) as the ¢-margin of G.

For z,9,a; in G, define [z, y] =y "oy = 7', [a,, «--, a,] =
Hay, <+, a._], a,], and [z, (n + 1)y] = [[z, ny], y]. Similarly, for sub-
groups H and K of G, [H, K] denotes the subgroup generated by all
elements of the form [k, k], where he H, ke K. We define [H, (n +
DK]=|[[H, K], K]. If H,.--, H, are subgroups, then [H,, ---, H,] =
[[H, ---, Hau], H].

The word v, = d, = x is an outer commutator word of weight
one. If 0=0(z, ---,2,), =Ny, -+, ¥,) are outer commutator
words of weights m and n respectively, then ¢ = é(x), «++, Tpin) =
[0y, <+ -, w), MZpss, =+, Twrn)] IS an outer commutator word of weight
m + n. We write ¢ = [0, \]. Particular examples are the derived
(or solvable) words, defined by d, = [d,_, d,-.], and the nilpotent
(or lower central) words, defined by V,i: = [V, 7.

The following two theorems appear in [15]:

THEOREM 1.1. For any group G and word ¢,

(a) ¢(Q) s fully invariant in G and ¢*(G) is characteristic
n G.

(b) ¢(6*(G)) = 1.
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(c¢) if K/p*(G) is the center of G/¢*(G), then [K, ¢(G)] =1. In
particular, [6*(GQ), ¢(@)] = 1.

(d) if H is a subgroup such that G = Hp*(G), then ¢*(H) =
HN ¢*(G) and §(G) = ¢(H).

THEOREM 1.2. Let 6 and )\ be two words in independent variables
and ¢ = [0, N]. Then, in any group G,

(a) ¢(G) = [0(G), MG)]

(b) if U= Cux0(GQ)), V=C:;\MG)), LIU=2\*(G/U), and M|V =
0*(G/V), then ¢*(G) = LN M.

An immediate result of Theorem 1.2(b) is that 7} (G) = Z.(G),
the mth center of G. It is this theorem which makes possible a
classification of marginal subgroups for all outer commutator words,
since the variables in # and )\ are independent of each other
(see [16, p. 328]).

An element x of G is called a left (right) Engel element of G if
for every y in G there is a positive integer n such that [y, nx] =1
([x, ny] = 1). The Engel word of length = is e,(x, y) = [«, ny]. We
note that Theorem 1.2(b) can not be used to determine e}(G), since
e,_.(%, ¥) and y are not independent.

For H a subgroup of G, [G: H] is the index of H in G. If H is
a proper (normal) subgroup of G, write H < G(H </ G). If G is isomor-
phic to a subgroup of a group K, write G & K. CyH) is the cen-
tralizer of H in G. For z in G, ¢ denotes the subgroup generated
by all conjugates of z in G.

2. The Engel margin. In this section “Engel word” will mean
“Engel word of length two”. We write M(G) = d¥(G) and E(G) =
¢;(G) for the metabelian and Engel margins of G respectively.

Recall that [Z.(G), v.(®?)] € Z._.(G) for all positive integers
m and n.

LEMMA 2.1. In any group G,

(a) di(@)/Cildnr(@)) = di(G/C(dn-(G))). In particular, M(G)=
{aeG|]la, 2], [y, #]] is a low in G}.

(b)) Z,winp(@) S d¥(G). In particuler, Z(G) < M(G).

Proof. Part (a) follows from Theorem 1.2(b) with 6 =\ = d,_,.
We prove (b) by induction on #n. For n = 1, Z(G) < d¥(G) = Z(G).
For n > 1, let G = G/Cy(d,—(G)). Then

G = & (@ 2 ZpieioG)

by part (a) and the induction hypothesis. Furthermore,
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[Zaw0io(G), M(n — 1)/2(G)] S Zuinsniz-nin-0s(G) = Z,(G)
and [Z.(G), d._(G)] S [Z.(G), 7.(G)] = 1 so that
[Znwr0p(G), (e — D/2AG)] S Co(dn—(G))
Consequently,
Zows11(G) € ZninniaG) S d3(G)

and Z,1.,(@) S di(G)Ce(d,.(G)) = di(G), as desired.

