Pacific Journal of

Mathematics

SOME PROPERTIES OF MODULAR CONJUGATION
OPERATOR OF VON NEUMANN ALGEBRAS AND A
NON-COMMUTATIVE RADON-NIKODYM THEOREM WITH A

CHAIN RULE

HUZIHIRO ARAKI




PACIFIC JOURNAL OF MATHEMATICS
Vol. 50, No. 2, 1974

SOME PROPERTIES OF MODULAR CONJUGATION
OPERATOR OF VON NEUMANN ALGEBRAS AND
A NON-COMMUTATIVE RADON-NIKODYM
THEOREM WITH A CHAIN RULE

HuziHIRO ARAKI

For a cyclic and separating vector ¥ of a von Neumann
algebra R, the corresponding modular conjugation operator Jy
is characterized by the property that it is an antiunitary
involution satisfying J3¥ =¥, JyRJy = R’ and (¥, Qjz(Q)¥)=0
for all @€ R where jz(Q) = JyQJy.

The strong closure Vy of the vectors Qjy(@Q)¥ is shown to
be a Jy-invariant pointed closed convex cone which algebrai-
cally span the Hilbert space H. Any Jyp-invariant ¢ ¢ H has
a unique decomposition @ = @; — @, such that @;c Vy and
SE(@,) L s%(D).

There exists a unique bijective homeomorphism oy from
the set of all normal linear functionals on R onto Vy such
that the expectation functional by the vector oy(p) is p. It
satisfies

Il ow(0)) — ow() 11> = [l o1 — o2 |1
= {ll ow(py) + pulo2) 11} 1l 0w(0:) — ow(o2) I} «

Any two oy and oy are related by a unitary «’ in R’ by
woy(p) = og:(p) for all p.

The relation lp, = p. holds if and only if there exists
A(p./0,) € R such that A(p,/0.)os(0,) = ow(p.). The smallest [ is
given by || A(o./p,) ||. It satisfies the chain rule A(os/p.) A(0./0) =
Af{ps/p;)). It coincides with the positive square root of the
measure theoretical Radon-Nikodym derivative if R is com-
mutative.

As an application, it is shown that product of any two
modular conjugation jyj, is an inner automorphism of E.

For a product state @ p; of a C* algebra generated by
finite W* tensor products {Q),.; B;} Q{®;e;1;} of von Neumman
algebras R, it is shown that ®p, and @ o} are equivalent
if and only if 3'[|oy(p;) — ou(p)) ||* < oo where ||ow(0) — au(0) ||
is independent of V.

It is shown that there exists a unitary representation
Uy(g) of the group of all x-automorphisms of R such that
Ug(9)xUr(9)* = g(x) for all xR and Up(g)oy(g*p) = oy)p) for
all normal positive linear functionals p.

1. Introduction. In the Tomita-Takesaki theory of modular
automorphisms [9], two operators 4, and J, are associated with each
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cyclic and separating vector ¥ of a von Neumann algebra R on a
Hilbert space H.
4y is a positive selfadjoint operator such that

(1.1) 4T =T,
(1.2) 2 (1)Q = (4)*Q(ds) " e R

for every Qe R and real t. It is called a modular operator and the
automorphisms 7,(¢) of R is called modular automorphisms.
J = Jy is an antiunitary involution, namely

(1.3) Wz, Jy) = (v, v)
(1.4) JP=1.

It satisfies

(1.5) JU =7,
(1.6) JRJ = R’ .

We shall call J, a modular conjugation operator.
4y and J, are defined through the polar decomposition

(1.7 S = J4°

of the closure of an antilinear operator S, which is defined on its
domain R¥ by

(1.8) SQYU = Q*¥ , QeR.
An important property is
(1.9) Jodydy = 474 .

Our investigation centers around the following property of J = J;
observed in [2]. For any Qe R, Q@ =0, Q = 0, the following strict
inequality holds:

(1.10) (¥, Qi(Q¥) >0
where
(1.11) 7:(Q) = J,QJ, € R .

The validity of (1.10) comes from the property 4, > 0 and the
following identity obtained from (1.5), (1.7), and (1.8):

(1.12) (7, Qi(QY) = (@'Y, 4°Q*7) .

Our first result is the characterization of the modular conjugation
Jy for a given ¥ by (1.3), (1.4), (1.5), (1.6), and (1.10). It should be



VON NEUMANN ALGEBRAS AND RADON-NIKODYM THEOREM 311

remarked that (1.3), (1.4), (1.5), and (1.6) without (1.10) are not suf-
ficient to characterize J,. If (1.5) is dropped, then there exists a
unitary u in the center such that J = J,,.

Our second result is concerned with the strong closure of the set
of all vectors Qj(Q)¥, Qe R. It is shown to be a pointed closed convex
cone which algebraically span H and is selfdual in the sense that any
@ € H satisfying

(1.13) (2,2)20

for all xe V, must be in V,. Any ®¢c V, is shown to have a unique
decomposition @ = @, — @,, satisfying @, ¢ V,, @,€ V, and s?(®,) L s¥(®,).
Our third result is concerned with a possibility of having some
@ ¢ V, for a given normal positive linear functional o such that w, = p
where w, denotes the expectation functional on R by the vector 0.
This turns out to be possible for all p in a unique and nice manner.
It is shown that there exists one and only one element in V,—denoted
as g,0—for any given normal positive linear functional p on R, such
that the expectation functional w,,, by the vector o,0€ Vy is p. The
mapping o, is bicontinuous due to the following inequality:

| ow(0,) — ow(02) [P = || 00 — 0:]]
= {llow(0) + a:(02) |1} || 0u(0:) — ou(02) ] -

Any two o, and ;. are equivalent up to a unitary equivalence, namely
there exists a unitary %' ¢ R’ satisfying

u'04(0) = 04.(0)

for all p.

The fourth result is concerned with the Radon-Nikodym derivative
satisfying a chain rule. The relation lp, = p, for two normal positive

linear functional p, and p, holds if and only if there exists A(o./0) e R
such that A(0./0.)0:(0) = a,(0;). It satisfies the chain rule

A(loa/(oz)A(pz/[Ol) = A(loa/lol) .

If R is commutative, A(0./0,) is the positive square root of the
measure theoretical Radon-Nikodym derivative. For a general R,
A(p,/p,) is different from the noncommutative Radon-Nikodym deriva-
tive found by Sakai [8].

As a corollary to our investigation, we find that product of any
two modular conjugation j,j, is an inner = automorphism of R.

Another application is made in connection with an infinite tensor
product of von Neumann algebras R;. We define

d'(0,, 0;) = || 04(0,) — 04(02) ||
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which is independent of the choice of eyclic and separating vector 7.
For normal states o; and p; of each R;, we consider product states
® p; and Q ) on the C* algebra A generated (as an inductive limit)
by finite W* tensor products {®;.; B;} = R(I) where I is any finite
index set. The representations of A canonically associated with & o;
and @ p; are quasi-equivalent if and only if

2d'(0;, 3)° < oo

and the central supports of 0; and o) are the same. The distance d’
is in general larger than Bures distance [5]. They coincides if o, and
0, commute.

As a further application, we show that there exists a unitary
representation U,(g) of the group of all x-automorphisms of R such
that Un(g)xUx(9)* = g(x) for all xe R and Uy(g)ow(9*0) = ow(0) for all
normal positive linear functionals p.

We also give a simple proof of the continuity of the modular
automorphism 7,(¢t)x in o for a fixed e R and bounded ¢.

2. A characterization of the modular conjugation operator,

THEOREM 1. Let ¥ be a cyclic and separating vector for a von
Neumann algebra R on H. Amn operator J is the modular conjugation
for ¥ if and only if the following 5 conditions are fulfilled.

(i) =z, Jy) = (y, x) for all », ye H.

(i) J* = 1.
(iii) JRJ = R
(iv) JU = V.

(v) 7, Q5@Q)7) =0 for all @ € R where j(Q) = JQJ. Theequality
in (v) holds if and only if @ = 0.

Proof. It is known [9] that the modular conjugation .J; for the
vector ¥ satisfies (i), (ii), (iii), and (iv). (v) with the strict inequality for
@ # 0 is already proved in §1.

We now prove that J satisfying the 5 conditions must by J,.
From (i), it follows that J is antilinear. From (ii), it follows that J
is bijective. Hence J is antiunitary.

Let T be defined on R¥ by

@.1) TQV = JQ*¥, QecR.

Since ¥ is separating for R, Q. = Q. implies @, = Q, and hence
JQIY = JQ:¥. Therefore, T is well-defined and is linear. Since ¥ is
cyclic for R, T has a dense domain. By (iv) and (v),

(2.2) (Q7, TQY) = (¥, Q*j(@")¥) =20, QecR.
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Thus T is positive on its domain and hence is symmetric.
By (1.8) and (2.1), we have

(2.3) T=JS.

Since J preserves norm, we have T = JS and

(2.4) D(T) = D(S) = D(4y?) .
Define

(2.5) u=JJy.

Both J and J, are antiunitary. Hence w is unitary. We have
(2.6) T = udy?,

where (1.7) is used. We shall now show that 7T is selfadjoint. Then
(2.2) implies that T is positive and hence (2.6) implies T = 4} and
# = 1, which proves J = Jy by (2.5).

From (2.3), we have'

2.7) T* = S*J .

It is known [9] that R'? is a core of S*. (Namely, the closure
of restriction of S* to R'? is S*.) By (iii), JR?Y = R'Y'. Hence RT
is a core of T*. Since RY is the domain of T and T* O T, we have
T* = T.

The condition (iv) of Theorem 1 is not essential as is seen in the
next result.

THEOREM 2. Let ¥ be cyclic and separating for R in H. An
operator J satisfies conditions (i), (i), (iii), and (v) of Theorem 1 if and
only if there exists a unitary u in the center of R such that

(2.8) J = Jul = weu*) .

The condition (2.8) is equivalent to JJ, being in RN R'.
For the proof we need preliminary lemmas.

LEMMA 1. The weakly closed linear hull of the set of all operators
Qj(@), Qe R is {RU R'}".

Proof. For arbitrary @, ¢ R and Q,< R’, we have
QQ: = 47 36" XG(X,)

X, =@Q + ej(@)e R,

I This part of proof has been simplified by a suggestion of Dr. G. Elliott.
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where j(Q,) = JQ.J € R, j(X,) = JX,J.