We define E\(G) = {a e G|[az, y, y] = [z, y, y] for all z, y e G} and
L(G) ={aeG|[a,x,x] is a law in G} to be the subgroup of right
Engel elements of length two. It is not difficult to show that
E(G) < E(G) and E,(G) is a characteristic subgroup of G.

The following properties of L(G) were established by W. Kappe
in [6]:

LEMMA 2.2. In any group G, where ac L(G), g, h, € G,
(a) L(G) is a characteristic subgroup of G.

(b) [a,g,n]=Ila,h g™

(¢) la,lg, Pl = la, g, RJ"

(d) [a, g, 9]l =1

(e) a*e Zy(G).

THEOREM 2.3. In any group G,

(a) Zy(GQ) < E(G) < L(G).

(b) E.(G) ={aecG|]a, x] € Cs(x®) for all e G} = L(G).

(c) la, z] € Cyx®) N Cyla) for all ac E(G), x€G. Furthermore,
[a, 2] = [a", °] for all integers r and s.

(d) af and 2*® are Abelian for all a in L(G), x in G.

(e) E(G) € Ci(z%)) 1 G for all x in G.

Proof. Part (a) follows immediately from the definitions.

(b) Let ae E(G). Then [ay, z, ] = [y, », 2] for all ,y in G.
This is equivalent to saying that 1 = [[ay, «][y, ], ] = [[a, x]* X
[y, zlly, 217, ] = [le, «]*, ] for all =,y in G. Since % and y are
independent, we may conclude that a is in E,(G) if and only if 1 =
[a, z, 2*] for all x, ¥ in G or, equivalently, [a, ] € Cy(x%) for all .

That E.(G) < L(G) follows from [a, , 2] =1 by letting y = 1.
Finally, let a € L(G). We have for #, ¥ in G that

[a7 @, xy] = [a, r, x [90, y]] = [a, x, [x, y]][a, x, x][-’-ﬂ] .

From the definition of L(G) we must have that [a,z, 2] = 1. By
Lemma 2.2(d) we also have that [a, 2, [z, y]] = 1. Hence [a, z, 2] =1
and a < E.(G).
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(¢) Since a is a right Engel element, we have that [a, 2] is in
Cs(a) by [6, Lemma 2.1]. Part (b) says that [a, x] € Cy(x%) for all «
in G. The remainder of part (c) follows from [13, Theorem 3.4.4].

(d) From part (c) we see that a® = afa, z] € Cy(a), since ¢ and
[a, 2] are in Cy(a). This implies that a® is Abelian.

The proof that 2% is Abelian follows similarly from the observa-
tion that a* = z[z, a], [z, a] € Cx(x®) < Cyx(x).

(e) By part (¢) we may conclude that [a, 7] € Cs((2*)%) = Cy(z%)
for all ¢ in E(G), z, ¥ in G.

Let acE(G). By Lemma 2.2(c), we have I[a,[s", 2’]] =
[[a, z*], *]* = 1. This implies that a e Cy((x)’).

THEOREM 2.4. In any group G, E(G) = {ac G|z, o, y]llz, y, a]l =1
for all z,y in G}.

Proof. Set EAG) = {ae G|z, ay,ay] = [z, y,y] for all 2,y in G}.
We see then that E(G) = E(G) N EAG). Let S be the set described
on the right in the statement of the theorem. Suppose acS, zeG.
Then 1 = [z, a, 2][%, 2, a] = [z, a,2]. This implies that a € E,(G) = L(G).
Since also E(G) < E(G), it suffices to show that E(G)N E(G) = E,(G)N
E(G) = E(G)NS. Then, for z,y in G, acE(G)N E(G) if and
only if

[=, y, y] = [, ay, ay]
= [, ay, yllz, ay, a]’
= [l=, yllz, ol?, ylll=, yllz, a]*, ]’
=[x, y, y]""[[=, a]", @, y, a]=""[[=, a]’, a]” .
By assumption, [a, 2] € Cy(x). Since Cy(=°) <|{ G, we also have
that [a, z]* € Cy(x°). Consequently, conjugation by [z, a]’ is irrelevant

in the last statement above because all the commutators are in €.
Therefore, the above is equivalent to

[@, ¥, ¥] = [, y, ylllz, a]?, yllz, ¥, a]'[[=, a]’, a]’
or

1= [z, q, yllz, y, alllz, a]”, a]

for all =, y € G, a € E(G).