LEMMA 2. Let W be a von Neumann algebra on H such that W’
18 commutative. If T =T, + ¥_ is a cyclic vector for W in H,
and

(2.9) ¥, Q)+ ¥, Q7,)=0

Jor all Qe W, then there exists a selfadjoint operator A such that its
spectral projections are in the center W' of W and

(2.10) SV T_ = As" (T )T,

where s¥'(¥,) are projections onto the closures of WV ..

Proof. s"'(¥'.) belong to W’ which is commutative and hence is
the center of W. Let

E=s"T)s"¥T).
Then
(2.11) EV. = sV - .

We define A tobe 0 on (1 — E)H. If E = 0, (2.10) is trivially satisfied.
Hence we consider the case E = 0.

We are going to define a selfadjoint operator A, = AE on EH
satisfying

2.12) EV_ = {AEV,

which implies (2.10) in view of (2.11).
Since WEV, = EWV¥, are dense in Es"'(¥.)H = EH, EV, are
both eyclic for WE on EH. Define an operator A, by

(2.13) AQEV, = —iQEV_, QeW

on a dense subset WE?, of EH.
If QE¥. = 0, then (2.9), where Q is replaced by EQ}QE, implies

(@Q.EV., QEV.) = (¥, BQ}QET.)
— —(W_, EQ!QEV.)
=0

for all @, W. Therefore QE¥_ = 0. Hence QE¥, = QEV, for
Q, @ ¢ W implies QEV_ = Q E¥_, which shows that 4, is well-defined.

A, is obviously linear.
From (2.9), we have for @, Q,¢ W
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(Qle‘"h AZQZEW+) = (w-h _iEQl*QZEw'—-)
= (-7, EQrQEY.)
= (AzQwa+, Qng.;_) .

Therefore A, is symmetric. A, obviously commutes with Qe W on
its domain.

Since ¥ is cyclic for W, WEY¥ = EWV is dense in EH. Hence
EV, 4+ EV_= EV is cyclic for EW on EH. It is therefore separating
for the commutant of EW on EH, which is EW".

From (2.9), we have

(E¥, — EV_, QEV, — EV_)) = (E¥. + EV_, QEV, +EV.)).

Hence || QE?, — E¥_)|]* = 0 implies || QEY¥ ||> = 0 for any Qe W. As
we have seen, K is separating for EW’ and hence E¥, — E¥ _ is also
separating for EW’. It is therefore cyclic on EH for the commutant
of EW’ on EH which is EW.

Since

(A, + )QEY . = 1QEY, — EV ),
(Az - Z)QEw+ = *iQ(Ew+ + Ellt) ’

for all Qe W, A, + ¢ and A, — ¢ have both dense ranges in EH by
cyclicity of E¥, — EV¥_ and E¥, + E¥_ for EW. Therefore, the
closure 4, = A, of A, is selfadjoint. By (2.13) with @ = 1, we have
(2.12).

REMARK. The assumption that 7 is cyclic for W can be omitted.
Let e =s"'(¥). Then (1—e)¥, = —(1—¢)¥_. Substituting @ = (1 —e¢)
into (2.9), we obtain

A -, =[1-e¥_[F=0.

Hence we may restrict our attention to ¢W on eH with ¥, ¥, ¥_ all
in eH and apply proof of Lemma 2.

LeMmA 8. If Qe RN R, then
(2-14) JLFQJW = Qx

where Jy 1s the modular conjugation operator for a cyclic and separat-
ing vector U of R.

Proof. It is known ([1], [9]) that the center of R is elementwise
invariant under any KMS automorphisms. Hence @ ¢ R N R’ commutes
with 4,. We have
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JoQJ)Y = JQ¥ = 4°Q*Y
= Q' UYT = QT .

By (iii) of Theorem 1, J,(R N R')J, = RN R’. Since ¥ is separating
for RO RN R, we have (2.14).

Proof of Theorem 2. Assume that J satisfies (i), (ii), (iii), and (v)
of Theorem 1. From (i) and (ii), J is an antiunitary operator. Set

(2.15) v, =2(T £ JU).
We have

(2.16) JU, = £V, ,
2.17) r=v. +v_.

By (2.16), we have for Q< R

(¥, QT ,) = TV, UQRIJY )
= (J¥,, JQI@QY.)
=Y., Q@Y.)

where the second equality is due to Q7(Q) = j(Q)Q and the last equality
is due to (i). Similarly,

(7., Q@AY = — (¥, QI@Q)75) .
Hence
1Im (7, QIQ)?) = (¥, Q@QYT) + (¥_, Q@Q)Y.) .

By (v), this must vanish. By Lemma 1, the weakly closed linear
hull of Q5(Q), Qe Ris (R U R’Y’. Setting W = (R U R')”, the premises
of Lemma 2 are satisfied. Note that W’ = RN R’ is the center of R
and is commutative.

Hence there exists a selfadjoint operator A affiliated with B N R’
such that (2.10) is satisfied. We define a unitary operator w in RN R’
by

w=3s"(¥ )1 — (%))
(2.18) + (1 — 1A)Q + AV L) (W)
L@ — sV(TL))

Because ¥ is cyclic for R, it is cyclic for W. Hence s"'(¥T",)Vs"'(¥T_) =
s”'(¥) = 1. Thus

A —=s"FNA - s"(T) =0

and w is unitary.
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From (2.10) and (2.18), we have

w¥ =1 — s W),
(2.19) (1 + AY s (T)T,
T il — ST )T .
Since JWJ = W, both W¥. and W¥_ are invariant under .J.

Therefore s”'(¥.) both commute with J. We shall next prove that
A commutes with J.

As we have seen, K = s"'(¥ )s"'(¥_) commutes with J. From
(2.16) and JWJ = W, the domain WEV, of A, is invariant under J
and A, commutes with J. Hence the closure A4, of A, commutes with
J, because J preserves norm. From the uniqueness of the spectral
projections and

S NE, = A, = JAJ = g N ET)

we have E, = JE,J for all spectral projections E, of A,. Hence J
commutes with (1 + A%,
From (2.19) and (2.16), we have

Jul = u¥ .

Since # is in the center of R, it commutes with Qj(Q), Qe R. Since
% is unitary, we have

(¥, QIQu¥) = (¥, Qi(Q¥) = 0 .
By Theorem 1,
J=dJu -

Since the unitary mapping H—uH = H, ¥ —-u¥, R—uRu* = R
brings S; to uS,u* = S.», we have

UJyu* = Jup .

Hence we have (2.8).
By Lemma 3, we have

which is a unitary operator in the center of R.

Conversely, let w be a unitary operator in RN R’ and JJ, = w.
Then J = wJ, satisfies (i), (ii), (iii), and (v) of Theorem 1, where (ii) is
due to Lemma 3:

(wdy)® = wSywd, = ww* = 1.

The following example shows the case where (i), (ii), (iii), and (iv)
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are satisfied but J = J,. The center in this example is trivial and
J # wJyu* for any unitary w in the center.

ExAMPLE. Let H, be n dimensional Hilbert space and R = B(H,)®1
be the algebra of 2 x 2 matrices on H, = H,® H,. Let ¢, ¢, be an
orthonormal basis of H, and e; = ¢; R e;€ H,. Let ¥ = 27(e, + ¢y,),
O = 2%, + e,). Then Jye; = e;; while Jye; = e; for ¢+ 7 and
Joe; = e;; for © == j. Hence J, # J,. However, J = J, satisfies (i), (ii),
and (iii) because it is a modular conjugation operator for @ and
satisfies (iv).

REMARK. The condition (iii) is used only in the proof of the essential
selfadjointness in Theorem 1. If R is a finite matrix algebra then (i),
(ii), (iv), and (v) are sufficient to proveJ = J,. Whether (iii) is necessary
for more general case is an open question.

3. Technical lemmas concerning 4;Q47*. We denote by 2, the
set of all operators @ such that there exists a family of bounded linear
operators 7,(z)Q depending on a complex parameter z, which is holo-
morphic in z for all z and satisfies

(3.1) T (0)Q = J¥Q47H
for real t.
For real z, we have
3.2) T,(R)QAYD = A¥QD , @ e D(4¥) .

If @ is an entire vector of log 4,, then the left hand side is an entire
function of z and hence Q@ must be an entire vector of log 4, and
(8.2) holds for all z. Since vectors, on which log 4, is bounded, are
entire vector of log 4, and form a dense set of analytic vectors for
4% for any real «, (3.2) holds for any z and @< D(4¥) by Nelson’s
theorem.

If Q, and Q, are in Wy, then (7,(2)Q)7+(?)Q, is an entire function
of z and satisfies (8.1) for @ = @.Q,. Hence Q,Q,c U, and

(8.3) T(2)(@iQ:) = {T:(R)Qu}Tu(R)Q:

Similarly, @ ¢ 9, implies @* € A, and

(3.4) 7(2)(Q") = (z:(3)Q)" -
We define

(3.5) Uy, =W NR, Dy =T,

(3.6) S—?Iqrg = Szty N R ’ DWZ = i)lll'zw .
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If Qe Ny, then [7,(2)Q, Q] = 0 for any @, € R’ and real z, hence
for all z by an analytic continuation. Therefore 7,(2)Q € y,. Similarly,
if Qe Uy, then 7,(2)Q € Ay, for all z.

For any L' function f, we define

3.7) Qf) = S 43QAF ()AL .

It is bounded <HQ(f)H = ||Q||5 | f@®)] dt>, Q(f) e Rif Qe Rand Q(f) e R’

if Qe R’. If fis a C= function such that e**f() is bounded for any
real «, and

(3.8) 7ty = @) | e Fovan
then Q(f) €2, and

(3.9 @) = Q) »
(3.10) Fut) = @r) g == F) AN

We shall use the following specific function later:

(3.11) i) = (Br) " exp{—-t*/8}, B>0.

It has the property that Q(f%) is in the weak closure of convex hull
of 44Q47* and

(3.12) %glgl Q) =@ -

If 7 has a compact support, then Q(f)¥ is an analytic vector of
4% for any real a. Since ‘

QUAY = f(log 4,)Q¥

and R? is dense, such vectors Q(f)¥ are dense and hence D, is a
core of 4 for arbitrary z. Similarly, D,, is also a core of 4: for
arbitrary z.

LEMMA 4. Let Y = Sxdpz be a positive selfadjoint operator and
D be a core of Y. Then D is a core of Y* for 0 S a < 1.

Proof. Any vector in the domain of Y is in the domain of Y&,
0<a=1l. Then

1Yz|*=|pY|]+[1—p)Yu|
(3.13) =l + 1A — p) Y|
sllell*+ (| Yol .
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If 2,eD, x,—2xe D(Y) and Yz, — Yz, then Yz, is Cauchy by (3.13)
and hence € D((Y*| D)”). Since D(Y) is a core of Y*, 0<a <1 D
is also a core of Y-.

LEMMA 5. For Qe R, the following two conditions are equivalent.
(3.14) QU € D(432+=) .
(3.15) Q*T € D(477) .

If these comditions are satisfied for am « > 0, then there exists
a family of closable operators T,(2)Q for Im ze[—a, 0] with a common
domain Dy, such that

(1) 74(2)Q is affiliated with R,

(2) 74(2)Qx is comtinuous in z for Imze[—a, 0] and analytic
wm z for z€[—a, 0) if x€ Dy,,

(3) 7:(2)Qx = 4¥Q47%x, %€ Dy,

(4) (Ee()Q)*x = 47Q* 477%x, x € Dy,.

Proof. Due to Jy4i = 4v°Jy, we have
(3.16) D(47%) = JoD(45) .
Hence (3.15) is equivalent to

47°QV = J,Q*V e D(4y)

which is equivalent to (3.14).
Assume that Q satisfies (3.14) and (3.15). Define an operator A,
on Dy, by

(3.17) AQV = Q4QV , QeUp,

where Imze[—a, 0]. By (3.14), Q¥ is in the domain of 47 for
Imze[—a, 0]. Since ¥ is separating for R’ DUy, A, is well-defined
and linear.

To show that A, is closable, we show that its adjoint has a dense
domain. For @, and Q) in ;,, we have

(QY, A.Q¥) = (QQY, 47QY)
= (47"{z(—7 — 1/2)(Q*Q)}Y, QY)
(3.18) = (Jede”* QU QY Jrdi*Q*Y)
= (4FPQ*Y, 477" Q*QY)
= (QFQ*Y, Q)
where Q*¥ is in the domain of 4¥ by (8.15). This proves that D(4})
contains a dense set Dy, and A, is closable. We denote A4, = 7,(2)Q.
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(1) By (3.17), we have
QIAQY = QO 47QY = A.QQY

for any Q! and @; in %A;,. Hence A, commutes with Qe %,, and is
affiliated with (2;,) = R.
(2) By (3.17), we have

E(2)QQY = Q4r7Q¥

which has the stated continuity and analyticity due to (3.14).
(3) This follows from the following computation:

47Q4r*Q'Y = A7Q{ty(—2)Q'}
= 4#{te(—2)Q" QY
= Q4FQVU = AQT .
(4) This follows from the following computation where (3.18) is
used.

(Q7, E(2)Q)QY) = (QU4FQ*Y, QF)
= (4¥{to(—2)QIQ* T, Q:¥)
= (47Q*{z(—2)Q}Y, Q¥)
= (47Q*477QY, QF) .

COROLLARY. For Q< R, the following two conditions are equiva-
lent.

(3.19) QU € D(47) .
(3.20) Q*T e D(4¢'®+%) .

If these conditions are satisfied for an a > 0, then there exists a
family of closable operators T,(2)@ for Imze|0, a] with a common
domain Dy, such that

(1) 72(»)Q 1is affiliated with R,

(2) 74(2)Qz s continuous in 2z for Imze 0, a] and analytic in
z for Imze (0, @) if x€ Dy,

(3) To(2)Qu = 47Q4v*x, € Dy,

(4) (Fp(2)Q)*x = 4iFQ*45x, © € Dy,.

Proof. Interchange roles of @ and @* in Lemma 5 and denote the
restriction of {Z4(Z)(Q*)}* to Dy, by T4(2)Q. The only change is in the
analyticity at the boundary Imz = a.

LEMMA 6. Assume that @ R and

(3.21) 4QU = QU
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for some @, € R and a real o+ 0. Then there exists a family of
operators t4(2)Q € R for Imz between 0 and —a (i.e., in [0, —a] if
a <0 and [—a, 0] if a > 0) such that

(1) 74(2)Q is strongly continuous in z for Im z € [0, —a] or [—«, 0]
and analytic in z for Imze (0, —a) or (—q, 0).

(2) 7(2)Qx = 47Q4v"x, x<€ D(47%).

(3) (ze(2)@)*x = 4¥Q* 47"z, x e D(4¥).

(4) ||7(2)Q | = max {||Q]], || @[]}

(5) w(0)Q =Q, To(—i)Q = Q..

Proof. First assume a > 0. Since Q¥ e D(4y?) for any Q,c R,
(3.21) implies (8.14). Consider

f(2) = (=, Te(2)Qy)
for x, ye Dy,. If o = Q¥, y = Q;¥, then

|f(2)| = [(QFQY, 47QY) |
= |QFQT ] || 4™ QY ||
= | QFQY || {|| 4:Q7 |I* + || Q¥ [P}
for Imze[—a, 0] due to (3.13). Since f(2) is continuous for Imze
[—a, 0] and is holomorphic for Im z e (—«, 0), the three line theorem

is applicable.
On the boundary Im z = 0, we have

A= llellllyll|QI, ¢ real.

For z = s — 1, we have

{T:(2)QQY = Q47QY
= Q4yQY = {4¥Q.47*}Q'Y .
Hence

f(s — i) =l lylll|Q]l, s real

Therefore,

f@)| = ll=][[lyll max {[|Q.1], [Q]]} -

This implies that #(2)Q, Imze [—a, 0] is bounded. We denote its
closure by 7(2)Q. It satisfies (4) due to the above estimate. (5) follows
from definition. From (1) of Lemma 5, 7(2)Q € R. Since Dy, is a core
of 4% for any z, we have (2) and (3) from (3) and (4) of Lemma 5.

(1) holds on a dense set Dy, by (2) of Lemma 5. Due to the
uniform boundedness (4), the continuity statement holds on any vector.
Then analyticity statement also holds on any vector by Cauchy integral
theorem.
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The proof for the case o < 0 is the same as the case a > 0.

4, The cone V& Let V: be the weak closure of the set of
vectors

(4.1) {4:Q7; Qe R, Q =z 0}

where a0, 1/2]. V} is &% of Takesaki [9]. Since 4¥°Q¥ = J, Q¥ =
Jr(@Q)¥ for Qe R, Q =0, Vi* is & of Takesaki.

THEOREM 3.

(1) Vg is a pointed weakly closed convex come invariant under
43

(2) @eVy is in the domain of 4y and
{4.2) Je® = 4P,

(3) 43V} is a dense subset of V3.

(4) J,V§= Vi~

(5) The dual of Vi is V'™~

(6) Vi= 4" {Vi*n DAy ).

(7)) If Qe R and Q¥ e Vg, then 4¥Q47* is bounded by || Q|| for
Imze|0, 2a] and satisfies

(4.3) (47Q4¥)” = Q*,
(4.4) (47Q45)~ =0,

where the bar indicates the closure.

Conversely, iof 47°Q45 is a positive bounded operator with a dense
domain affiliated with R, then QU ¢ VE.

(8) If 0c Vi, a =1/4 and w, < lwy for some 1 > 0, then there
exists Q€ R such that

(4.5) ?=Q¥, [QI=10",
(4¥Q47%)~ 1is bounded by 1'? for Imze[2a — 1/2, 1/2].
(9) If Q¥ e Vi, QeR, then (I|Q|] — Q¥ e Vi.
Proof. Vg is obviously a weakly closed convex cone. Since
AH4QY) = 45Q.¥ , Q, = 43Q47

and Q,e R, Q, =0, Vi is invariant under 4.

We shall prove that Vg is pointed after (6).
(2) If Qe R, Q =0, we have

Jo(diQY) = 47T Q¥ = 47 Q¥
— Aé]}fz—za)(A;ng) .
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Hence 43Q¥ satisfies (4.2).

Since Jy is bounded and 4¢"**® is closed, (4.2) holds for any @ in
the strong closure of the set (4.1). Since the set (4.1) is convex, its
strong and weak closures coincide.

(3) Since (4.1) is convex, Vg is the strong closure of (4.1). If
@ c Vi, there exists Q, ¢ R, Q, = 0 satisfying lim Q, ¥ = @. By (3.13),

1 4%Q. 7 — O) P < || 4QY — D) [P + || QY — 2]
= [|JH@.F — )| + {[|Q.F — @[*—0.
This proves 4377% c V. By definition, 43.7% contains a dense subset

of Vi%.
(4) This follows from J; = 1 and

JediQF = 4yQU

for Qe R, Q = 0.
(5) Let Q,Q@.¢R,Q,=0,Q,=0. Then

(45Q.7, 447Q.¥) = (Q.Y, 47°Q,7)
= (7, Qjr(Q)¥) = 0
due to @, =0, 74(Q,) = 0 and [Q,, 55(Q,)] = 0. Hence

(4.6) (Vi)Y D Vy'*=

where (V§) denotes the set of all @ such that (@, ) = 0 for every
re Vi.
Next let @ e (47.57%). Let f§ be given by (38.11) and let

@1 0, = S A¢0 FE(t)dt .
Since 4§.27°% is invariant under 4¥, we have @;¢ (4§.°%). Furthermore,
4.8) 150, = S L0 F5(t — 2)dt

for real z and the right hand side has an analytic continuation to all
z. Hence @, is an entire vector of log 4, and is in domain of 4 for
arbitrary z. Hence

4505 € () = F* = 4 V3

where the last equality is due to (2) and (4), for example, and the
first equality is due to [9]. Hence @, e 4'*=*Z% By (3), @, V.
Since @ = lim,_, ®;, we have @ e V} =,

By (8), we now have

4.9 (V3Y c (4§78 < V==
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By (4.6) and (4.9) we have (5).
(6) First consider the case a < 1/4.
For @ € V§, there exists @, € R, Q, = 0 such that @ = lim 45Q,7.