Now a and [z, a]* are elements of a®. By Theorem 2.3(d), af is
Abelian. This implies that [[#, a]’, a] = 1. Therefore, E(G) is con-
tained in the set S.

We have already shown that S is a subset of E(G) = L(G).
Consequently, all the above arguments are reversible and we may
conclude that S = E(G).
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LEMMA 2.5. (a) E(G)N CAG) = Zy(G).
(b) Iz, a, 9l =Ila,y, 2] for all z,y in G, a in L(G).

Proof. (a) We need only verify that E(G) N C,(G') € Zy(G) by
Theorem 2.3(a) and the remark before Lemma 2.1. Let ac E(G)N
C,(G’). By Theorem 2.4, 1 = [z, a, y][z, y, a] for all z, ¥y in G. But
a € Cy(G’) implies that [z, 9, a] = 1 and thus that [z, a, y] = 1 for all
xz,y in G. Hence ac Z(G).

(b) la,y, 2] =la, @y by Lemma 2.2(b), = [[z, a] ", y]™" =
(=, a, yI™ ™= = [z, a, y] since [a, 2] € Cs(x%) by Theorem 2.3(c).

From Theorem 2.4 and Lemma 2.5(b) we have our characteriza-
tion of E(G):

THEOREM 2.6. For any group G, E(G) = {aecG ||z, v, alla, v, x]
s a law in G}.

COROLLARY 2.7. For any ac E(G), [a, G, GJ* = [&, G, G] = 1.

Proof. Let z, ye€ G. By Theorem 2.6, [#, ¥, alla, y, ] =1. Then
[#, ¥, a] = [a, [, y]I™* = (lo, x, y])™ by Lemma 2.2(c), = [a, y, x]" by
Lemma 2.2(b). Hence 1 = [z, y, a]la, v, 2] = [a, ¥, 21a, ¥, ] = [q, ¥y, ]’

By Theorem 2.3(d) we have that af is Abelian. Hence [a, 2, y]* =
for all #z, ye G implies [a, G, G] has exponent dividing three, and

[a’ x: y]S = [a’sy m: y] = 1‘
COROLLARY 2.8. For any group G, E(G) C Z(G) < M(G).

Proof. Let ae E(G). By Lemma 2.2(e) we have that a'e Zy(G).
Since also @®c Z,(G) € Z,(G) by Corollary 2.7, it follows that a € Zy(G).

We recall a theorem of F. W. Levi (see [12]): If ¢, is a law in
a group G, then G is nilpotent of class at most three and v,(G) has
exponent dividing three. This, together with Theorem 1.1(b), yields
the first statement in the following:

THEOREM 2.9. E(G) is nilpotent of class mo greater them three
and metabelian, and v(E(G)) has exponent dividing three. If Ci(G') ©
E(G), then M(G) = Z(@).

Proof. Suppose Cyi(G’) € E(G). By Lemma 2.5(a) this implies
that C,(G') = Z(G). From Lemma 2.1(a), M(G)/CAG") = Z(G/C«G")).
Hence M(G) = Zy(G).
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THEOREM 2.10. Let G be a group, M = M(G), E, = E(G) = L(G).
Then

(a) [G, M E]=|G, 6 E, M]=[M,G,G]=1.

(b) [GM,E]|=[M,E,G =[G, M]=1. In particular, [M’, E] <
Z(G).

Proof. (a) By Lemma 2.1(a), [M, G] € CAG)N G = Z(G') so
that 1 = [M, G, G']. Now let ac K, me M, xc(G'. By Lemma 2.2(c),
la, [m, 2]] = [a, m, 2]* = 1. This implies [G’, M, E|] = 1. Consequently
[G’, E,, M] =1 by [13, Theorem 3.4.8(i)].

(b) As in the proof of part (a), we have M C Z(G’) so that
1=[G,M]. LetacE,zecM,6geG. Thenla,lg,«]] =la,g, 2] = 1.
Hence [M’, G, E]] = 1 and, as above, [M', £, G] = 1.