We use (3.13), in which we replace « by 4Q, — Q.)¥,Y by 4y
and « by 1/2. We have
|| 43" {45(Q, — QL))
S 143Qn — QTP + || 479Qn — QT |
= [|43(@Qn — QT |I* + [ Jed3(Q, — Q)T |I* .
Hence 4y*Q,¥ is Cauchy and has a strong limit 4%*~*@, which must
be in Vi* by definition. Hence
Ve 457"Vt N D4z} .
Let x e V¥ N D(45 %) and ye V. Then
(4, 4572) = ('Y, ©) 2 0
due to di*ye Vit (V). By (3),
(V;T]z—a)r > A;“"‘{ Vq}ﬂ n D(A§_1/4)} ]

By (5), (Vi**) = V% and hence we have (6).

The case a > 1/4 follows from the case a < 1/4 by (4).

(1) Let®e Vgand —@e Vg. By (5), &L Vi*=. The linear span
of Vi* = contains 442 %, ¥ = Wy, ¥, which is dense. Hence @ = 0 and
Vg is pointed.

(7)) If Q¥ e Vg, then Q¥ e D(4y**) and

QU = 4°Q*Y = 4y QU
due to (4.2). Hence Q¥ ¢ D(47*) and
477Q¥ = Q*T .

By Lemma 6, we obtain the first half of (7) except for (4.4).
By (3) and (4), Vi*™ D 4;°F”". By (5),

O é (Agax’ qu) = (ﬂ;; TU(ia)Qw)

for all xe &?*. Hence 7,(ta)Q = 0 which shows (4.4).

Let Q, = (47°Q4%)~. Then Q4;0 = 43Q,® holds for a dense set
of vectors @. Hence 43Q*¥ = Q;¥, which implies 4y* Q¥ = J, 4;Q*¥ =
4°Q,¥. Therefore Q¥ = 4;Q,¥. Since Q, =0 by (4.4), Q¥ e V3.

(8) If w, < lwy, there exists @ e R’ such that w, = wyy, and
[|Q"|] < I'®. Then there exists a partial isometry »’ in R’ such that

O =uwQU.



326 HUZIHIRO ARAKI

By (4.2) we have
AP0 = Jp@ = J(w'QY .

By (4), J,® € V}** and hence by (7), @, = j»(#'Q’) e R has bounded
7(2)Q, for Imze[0,1 — 2a]. Setting @ = 74(7/2 — 2¢a)Q,, we have
0=QV,QecR and ||Q|=||QI =" (LFRL¥) = t(2)Q with
2 =2+ (1/2 — 2a)7 and hence is bounded by ['* for Imze [2a — 1/2,
1/2] and is positive for Imz = a.

(9) IfQ¥e V¥ Qe R, then 43Q4;“ is bounded by ||Q]||, symmetric
and affiliated with R due to (7). Hence

QI -7 = (| Q- 4:Q47

is bounded, positive and affiliated with R. By the last half of (7),
(1Rl —Q)¥ e Vy.

5. The cone V;. We denote V, = V}" due to an importance of
1/4
e,

THEOREM 4. Let ¥ be a cyclic and separating vector for R on H.
(1) Vi is a pointed closed selfdual convex come.
(2) Vi satisfies

(5.1) LiVe=Ve, —o0o <t< oo,

(5.2) Jyo =2, xeVy.

(5.3) QiR Ve Vi, QeR.

(5-4) (, Q@) =0, z,yecVy, QekR.
(3) Vi is the strong closure of the set of

(5.5) Qi (Q¥, (ek.

(4) If @V and @ is separating or cyclic for R, then @ is
separating and cyclic for R and V, = Vy.

(5) If @ is a cyclic and separating vector for R, them @€ Vy
if and only if J, = Jr and

(5.6) @, %) =0

for all ze RN R, 2=0.
(6) Any ®c H has a unique decomposition

(5.7) Q=0 —0,+ UP; — D,)
such that @,€ Vy,1=1,2, 3,4, and
(5.8) 0, 19,, 0,10,.
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(7) If @.€ Vy, ¢ Vi and O, 1 @,, then
(5.9) s¥®@,) L s%(@,) , s¥(D) L s¥(Dy),

where s*(@) and s¥' (@) denote projections onto closures of R'® and RO,
respectively.
(8) If @, Vy and @,€ Vy, then

(5.10) lof, — wi, || 2 | 8, — &,

where W§ s the expectation functional on R by a wvector @.

Proof. (1), (5.1) and (5.2) follows from Theorem 3. Because

{Q7- (NI} = (QQLVI(QQ.) »

(5.8) follows from (3). (5.4) then follows by Vi = V.
(8) Let Q(f%) be given by (3.7) and (3.11) for Qe R. Then

QUIHQUDY = QUILFRSE)Y
= 4/'QQ!T eV,

where
Q= o (i/HR(fH)e R .
Hence
Q@)Y = lim Q(f7)n(Q(fENT € Vi .
On the other hand, if we set

Qo5 = Tu(—t/QT(f)}, QeR, @=0,

then
Quelr(@:p)¥ = Quedy* Q5T = ASQU(fENT .
We have
lim @XfHYY = @V = Q¥
| 4MQIHSFENY — QF}P?

= [ 4HQHFY — QUL + 1 QU(fH)Y — QP |
=2[[QfHY - Q¥ P —0.

Hence 43*7”* is in the strong closure of the set (5.5) and we have (3).

(4) If R'® or RO is dense, then RO = J,R'J,® = J,R'® or R'® =
JrRJ;@ = JyR® is dense. Hence if @ in V, is separating or cyeclic,
then @ is cyclic and separating. If ®¢ V,, then J, satisfies
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J@ =0, (9, Q5:(Q)P)=0

due to (5.2) and (5.4). Hence J, = Jy by Theorem 1. Since V, is
the strong closure of Qj,(Q)?, we have V,C V, due to (5.3) and
Jr = Jo. Since V, and V, are selfdual, we have V,=V,D Vi=V,
and hence V, = V,.

(5) If ®eVy, then J, =J, as we have seen and (5.6) holds
because z = z'%j,(z"?) due to Lemma 3. Conversely, assume J, = Jy.
By (6) and (7), which we shall prove below, we have

(5.11) 6=0,—-0,, 0,c¢Vy, 0,cVy,
(5.12) s%@,) L s%(®,) .

Assume that (9,, Qj(Q)®.) > 0 for some @ € B. Let Q, = s*(@,)Qs*(D.).
We then have by (5.12)
(@, QJx(Q)P)
= —(9,, QJr(Q)Q) = — (9, Q5(@)P,) <0,
where we have used s%@,)0, = @, j,{s*(®.)} = s¥(9,) (because of

JrR'D, = j:(R)J D, = R®,) and s¥(@,)P, = @,, in the second equality.
This contradicts with J, = J, and (5.4) for the cone V,. Hence

(5.13) (2, Qir(@)P;) = 0

due to (5.4) and (5.11).
From (5.13), we have

s"(@,) L s7(2)

where W is the von Neumann algebra generated by Qj,(@). By
Lemma 1, W = RN R'. Hence 2z =s5""(0,)e RN R’ and

(w‘y z@) = —(w’ ¢2) g 0

by (5.6). Since ®,¢ V;, we have (¥, ®,) =0 by V; = V; and hence
(T, 0) = 0. We shall see that this implies @, = 0 in the proof of (7)
and hence @ = @,¢ V5.

(6) Let @e H. Define

(5.14) O, =27 + JD), &;,=20) (D — JDy).
Then
(5.15) Q=0,+10,, J0,=90,, J0,=0,.

Conversely, if (5.15) is satisfied, @, and @; are uniquely given by
(5.14).
We now show that any @ ¢ H satisfying J,® = @ has a unique
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decomposition

(5.16) 6=0,—0,, 0.cV,, 0,cVy, 0,10,.
Let

(5.17) d=inf{||® — @'|; 9 € Vy}

(5.18) lianQ%—@H:d, 0, eVy.

Since (5.18) implies that the sequence @), is uniformly bounded, there
exists a weakly converging subsequence @) ,:

w — lirkn D=9, .

Then

10 — @, = (|0, ]I + & — lim || @ |[*
By (5.17) and || 9,|]* < lim ||@,,, ||>, we have
(5.19) | — @, =d*.

Let ¢, =@, — @ and 2 Vy. Then @, + xxecV,y for = 0. We
have from (5.17) and (5.19)

N0, =d" < [[@ — (D, + M) ||?
=1 2: 1" + M2(2,, ) + [ @]}
where (@, z) is real due to J,0, = @, and J,x = . We then have
(@2; x) g 0

which implies @,¢ Vy = V5.
Since @, and @, are in V,, (@, @,) = 0. For x> 0,

=2 —- Q0 —-N" = |91 — M2(D,, 22) — M| 0. 1[)

which implies (@, @,) = 0.

To prove the uniqueness of the decomposition (5.16), let @ = @, -
@, = @) — @, be two such decompositions. For any veectors z,, x,, s,
we have

(5.20) G(#,, ©,, x;) = det (%, 2;))(=dex X*X) = 0.
Since (@,, @) are all real, we have

0= G, 9, —0,)
(5.21) = (2.0 = o[ | o1 {]* ! @ |?
— (2, ;|2 1* — 2| 211" || 2. |[(21, @s) »
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0 < G, 0, —))
(5.22) = (1o = 12 [ @, [ D2 11°
— (@, Q)| OF — 20,9 [|X(D,, P3) .

Since (@, ;) =0 by V;= V,, either all terms in (5.21) are
negative or all terms in (5.22) are negative. In the first case, all
terms in (5.21) vanish and we have the following three alternatives:

Case (i). @, =0,0 = —@,. Then

10:1f = (2, 0) = — (9, P)) =0
and hence @, = 0 = @, and @, = —@ = Q).
Case (ii). @,=0,0 = @,. Then
)" = —(9;,9) = — (9, P) =<0
and hence ¢, =0=0, 0, =0 = @,.
Case (iii). (@5, @,) =0 and ||®,||* = ||®!|]>. Then
0.1 = l|2: 1] = (@, ) = (2], D))
which implies ||@, — @}|* = 0. Hence @, = 9], @, = @;. If all terms
in (5.22) vanish, we have the same argument.

(7) First we prove that any nonzero @ ¢ V;, is never orthogonal
to ¥. By (8), there exists @, e R such that

0 = lim Q.js(Q.)7 .
Assume that (¥, @) = 0. Then
0 = lim (¥, Qur(Q)¥)
= lim || 4/'Q.7 |-
Let ¢ = Qj@QV, Q € K, @ = Q(f9). Then

(x, @) = lim (v, Q.7+(Q.)¥)
= lim (j(Q:Q)7, Q*Q.Y¥)
= lim || 4*Q*Q.7 ||
= lim || {z4(1/4)Q}* 45Q. ¥ ||*
=0.
By (3.12) and Lemma 1 (or (3) and (6)), such x is total in H and

hence @ = 0.
Since V,, = V, for any separating @, in Vy, we have

(5.23) (@, @) >0
if @,¢ Vy, @,¢ Vy, @, is separating for R and @, + 0.
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We now assume that @,¢ Vy, @, Vy and @, 1 @,. Let s and ¢
denote s*(®,) and s*'(@,), respectively. Since J,R'®, = j(R')P, = R,
we have j,(s) = s’. Hence J, commutes with ss’.

Consider the space H = ss’H and a von Neumann algebra R = sRss’
on H. 0, is in H and is cyclic and separating for B by definition of
s and §’. Since J, commutes with ss’, the restriction of J, to H is
the modular conjugation operator fq,l for @, on H due to Theorem 1.
We also have

55'Qir(Q)0, = 55'Qjr(Q)ssD, = 7, (Q)0,

where Q = sQs. Hence ss'Vy = V..
Let 9, = ss'0,. @,¢ V, because @,¢ Vy. We also have

(@, 0) = (D, @) =0 .

By (5.23), we have &, = 0.
Denoting ® = (1 — s)(1 — §)@,, ?, = s(1—8')®,, and @, = (1 — 5)s'D,,
we have

O, =P+ P+ Py

Since J,@0, = @,, and j,(s) = s’, we have J,, = ®,. We now prove
P, =P, =0.

Assume @, 0 and let s, = s%(®.), si = s™(®), k =1,2. Then
ge(s) = 8h, Jo(ss) = 81, 8, <5, 8, <1 — s. Let ¢(F) denote the central
support of Ec(R U R’)’. Then j.(c(E)) = ¢(E)* = ¢(&) by Lemma 3.
Hence ¢(j(E)) = ¢(E). Setting E = s,s], we have c(s;s]) = ¢(s,87). Since
s81P, = P, %0, c(s;8) = 0. We have c(s)) = c(sis]) = c(s.s) and ¢(sy) =
¢(s,s)). Therefore, there exists a partial isometry ue R such that
wru < s, uu* = 8, c(uu*) = c(u*u) = c(s,sr).

Since s, is the support of @, u*u®, + 0. Then s" = s¥(u*u®,) < s/
is nonzero and c¢(s”) = c¢(s,s)) = ¢(s;). Hence there exists a partial
isometry v € R’ such that v*v <s”, vo* < s, v=£0. Again v*ou*up, #0.

Since

wvp, e ulH = s,H, wvp,cvH S s;H,
there exists A € s,Rs, such that
(5.24) Re (wvp, Ap,) > 0.

Let Q = A*u — jy(v). A*u vanishes on (1 — s)H and its range is
in (1 — s)H. jy(v) vanishes on sH and its range is in sH. v vanishes
on s'H and its range is in s’H. j{A*u) vanishes on (1 — s')H and its
range is in (1 — s’)H. Therefore,
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0 < (2, Q7+(Q)9,)
= —(Py, 5(A*W)jr(v)P2) — (P:, A*uvp))
= —2 Re (p,, A*uv®,)

where we have used Jyp, = @, ¢, =J,®,. This contradicts with (5.24).
Therefore @, = @, = 0 and @, = ®.
We now have

s¥@,) = s¥(p) =1 —s,
sP(@,) =sF(p)=1—5.

Hence (5.9) is satisfied.
(8) For @,¢V, and &,¢ V,, we have a decomposition
O, — 0, =0, — @_
satisfying @, e V,, @, L @_, due to (6). By (7), we have s*(®,) L s*(D_).
Let E = s®(®@,) — s*(®_). Then ||E|| <1. We have
@5, — @0, ]| Z |0y (E) — @ (E) |
= 27(P, — @, E(, + D)) + (0, + P, E(D, — 0,))]
= |Re (@, + 0., 0, + 0,)|
= (@4— + @—, @1 + QZ)
= ((D+ - @—, 0, — @2) = H@l - @ZHZ ’

where we have used (9,,9_) =0 and (#,,0.) =0 due to 9,,0,,0_,9, € V,.
6. Some Radon-Nikodym theorems.

THEOREM 5. Let ¢t be a normal positive linear functional on o
von Neumann algebra R with a cyclic and separating vector ¥ such
that t < wy. Then there exists ho€ R, || ha|| < 1, b = 0 for each a € [0,1]
such that

(6.1) 2(Q) = (L5PQ T, 43*h ) + (J57h.T, 437QV) .

Proof. Let he R, h* = h and

(6.2) FiQ) = {(4"Q*T, 45°h¥) + (4:°h¥, 4;7"QU)}/2 .
If « <1/2, then
(6.3) FiQ) = @2)0(F, Q4zh¥) + (45hY, Q¥)} .

If « = 1/2, then
FiQ) = (L2)0{(Jo4:"h¥, I 45"Q*T)

(6.4)
+ (JyrA;/zQW, deglzhw)} = f}»_a(Q) .
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Hence f¢ is a normal linear functional on R. If @* = @, then
(6.5) fi(Q) = Re (45°Q*¥, 43*h¥)
and hence f¢ is selfadjoint. Since

HQ) = {(4:Q*7, h¥) + (BY, 4;Q¥)}/2

for a« £1/2 and f3(Q) = fi%(Q), & is weakly continuous in A.

Let F be the set of fy, he R, h* =h,1 = h =0. Then as an
image of a compact, convex set under continuous real linear map, F
is weakly compact and convex. F contains 0. Let F° be the polar
of F', namely the set of Qe R, Q* = Q and f(Q) < 1 for all fe F'. Then
(F°y = F, where (F*)° is the set of all normal linear selfadjoint func-
tionals f satisfying f(Q) <1 for all Qe F.

For each real a€]0, 1], consider

mi(Q) = sup Re fi(a + it) ,
fh(a + 'l:t) — (Ayrra-—it)/ZQ*w" Ay(ra-i—it)ﬁhw‘) .

fi(2) is obviously an analytic function of z for Reze(0,1). It is
continuous for Rez¢€ [0, 1]. Furthermore,

|fla + 8) | = ([ 4y™00Q*T || || 4+ R ||
= IIQU P + QT PP JehT [ + [[ AT [P} .

By the three line theorem,
sup Re fi(a + it) = log sup | ef wbetit)
is a convex function of a. Hence
9°(Q) = sup {mi(Q); he R, h* = h, 1 = 1 = 0}

is also a convex function of a.
Since fi(a + it) = fu (@), B = 4ih47", we have for Q* = @

9"(Q) = sup (fi(Q); he B, h* = h, 1= h = 0}.
By (6.4) we have
9" (@) = 9@ -
Due to convexity,
(6.6) 9"(@Q) = 9"%Q) -
We have

FiHQ) = (¥, j#(R)QY)
= ww(Q) ’
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@ = G (h)"T .

The set of such w, for he R, h* = h,1 = h = 0 is exactly the set of
all normal positive linear functionals ¢ of R satisfying ¢ < w,. Hence

g'""(Q) = Q) and by (6.6)
(@) = Q)
for any @* = Q, Qe R, ac[0,1]. Hence pec (F°) = F.
REMARK. h,_o = he. h, is unique. (If ¢ =0, set @ = h,.)
COROLLARY. If @e Vi, W — @ec Vi and a < 1/4, then there exists
he R such that 0 < h <1 and
(6.7) 20 = WU + 4¥hV .

Such h is unique. If ®e V§ W — @e Vi and a = 1/4, then there
exists k'€ R’ such that 0 < b <1 and

(6.8) 20 = WU + JFWT .

Such k' is unique.

Proof. Let «a £1/4, 83 =1/2 — « and
M) = (@, 4Q¥))l, QeR.

Since Q¥ e Vi = (V¥) for @ =0, we have £ =0. By ¥ — de Vy,
we also have ¢t < w,. By applying Theorem 5 to £ and setting & = lh;,
we have

20(Q) = (WY, 4;Q¥) + (4;Q*Y, W) .
Since
(LQT, W) = (J, T, T, 4,Q*T)
= (41T, 4yQU)
= (4¥h¥, 4;Q7) ,

we have (6.7).
If 7, and h, yield the same @, then we have for & = h, — h,

0 = (W + LhW, W) = || W || + || 460 ||* .

Hence h¥ = 0 and &, = h,, which proves the uniqueness of %.

If & = 1/4, then we interchange the role of R and R’. Then 4;*
replaces 4, and 1/2 — « replaces «. We then obtain the latter half
of corollary.
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REMARK. If a =1/4, then MhY = J T, 477 WY = JB'T and
hence &' = jy(h).

THEOREM 6. For any normal state i of a von Neumann algebra
R with a cyclic and separating vector ¥, there exists @ ¢ Vy such that
W, = M.

We first prove a technical lemma.

LEMMA 7. Let ¥ be a cyclic and separating vector for R and
S be an operator in R with a bounded inverse S™'e R such that
ST e Vy. If 47°QU = Q¥ for some Qe R and Q,c R, then

(69) AE,;Q(SW) = QZ(SIF) ’ Q.= Sle—l .

Proof. By using Jy = Jg& due to S¥ e Vy, we have

A45QSY = JoQ*SY = Jsu(Q@*)SY
= SJa(@*)Y = Sj(Q*)¥
= ST Q*T = S47QY
= SQ.¥ = SQ.S7(SY?) .

Proof of Theorem 6.

Step (i). Let 0 <o <2 We prove that if ¥, is cyclic and
separating vector belonging to Vy, t,e R, t;c R and

(6'10) 0, =Y, + t1w1 ’
(6.11) lall=o, ltli=a,
(6.12) Aalv/ftx*w1 =47, ,

then there exists @ € V, such that

(6.13) Wy = Wy, .
We first note that by Theorem 4 (4) and (5), Jy, = Jy and Vy = V, .
Let
(6.14) te = (1/2){t, = 21} .
Then

letliw1 = itliwl .

By Theorem 4 (6) and (7), there exists ¥,¢ V, and ¥;e V;, such
that
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-, U =0,-7,,
sP(W) L s™(Ty)
Let
w = —s ()t , t, = 18T L)t .
Then
W, =V,eVy, ¥, =¥,e Ve,
tull =6, tull=9.