3. Central automorphisms on G’. It follows from Theorem
2.10(a) that [M(G), G'] < Z(G’). This implies that M(G)/CLAG’) acts
as an Abelian group of central automorphisms on G’. Then

(E(G) N M(G)/(EA(G) N Co(G)) S M(G)/Cu(G)

is also such a group. Denote the corresponding group of automor-
phisms on G' by 2,. Furthermore,

E(G)|Z(G) = (E(G) N M(G))/(E(G) N CG")) < s

by Lemma 2.5(a) and Corollary 2.8. Let U, & 2, denote the corre-
sponding group of automorphisms. From Corollary 2.7 we see that
E(G)/Z(G) has exponent 3. Hence 2, is an elementary Abelian 3-
group of central automorphisms on G'.

TueorEM 3.1. (a) If the exponent Exp(Z(G)) = n is finite,
then Exp (,) divides n.

(b) If G is a p-group, L < W, is periodic, then A is a p-group.

(c) Assume G’ is polycyclic; that is, G’ has a finite ascending
normal series with cyclic factors. Then E(G)/ZA(G) is finite.

Proof. (a) Suppose Z(G') has exponent n. Then, for ¢ G,
aeW, 1=z a]" = [z, a"] by Theorem 2.3(c). Consequently, a* =1
and U, has exponent dividing #.

(b) Now assume 9 is periodic. By Theorem 2.10(a) we may
conclude that [G', M(G), E(G)] =[G, U, A] = 1. Thus A stabilizes
the normal series 1 <][G’, %] <] G’ of G'. By [1, Corollary 5.3.3] we
have that ¥ is a p-group.

(¢) Smirnov [14] has shown that a solvable group of automor-
phisms of a polyeyclic group is polyeyclic. Since then ¥, is finitely
generated, it must be finite.
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THEOREM 3.2. If U, # 1 is not torsionfree, then G’ has a proper
subgroup of finite index and Z(G') is nmot torsionfree.

Proof. For 1=+ aec, the homomorphism from G’ into Z(G)
defined by f.(x) = [#, a] for each x in G’ is nontrivial. We choose
a € E(G) N M(G)\E(G) N C«G’) such that [z, a] = [=, a] for all zin G’.
If « has finite order, then there is an integer n such that a" e C.(G).
Thus 1 = [z, a]* = [#, a*] and G'/Ker f, < Z(G’) is a nontrivial direct
sum of cyclic groups each of order bounded by n. In particular,
there are subgroups H and C of G’ such that G’'/Ker f, = H/Ker f, +
C/Ker f, and C/Ker f, is nontrivial and finite. Consequently H < ¢
and G'/H = C/Ker f, is finite.

Let 1 #ac, o(@) =n < . Then there is an ze G’ such that
1 [z, a] € Z(G'). But [z, a]* = [¢, o] = 1 so that the order of [z, a]
divides n.

COROLLARY 3.3. If E(G) > Z,(G), then G’ has a proper subgroup
of finite index.

Proof. If E(G) > Z(G), then ¥, is a nontrivial torsion subgroup
of ,. Hence 2, == 1 is not torsionfree and the theorem applies.

It is known that no complete, or even Cernikov complete, group
can have a proper subgroup of finite index (see [7, p. 234]). From
this fact we derive part of the following:

COROLLARY 8.4. If G' is Cernikov complete, or if Z(G)N v(&)
has no elements of order three, then E(G) = Z,(G).

Proof. We shall show that ¥, = 1. By Corollary 2.8, E(G) <
Z(G). Hence [G', E(®)] =[G, ] S Z(G) N 7(G).

Let ac, 2e€G. Then, by Corollary 2.7 and Theorem 2.3(c),
1 = [z, ¢’] = [z, ¢]’. By hypothesis, this implies that 1 = [#, a]. Con-
sequently a = 1.

ExaMPLE 3.5. We now construct a group G such that Z,(G) <
E(G) < Z(G).

Let H = {a,, a,, a;: 2*). Levi and van der Waerden [8] have shown
that H has nilpotence class exactly three and is in the variety deter-
mined by e,, Hence E(H) = H = Z(H) > Z,(H). Let K be any group
of nilpotence class at least three having no elements of order three
(see for example [12, p. 198]). By Corollary 3.4, E(K) = Z(K) <
Z(K) C K. Letting G = H x K, we see that E(G) = E(H) X E(K) =
H x Z(K). Hence Z,(G) < E(G) < Z(G).
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REMARK 3.6. Define N,(G) = ) {N,(H) | H maximal Abelian sub-
group of G} to be the A-Norm of G. Kappe [6] has shown that
a € N,(G) if and only if [g, o] = 1 for g, % in G implies that [a, g, 2] = 1.
From Theorem 2.6 it follows immediately that E(G) € N (G) < E(G).

4. Finiteness conditions. We shall say that a word ¢ satisfies
the Schur-Baer property if [G: ¢*(G)] = m finite implies ¢(G) finite
with order which divides a power of m for all groups G.

Schur showed that v, satisfies the Schur-Baer property; Baer
extended this result to any outer commutator word ¢ (see [15]).

Recall that a group G is residually finite if for every z in G,
x # 1, there is a normal subgroup N, of G such that z¢ N, and
G/N, is finite. A group is locally residually finite if every finitely
generated subgroup is residually finite.

We shall need the following theorem. For a proof (due to P.
Hall), see [15, Theorem 2].

THEOREM 4.1. If ¢ generates a locally residually finite variety,
then ¢ satisfies the Schur-Baer property.

THEOREM 4.2. If ¢ele, e}, them ¢ satisfies the Schur-Baer
property.

Proof. Suppose ¢ = ¢,. A group in the variety generated by ¢
is nilpotent by Levi’s Theorem. A finitely generated nilpotent group
is residually finite by P. Hall [4]. Therefore, a finitely generated
group in the variety generated by ¢ is residually finite and Theorem
4.1 applies.

Let ¢ = e, Heineken [5] has shown that a group in the variety
generated by ¢ is locally nilpotent. Hence a finitely generated group
in this variety is also residually finite and the theorem follows as
above.

Recall that a group is an SN* group if it possesses an ascending
normal series with Abelian factors (see [7]). Also, the unique maxi-
mum locally nilpotent normal subgroup of a group is called its Hirsch-
Plotkin radical (see [12]).

We note that in P. Hall’s proof of Theorem 4.1 that we may
extend the result somewhat if we put some restrictions on G itself.
That is, if ¢*(G) is locally residually finite for all G in some quotient-
and subgroup-closed class 3, then ¢ satisfies the Schur-Baer property
for all G in J.

THEOREM 4.3. If G satisfies the maximum or the minimum
condition, or if G is an SN* group, then e, satisfies the Schur-Baer
property for G.
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Proof. Suppose G satisfies the maximum condition. Then, by
[12, Theorem VI. 8. j], we have that the set of left Engel elements
(of all lengths) is the Hirsch-Plotkin radical R. Since then ¢}(G) S R
is locally nilpotent, it is locally residually finite. By the preceding
remark, we have that e, satisfies the Schur-Baer property for G.

Vilyacer [18] has shown that an Engel group satisfying the
minimum condition is locally nilpotent. Plotkin [11] has proved that
an Engel group which is also an SN* group is locally nilpotent.
Hence the remainder of the theorem follows as above.

The validity of the Schur-Baer property in general is one of
several conjectures which have been proposed for the group functions
¢ and ¢* (see [9] and [16]). Modified solutions of two of these come
from the following lemma.

LEMMA 4.4. Suppose G is in a class of groups in which the
Schur-Baer property is satisfied locally for ¢. If G is locally re-
sidually finite and ¢ is finite-valued on G, then ¢(G) is finite.

Proof. This follows from the arguments used in the proofs of
Proposition 1 and its two corollaries in [17].

We note in particular in these proofs that there is a finitely
generated subgroup H of G such that ¢(H) = ¢(G). It follows that
H/¢*(H) is finite. Since H and ¢ satisfy the Schur-Baer property,
#(H) = ¢(G) is finite.

The following two theorems are immediate from these observations.

THEOREM 4.5. If ¢€le, e}, G is locally residually finite, and ¢
ts finite-valued on G, then ¢(G) is finite.

THEOREM 4.6. If ¢cle, e}, ¢ ts finite-valued on G, and G 1is
Sinitely generated and residually finite, then G/¢*(G) is finite.

REFERENCES

1. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.

2. P. Hall, Verbal and marginal subgroups, J. Reine Angew Math., 182 (1940),
156-1517.

3. , Nilpotent groups, Report to the Canad. Math. Congress, 1957.

4. , On the finiteness of certain soluble groups, Proc. London Math. Soc., (3),
9 (1959), 595-622.