By Theorem 3 (9), (0 — t.)¥.€ Vi, (6 — t)¥.€ Vy. Hence by
corollary to Theorem 5, there exists #,¢ R and #,¢ R such that

0<h =9, 0sh =<9,
., = (0T, + JohT))/2,
6.7, = (b, + Je kT2 .
From J, ¥, = 470V, = 45h, 7., we obtain
b = Ty (—1/2)h, = 2t, — b, ,
hy = T (—1/2)h, = 2t, — h; .
Thus
B — hell < 2] 8[| + [[h — b || = 30 .
We set
@, =w0,, W =exp{—ijr(h — h)},
v, =87, S,=14+¢ —ih — k),
to= (1 + t)(—1 + ikl — h3) + exp{—i(hi — h})}) — it (h] — b)),
t, = .St

Since %' commutes with ¢, and w¥, = exp {—i(h, — )}¥, due to
Je(by — h)¥, = (ki — R)¥,, we obtain

0, =7, +t7,,
Wy, = Wy,
We have
S, =1+t + (@/2){(h, — hy) — (B — R)} .

Hence 7, (—14/2)S¥ = S, and (7, (¢/4)S.) is symmetric. Furthermore,
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(6.15) £ + (@/2){(h, — k) — (BT — B)}|| =30 < 1.
Hence || 7y (—%/4)(S, — 1)* || < 30 and 74(#/4)S, = 0. Therefore ¥,¢
Vgpl — Vw-

Since S, is invertible, ¥, is again cyclic and separating.
We have

2] < @ + o)e® — 1 — 30) + 36°,
ST =@ —30)~".
Hence
2.1l < a,0°
with

(1 —30)™3 + (1 + d)(e® — 1 — 35)/6%

a, =
< (1 — 3873 + (9/2)(L + 6)e*) < 16

-

for 6 < 2. Hence
|| t, ” < ad

with ¢ = a,27* < 1.
By Lemma 7,

Ty (—1/2)(t.*) = Si{Te,(—1/2)(SFE*)}ST .
Since 7p,(—1%/2)S¥ = S,
Tr(—1/2)(EF) = {Te,(—9/2)(E: NS

= {(—1 — ik, — k) + exp {Uh, — h(1 + 7o (—17/2)(t))
+ ihy — ho)Ty (—9/2)(E)}ST

Therefore,

T (—1/2)(E) || = {(1 + 0)e’ — 1 — 0) + "H(1 — 3d)™"
Zaé.

From (6.15), we also have

N, =T =1 = S 7.
=1 =S+ &) [, (1)
=< 30(1 — 90)'w, (1)
=< 40w, (1) .
We can now repeat the process and obtain a sequence of vectors

®,, ¥, and operators t,c¢ R such that ¥, is cyclic and separating,
,eVy,
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0, =7, +t.¥.,
Nl <a"™0,  |lzg,(—92)E) ] < a0,
Wo, = Wy,
¥ — Vo] = 40" 0w, (1) .
¥, is a Cauchy sequence and has a limit
O =1im¥,cV,.
Since lim || £,7, || = 0, we have
®=1limo,,
W, = limw, = w,, .
Step (ii). We prove that if ¢* =¢te R and 7, (2)tc R for Imze¢
[—1, 1], then there exists @ ¢ V; such that w, = @ cxp v

Let 2(\) = (expM)P, 0 < A <1. It is cyclic and separating because
¥ is cyclic and separating and ¢* is invertible. We have

Lo ditta(V) = to(N) = MY
= e*Jp{T(—1/2)t}¥ = 'MW
where t' = jp{ts(—1/2)t} € R’. Then
AT t’a(N) = t*a(N) = T
= M Jp A7 " U = P4 A4T = t"x(\)
where ¢’ = e*{t,(—1)t}e™*. Combining two computations, we have
Ax(z)tx(x) == t”x()&) .

By Lemma 6, 7,,(2)te R for Imze[—1, 0]. Since (z,(2)t)* is holo-
morphic for Im z¢ (0, 1) and coincides with 7,,(?)t at Imz =0, it isan
analytic continuation of 7, (2)t. We have 7,;(z)e R for Imze[-1,1]
and [[7,(2)¢t ]| < [[t”]. We note that ||| = |[7,(0)¢ ] = [[¢"]].

For ye D,;, we have convergence of

Z}, (r)T W)Ly = e Gy

and

S ()45, (V)" 45y = exp V(I

for Imze[—1, 1]. Hence

47,67 455y = exp (NT,u(R)ty .
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In particular, for )\’ > 0,
| Ton(—7/2)e"* — 1] < 171 — 1.
Let N be a natural number satisfying
Nz 2Ce, C=e" |t (—0)t]l = [[t"]l.
Let \, = n/N. We have

” ezlt —1 || < ellHtH _ 1
ellHt”H —1 g >\'1 H t” H ehl[t"H
2™,

A A

Similarly, for 0 < A <1,
[| Ton(—1/2)eht — 1] < 27
In other words, ¢ = eh* — 1 satisfies ||t"’|| < 27* and
| T2 || = 27

for 0 <A<1, and e* =1+ ¢

Let y(n) = exp ((/ N)P(n — 1), where ®0) = ¥ and @(n) is to be
determined inductively such that @(n)e V,, ®(n) is cyclic and sepa-
rating, @em = ®,;, and n < N. @(0) = ¥ obviously satisfies require-
ments for @(n), n = 0.

If Won—ry = @y, then w,,) = Ooxp txratin_p = Dy Since y(n) =
1+ ¢")@(n — 1), we can apply Step (i) if ¢(n — 1)e V, and &(n — 1)
is eyclic and separating. There exists @(n) e V, such that w,,, = ®,,, =
®,;,. Since x(\) is separating, s"(®,,) = 1. Hence s%(9(n)) =
Je{s™(@(n))} = 1 due to @®(n)e Vy. Thus, by induction, we have desired
@(r), n = N. In particular, @(N)e V, satisfies W) = ODexporr-

Step (iii). Let Sy be the set of all w,, xe V. Sy is a norm closed
subset of R% by (5.10). We prove that any pc R{ is in S,.

Since ¥ is cyclic and separating, there exists a positive selfadjoint
operator A, affiliated with R such that ¥ is in the domain of A, and
0= w,,[3]. Let A, = S/\dEX, Al=A(E,—E,;)) + {1-E;, + /L)E,;;),
t = (log AD(f%), Ors = Wiexpuw- Then ¢ is a selfadjoint element of Ay,.
By Step (ii), 0.5€Sy. Since lim;, .. lim; ., |lp;s — o] =0, we have
peSy.

7. Representation of R by V,. We denote the set of all
normal positive linear functionals on B by R}i and the set of all
normal states on R by Rf,. As before w, denotes the expectation
functional by a vector x.
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THEOREM 7. Assume that R and R, have cyclic and separating
vectors U and V,, respectively.

(1) The mapping oy from w,c Rf to oy(w,) = xe Vy is a bijec-
tive homeomorphism from RY onto Vi relative to the norm topologies.

(2) If o= 3.0, 0€ RE, 0,€ Rf and s(0,) are mutually orthogo-
nal, then o,0 = >, 0,0,.

(3) If R=@.R, V=@V, then oD 0,) = @ 0r,(0.) for any
p.€ (R, @ o, Ri.

(4) IfR=Q@ (R, V.)on H= Q(H, V,) (the incomplete infinite
tensor product containing T = @¥,), then 0,(R 0.) = @ 0y,(0.) if
0.€ (R)f, and @ o,(0.)e @ (H,, ¥,). The last condition is equivalent
to existence of pe€ R} such that

PQR(®L) = (@)@, Qc@R.

for every finite index set J. (Symbolically @ p.€ Ri.)
(5) For any @¢c H, there exists a unique | @ |y € Vy and a partial
iwsometry u' € R such that

(7.1) O =u|0,
(7.2) wu'* =s"(@), wruw =s"(2Pl).

There also exist a unique | @ |y Vy and a partial isometry ue R such
that

(7.3) =u|?,

(7.4) uu* = s¥(@) , w*u = s D|y) .
They are related by

(7.5) =g w)*, [Pl =uG(W)|P .

(6) If @ is any cyclic and separating vector for R, there exists
a unitary we R’ such that

(7.6) 0r(0) = woe(0)
for all pe RE.
Proof. (1) follows from Theorem 6, (5.10) and

|0.Q) — 0@ =@+ vy, Qz—v) + (@ -y Qv + ¥)/2
sl +ylllle—yllllQl,

which implies

(7.7) lo, —w, | =z +yllle—yl.
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(2) By (1), there exists @,¢ V, such that @, = 0,. Since s(p,)
are mutually orthogonal, s*(®,) = s(p,) are mutually orthogonal and

S, =30 0.(1) = po(1) < oo .
Hence we have convergence of
o=30,.

Since @,¢ Vy, s¥(®@,) = j,(s*(®,)) are also mutually orthogonal.
Hence

@, Q0,) = (,, @s*(2,)0,,)
— (s"(0,)0,, QD,) = 0

for Qe R and m # n. Therefore,

(9, Q) = 35(9,, @9,) = X 0,(Q) = 0(Q) -

Hence @ = g,0 = >, 040,.

(3) This follows from (2).

(4) If¥ = @Y., thenJ, = @Jy, and 4y = @ 4y, which is seen
as follows: Let J = @Jy, 4% = @ 4¢,. Then JAQU = Q*¥ if Q =
® Q. and Q, = 1 except for a finite number of a. Since such @ is *
strongly total in R, J4'*Q¥ = Q*¥ for any Q<€ R and hence J4'*D
Jpdy?.  J satisfies (1)-(iv) of Theorem 1. It also satisfies (v) due to
JQ*U = 4°QU and 4 = 0. Hence J =J,. Hence 4 = 4,.

If @0y, (0.)e® (H, ¥.) and p, are faithful, then

J@aw- (Py) — ®Jay, (Py) — ®Jyfa = J@wa .
(44 @

Let Z, be the center of R,. Then {Q (R., ¥.)} = @ (K., ¥,) and hence
the center Z of @ (R., ¥,) is given by @ (Z,, ¥.). If 2z, is a projection
in Z, and 2, = 1 except for a finite number of a, then z = @z, Z
satisfies

(7, 2{@® 0r (0)}) = 1L (¥, 204,(0)) 20 .