5. H. Heineken, Engelsche Elemente der Ldnge drei, Illinois J. Math., 5 (1961), 681-
707.

6. W. Kappe, Die A-Norm einer Gruppe, Illinois J. Math., 5 (1961), 187-197.

7. A. G. Kurosh, The Theory of Groups, Vol. 2, Chelsea, New York, 1960.

8. F. Levi and B. L. van der Waerden, Uber eine besondere Klasse von Gruppen,
Abhandl. Math. Sem. Univ. Hamburg, 9 (1932), 154-158.




214 T. K. TEAGUE

9. Ju. I. Merzljakov, Verbal and marginal subgroups of linear groups, Soviet Math.
Dokl., 8 (1967), 15638-1541.

10. H. Neumann, Varieties of Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete
(N. S.), Band 37, Springer-Verlag, New York, 1967.

11. B. I. Plotkin, On some criteria of locally nilpotent groups, Uspehi Math. Nauk
(N. S.), 9 (1954), no 3, 181-186. (Russian)

12. E. Schenkman, Group Theory, D. Van Nostrand, Princeton, N. J., 1965.

13. W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.

14. D. M. Smirnov, On groups of automorphisms of solvable groups, Mat. Sb., 32 (74)
(1953), 365-384. (Russian)

15. P. W. Stroud, On a property of verbal and marginal subgroups, Proc. Cambridge
Phil. Soc., 61 (1965), 41-48.

16. R. F. Turner-Smith, Marginal subgroup properties for outer commutator words,
Proc. London Math. Soc. (3), 14 (1964), 321-341.

17. ———, Finiteness conditions for verbal subgroups, Journal London Math. Soc.,
41 (1966), 166-176.

18. V. G. Vilyacer, On the theory of locally nilpotent groups, Uspehi Math. Nauk (N. S.),
13 (1958), no. 2, 284-285. (Russian)

Received August 29, 1972. This paper represents part of the author’s Ph.D. dis-
sertation written at Michigan State University under Professor Richard E. Phillips.

HENDRIX COLLEGE



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJT*
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Los Angeles, California 90007
R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY * * *

UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

% C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace
J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 50, No. 1 September, 1974

Gail Atneosen, Sierpinski curves in finite 2-complexes . ................... 1
Bruce Alan Barnes, Representations of B*-algebras on Banach spaces. . . .. 7
George Benke, On the hypergroup structure of central A(p) sets .......... 19
Carlos R. Borges, Absolute extensor spaces: a correction and an

AISWET ettt et e e ettt 29
Tim G. Brook, Local limits and tripleability ............................. 31
Philip Throop Church and James Timourian, Real analytic open maps . . . .. 37
Timothy V. Fossum, The center of a simple algebra ...................... 43
Richard Freiman, Homeomorphisms of long circles without periodic

POTNLS . ettt e e e e e e e et e e 47
B. E. Fullbright, Intersectional properties of certain families of compact

COMVEX SELS « . e vttt e e e et e 57
Harvey Charles Greenwald, Lipschitz spaces on the surface of the unit

sphere in Euclidean n-space. ...............cccccuuiiiiiiiinnnn... 63
Herbert Paul Halpern, Open projections and Borel structures for

CH-algebras . .........o 81
Frederic Timothy Howard, The numer of multinomial coefficients divisible

by a fixed power of aprime. ... ... ... ... .. i 99

Lawrence Stanislaus Husch, Jr. and Ping-Fun Lam, Homeomorphzsms of
manifolds with zero-dimensional sets of nonwanderi

Joseph Edmund Kist, Two characterizations of commutati
Lynn McLinden, An extension of Fenchel’s duality theore
functions and dual minimax problems . .............
Leo Sario and Cecilia Wang, Counterexamples in the biha
classification of Riemannian 2-manifolds . ..........
Saharon Shelah, The Hanf number of omitting complete ty,
Richard Staum, The algebra of bounded continuous functi
nonarchimedeanfield............................
James DeWitt Stein, Some aspects of automatic continuity,
Tommy Kay Teague, On the Engel margin ..............
John Griggs Thompson, Nonsolvable finite groups all of
subgroups are solvable, V........................|
Kung-Wei Yang, Isomorphisms of group extensions . .. ...



	
	
	