Z, and Z can be viewed as L&, t.) and L~(ITI Z., @ #.) where
projections are characteristic functions. Hence any projection in Z
can be weakly approximated by a finite sum of projections z = @ z,.
This implies

¥, 2@ v (0)}) = 0

for all projections in Z and hence for all ze Z, z = 0.

By Theorem 4 (5), we have @ oy (0.)€ Vgr,. The same conclusion
holds for nonfaithful p,, by taking a limit of faithful 0, + N.wy,,
N =0 as 20— 0. (Qos(p.)e @ (H, ¥,) implies o4(0,) = ¥, except
for a countable number of «.) We also have
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®(0a = w®0w (Pg) S RI .
a

Hence

0&”(@ Koa) = ® U?*a(loa) .

Next assume @ p.c R;. Without loss of generality we may as-
sume [|¥,]| =1. Let R(I) = @uer By ¥(I) = @ues ¥y Pu = 07,(00),
? = 0,(@ p.), 0(I) = Wy, for an arbitrary index set I and p(J) =
®ucs Oy PJ) = Q.cs D, for a finite index set J. J° denotes the comple-
ment of J in the index set. p,e Rf, implies

1Pl =[Ol = [l@]l = 1.

Since ¥(J°) ® 2z is total when J runs over finite index sets and z
runs over ®.., H., there exists a finite index set J and a z¢€ @..; H,
such ‘that (@, ¥(J°) ®=2) = 0, ||2|| =1. Then for any KcJ’ we have

1o(K) — oK) || = [| 0F® — &07[0,e, 1l <2

(If (z, y) # 0, then (7.7) implies || @, — w, [ < ([ | + [| ¥ [} — 4=, ¥')*
for ¥’ = ¢y where 6 is a real number such that (v, ¥') > 0. Hence
l|@, — o, || <||=[]* + [[¥][)

By the first part of the proof of (4), we have o, (0(K)) =
Q. 07, (0.) = O(K) for a finite index set K where the condition
Qicx r,(0.) € Qe H, is trivially satisfied. By (5.10)

1T(K) — O(K) |} = [[o(K) — oK) ||
and hence
(T(K), 9(K)) z27(2 — || o(K) — oK) |) =6 >0,

where we have used (¥(K), (K))= 0 due to O(K)e Vy. Since
N1l =19.]l =1, we have 1 = (¥,, @,) > 0 and hence

1ZzJI¥%,0)=6>0
ae K
for any finite index set K J°. Hence
2L = (T, )] < o0

which implies @ @.¢ @ (H,, ).

Therefore, @ 0. R implies @ gy (0.) € @ (H,, ¥.).

(5) For any ®ec H, there exists a unique |@|,e V, satisfying
@, = Wy, by (1). Then there exists a unique partial isometry u' ¢ R’
satisfying (7.1) and (7.2).

Next set

1Dy = w5e(w)|Ply .
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Then |9 |; = j/(w')P. Since s?(|D |y) = 7:(s¥(| @ |¢)) = Jo(u'*u'), we have
O =@l = ju) Dl .
We also have

Je(W)ge(uw')* = §u(s¥ (D)) = ju{s(@5)} = Jul{s™(@,)}
= Je{s" (|2 )} = s"(1 9 [¢)

where the last equality is due to @ |y e V, and ®Z denotes the expec-
tation functional on R’ by a vector z.

Thus (7.5) satisfies (7.3) and (7.4).

To see the uniqueness of |@ |, and u, we note i’ = wf,. If we
interchange the role of R and R’ in the definition of V,, we obtain
the same set V,. Hence by (1), a vector ze V, satisfying wZ = o for
any given pe(R’)f is unique. Hence the uniqueness of |@[;. The
unitary operator uec R satisfying (7.3) and (7.4) is unique because
uQ |0y = QP for Q € R’ determines u on s%(| @ |y).

(6) Since @ is separating s?(o,0,) = s(w,) = 1. Hence s¥(0,0,) =
jr{s®(oyw,)} = 1 and o,w, is cyclic and separating. By Corollary 2 of
84, Joyo, = Jr and Voo, = Vi

Since w, = ®,,.,, there exists a partial isometry we R’ such that
orw, = wd. Since both ® and o,w, are cyclic, w is unitary.

Since we R’, we have for S = J,,4Y2 and S, = J,45?,

SwQP = SQuWP = Q*wd = wQR*® = wS,QP, QcR.
Hence S = wS,w* and Jy = J,, = wJ,w*. Hence
(w00, Qir(QuP) = (0,0, Qjo(&)P) = 0 .
By Theorem 4 (1) and (4),
WO0E Vo = Vi

By the uniqueness in (1), wo,0 = 0,p.

8. Applications of d,. The following theorems are examples of
applications of Theorem 7.

THEOREM 8. Let ¥ and @ be cyclic and separating vectors for R.
Then the = automorphism

Qe R—j{juQ)}e R
of R 1is inmner.

1 The author is informed by Professor Takesaki that Dr. Connes has a simple proof
of this.
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Proof. By the proof of Theorem 7 (6),
Iy = wJ,w*
for a unitary we R’. Setting u = j,(w*), we have
Jrlie(@)} = uQu*

where % is unitary and ue R.

THEOREM 9. Let U be the C* algebra itnductive limit of finite W*
tensor products {Q..; B.} = R(J), where J is any finite subset of given
index set {a}. Let P, 0.€ (R.)%. Assume that central supports of 0,
and O, are the same. The representations of A canonically associated
with @ 0. and @ P, are quasi-equivalent, if and only if >, d'(0q) OL) < oo,
where

(8.1) d'(0a, 02) = 1| 0, (00) — 0w (02) ||

does not depend on V..

Proof. By Theorem 7 (6), d'(0, p.) does not depend on 7.

First assume >\ d'(0. 0.)* < co. Then there exists a countable
index set I such that d'(0., 0.) =0 for «¢ I. Then o, = o, for a¢ I.

By assumption

; |1 — (Op, 04 O 00)| < oo .

Hence @ = @. 0y, 0. and @' = @, 0y 0, belong to the same incomplete
infinite tensor product H = @ (H.,, 65,0.). The C* algebra A has a
natural representation 7 on H and @ 0, = ®,, @ 0, = w,.. Let E, be
the central support of p,, which is the same as the central support
of p.,. Then (R,U R.)oy0.= E,H,. Since (QR.) =Q@R., in an
incomplete infinite tensor product, the central support E of @ o4 0.
satisfies KH = lim;; (Qu¢s Or,0.) Q (@ees EoH,). By the same calcula-
tion the central support of @ oy 0. coincides with E. Hence @ 0.
and @ o, produce quasi-equivalent representations of .

Next assume that representations of 2 associated with @ o, and
® 0. are quasi-equivalent. Let H, 7, @, be canonically associated
with p,. We have w, = @ 0, for @ = ® ,.

By assumption of quasi-equivalence, there exists x,c @ (H,, ?.),
%, # 0 such that @ o, = X, w,,. Since (@..s P.) Q z is total when J
runs over all finite index sets and z runs over @..; H., there exists
a finite index set J and z€ @,..; H, such that (x,, (Q..; P.) ® z) = 0.
Denote 0’ = @ 0, and 0" = ®g,,,0,y%.- Then || — o"|| < 2.

Let 0x = Quex Pur Ok = @uex O Restrictions of p” and 0 to
®..x R, is 0 and p% for any finite index set K in J°. By Theorem 7
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(4) and (3.10), we have
ag{ (0% 04y O3 00) = {2 — || Op )0k — Or ) 0% |I7}/2

=21 —0}2>0
where ¥(K) = @ucx ¥a Since 0 < (04,04, 0, 0.) = 1, we have
23|11 — (0p, 00 O¢,0.)| = 21105, 00 — Op O||* < oo .
REMARK 1. The distance d'(o, 0') satisfies

(8.2) a'(o, 0') = d(p, 0)

where d(p, ') is the Bures distance [5]. Since > d(0., 0.7 < o is
another necessary and sufficient condition for quasi-equivalence, it must
be equivalent to > d'(p., 0.)* < . Hence there must be a constant

A > 1, such that
(8'3) 7\'d(loy [O’) 2 d,(loy IO,) *

REMARK 2. If R is semifinite, ¢ if a o-finite faithful normal
trace on R, H is the Hilbert space of Hilbert-Schmidt operator affiliated
with R, Hilbert-Schmidt relative to ¢, and R is left multiplication,
then an example of V, is the set of vector corresponding to positive
Hilbert-Schmidt operators. The inequality (5.10) correspond to the
inequality [0 — 0. = || 0" — 02|35 [7].

THEOREM 10 [6]. 7. (t)x — Ty(t)x strongly as || — || — 0 where
© and + are faithful positive linear functionals of R, both x€ R and
Jr are fixed.

Proof. Let &, = o,(0) and &, = o,(y) for some cyclic and sepa-
rating ¥. Then for zc R,
| digaly — 4808, || = || Jedijasy — Jpdiint, ||
= la*Ey — Sl = 2] |y — 0"
where we have used Theorem 4 (5) and (8). Hence
(4 + Dby — (487 + s, |l = 2|2 |4 — o] .
Since || (4%} + 1)7'|| £ 1, we have

(47 + 17 = (485 + 7L + Dady ||
= 14, + D7H{(4dy + Dby — (48] + D)ad,} + a6 — &) |
=3zlllly— el

Since 43 is essentially self-adjoint on Ré&y, (4} + 1)R&y is dense.
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Hence by uniform boundedness || (4:* + 1)™ || < 1,
(4 + )7 — (4 + )7

strongly as ||&, — & || — 0. Let fi((w + 1)™) = u**. f, is a family of
continuous functions on (0, 1), equicontinuous on compact subsets of
(0, 1) for bounded ¢ and uniformly bounded. Hence by [4]

4¢ — 47, strongly as [[0 — || —0

uniformly in ¢ in a compact set. This implies 7,(¢)x — y(¢)x strongly
as || @ — || — 0, uniformly in ¢ in a compact set.

REMARK 3. A similar application yields an alternative proof of
Theorem 3 of [6]:
In Theorem 3 of [6], let

P(x) = (1 — N)Pveluzu®) + (1 — NP(un*zun®)} .
Then @, = 0, @, is faithful if @ is faithful and

lP1) — LIl = M1 = M)7P(un*) — P(u*u)
=A-N"%.

We also have

lP(2) — P@) || = 1 — M7 [ Ap(uau®) — (1 — MP(eu*u) |
+ 2 e(uutruu*) — (L — N)P(u*zuu*u) |
+ A7 A = Ne(uFru) — Ap(zun™) |
=@ —-MA - lxlle .

Hence
P, — P22 — M)A —A)"Ne.
It is easily seen that r@(xu™) = (1 — N)P(u*x) and hence
(4 — NP — N Pu*e, =0 .
Since [|u*&, || = P(uu*) =21 — N — &, we have
103 = (L = ) [ S (L + WL = )7 (|9 = i

This proves Theorem 3 of [6].
Let Aut (R) denote the set of all x-automorphisms of R. Each
g€ Aut (R) induces an adjoint mapping on Rj:

(g*P)(x) = Plo()) -

THEOREM 11. There ewists a umnitary representation Ug(g) of
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Aut (R) such that
(8.4) U(@)xUs(9)* = 9(x), wecR,
(8.5) Ur(9)ox(9*0) = a4(0) , pe R .

Each Ug(9), g € Aut (R), commutes with Jy,. For two cyclic and sepa-
rating vectors ¥ and @, Uy and U, are unitarily equivalent through
a unitary operator u' € R’:

(8.6) w' Ue(g) = Usg)u’ .

Proof. Let &(g) = o,(9*w,) where w, is the expectation functional
by ¥. We define

(8.7) Ul(9)x¥ = g(x)é(97) , xeR.
We have
(9(@)e(g7), 9()E(9™) = (7)Y wr(9(@*y)) = (¥, y¥) .

Hence Uf(g) is well-defined and its closure U,(g) is isometric. Since
g*wy is faithful because ¥ is separating and ¢ is an automorphism,
o(g*w,;) = &(9) is separating. Since &(g)e V,, it is cyclic if it is
separating. Hence U,(g) is unitary.

From the definition (8.7), Uyg)x = g(x)Uy(g) and hence (8.4) holds.

Let S, = Jp4y* and S, = J,.4'* for & = &(g™'). We have

U(9)Sa¥ = Ulg)a*¥ = g(x*)é
= S9(@)& = S,U(g)x¥

for xe¢ R. Since RV is a core of S, and R¢& is a core of S,, we have
U(9)S.U(g)* = S,. By the uniqueness of polar decomposition, we have
U(9)J,U(9)* = J.. Since &(g7")e Vi, we have J. =J,. Hence Ulg)
commutes with Jy.

Let e R and € V,. Then

(U9, 27 (%)) = (Ul9)v, {Ulg)y Ul9)*}J{U(9)y U(9)*}$)
= (v, ¥i(¥)¥7) = 0

where y = ¢7'(x), J: = Jr, [U(9), Ju] = 0, U(9)"é = ¥. This implies
UgypeVi=V.= V.

Hence U(g)VyC V5.
By (8.4), we have for « = U(g)o.(0) and o€ R;

wy(gx) = O(x) .
By U(g)o,(0)e Vy, we have (8.5).
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From (8.5), we have

Uw(g1) Uw’(gz)"# = UW(QL‘]Z)"/’

for e 0,(R%) = V,. Since Vy linearly span H, we have

Ui(9,)Us(9,) = Un(9.9:) -

For two cyclic and separating vectors ¥ and @, there exists a
unitary #’'e R’ such that w'oxw,) = @, which automatically satisfies
w'ag(0) = o,(0) for all pe R. Then

uw Un(9)o+(g%0) = u'04(0) = 04(0) = Us(9)04(9*0)
= Uy(9)u'o+(9%0) .

Since a,(g9*0), pc Ri, is total, we have (8.6).

REMARK. The weak, strong and =-strong topologies coincide on
unitaries and they induce a topology 7, on Aut (R) through Ui(g).
Since the multiplication of unitaries is continuous relative to strong
topology, (Aut(R), 7,) is a topological group. On Aut (R) there is a
topology = by the norm convergence of g*o for every oe Rf. The
two topologies 7 and 7, coincide which can be seen as follows:

The strong convergence of Uy(g) is equivalent to the strong con-
vergence of Uy(g)*.

Since V, span H, the strong convergence of Uy(g)* is equivalent
to the strong convergence of Uy(97")o.(0) = g,(9*p) for each pe Ri.

Since o0, is a homeomorphism, the strong convergence of d,(g*p)
is equivalent to the norm convergence of g*p for each pc R.

9. Radoa-Nikodym derivative satisfying a chain rule,

THEOREM 12. Let p, e Ri and ¥ be a cyclic and separating
vector.
(1) The following two conditions are equivalent.
(@) lp=pe for some L.
(B) There exists A = A(¢/p)e R such that

(9.1) x) = o(A*xd),  Ao(0) = ou(t) ,
(9.2) s(0) = s(A*A) .

The operator Ac R satisfying (9.1) and (9.2) is unique.
(2) If (a) or (B) holds, then

(9:3) Il A(¢/0) |I* = inf {i; lp = 1},
(9.4) | A(¢2/0) || 04(0) = o:(2)
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where v = y denotes x — y& Vy.
(8) If Ly =t Lty = t, then

(9.5) Ao/ 1) = At/ 1) At/ 1) -
(4) A(p/r) = s(p).
(5) A(n/p) does not depend on ¥.

Proof. (1) First assume (B). Noting J,0.(0) = 0,(0), we have

ou(t) = Jyo (1) = JrAo(0) = Ju(A)ow(0) .
Hence

(9.6) HQ) = (Q"ow(0), 7:(A*A)Q " 0+(0))
= |17:(A™4) || 0(Q)

for @ = 0, Qe R. Hence (B) implies («).
Next assume («). Then there exists '€ R’ such that

(9.7) o) = t'op), (It
Since Jyo,(t) = o,(¢t) and J,0,(0) = 0,(0), we have

or(tr) = Juou(tt) = J{t's™ (04(0))}ow(0)
= Jr{t's" (0(0))}ow(0) .
Hence we have (9.1) with
A = je{t's™(04(0))} -
Since j,{s*'(0,(0))} = s%(04(0)) = s(p) due to J,0,(0) = 0,(0), we have
s*(A*4) = Je{s™(o:(0))} = s(0) .

If Aou(p) = A,0.,(0) = o,(1t), then (A4, — A))o,(0) =0. Hence
(A, — A)s%(o(0)) = 0. By (9.2), As%(04(0)) = A, and hence A, = A,.
(2) From (9.6), we have

L=inf{l;lo=zpy < [[A"A] = [ Al
From (9.7), we have
lAlFsfivirst

for any ! satisfying lo = . Hence we have (9.3).
To prove (9.4), we first show that

(9.8) s(AA*) = s(t) .

For ec R, e = 0, t(e) = 0 is equivalent to edo,(0) = 0, which is equiva-
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lent to ¢A =0 due to s(4*A) < s(p). Hence (9.8) holds. We now
consider restriction of R and H by s(0)j.{s(0)}. Let M = s(0)Rs(0)| K,
K = s(0)ju{s(0)}H. &, is cyclic and separating and

s(0)jr(s(0)}AS, = s(p)Aé, = AS,

where s(0) = s(#) due to lo =z, which implies s(0)A = 4, and
Je{s(0)}é, = &,. Thus A, e V., = s(0)ju{s(0)} V.

By Theorem 3 (9), we have (9.4).

(8) follows from the uniqueness.

(4) s(p) satisfies (9.1) and (9.2) with p = 2.

(5) follows from Theorem 7 (6).

REMARK. If R is commutative, A(¢/p) is the same as the positive
square root of the Radon-Nikodym derivative in measure theoretical
sense. The following theorem gives a condition that A(z/p) coincides
with Sakai’s noncommutative Radon-Nikodym derivative. Because of
the chain rule, it also coincides with the condition A,(x/0) = A1t/0)
when ¢t = 0 and 1,0 = p, where A, (¢/v), k = 1, 2, are defined in [3].

THEOREM 13. If lp = p, the following conditions are equivalent.
(a) A(y/o) = A/p),

(b) A(¢/p) =z 0,
(c) z(t)A(¢/p) = A(p/0) where T,(t) is the modular automorphism

for the state o of the reduced algebra s(0)Rs(0).
(d) ¢ commutes with p.

Proof. If (c) holds, then A(z/0)§, = §.€ V., implies
0 = i/ A(/0) = Arp) -

Hence (c) implies (b). (b) trivially implies (a).
Assume (a). For any Q< R and A = A(p/p), we have

(E.Dr QAEP) = (Em QJepAEp) = (Ep, Q_?gp(A)Ep)
= (J (A&, QE,) = (J:, A8, Q&)
= (AEP) Qgp) = (ép, AQSp) .

Such A is known to be invariant under z.(¢). ([9])
The equivalence of (¢) and (d) is known. ([9])

10. ¥-bounded operators. We shall call Qe R ¥-bounded if
Wor = Loy .

for some [ = 0. We shall call Q¢ R ¥-symmetric if
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JQU = Q¥ .
We shall call @ e R ¥-positive if
QU ecVy.

THEOREM 14.
(1) Q is T-bounded if and only if there exists a Q"€ R such
that

(10.1) 47°Q*Y = QT .

(2) Any U-bounded Q can be decomposed as @ = @, + 1Q; where
Q., Q;€ R and both are T-symmetric.

(3) Any T-symmetric Qe R is T-bounded and QF = Q. It has
a decomposition

(10.2) R=Q —Q,

where Q,, Q€ R, both Q, and Q, are T-positive, || Q.| < 11Q1l, 1| Q.| = 11Q]|
and

(10.3) s(Q.Q7) L s(Q:Q7) -

(4) Any Q< R has a unique decomposition
(10.4) Q=ulQl
where u s o partial isometry in R such that
(10.5) w'u = s(|Qr | QF)

and | Qly is ¥-positive.
(5) QeR is U-positive if and only if Q is T-symmetric and
7,(1/4)Q is positive.

Proof (1). If wer <lwy, then there exists Q' ¢ B/, 0=<Q'<['? such
that e = wgr. Then there exists a partial isometry #' e R’ such
that Q¥ = «w'Q'V. Let Q' = 7, (w'Q’). We have

Qw‘?p‘ — qurQrg/' — JgQQf _ Aiﬂ/zQ*y/‘ .
Conversely, if (10.1) holds, then
QU = Jo47°Q*Y = J, Q'Y = j(Q")Y .

Hence wer = ||5#(Q) ['@y.
(2) Define Q, = (@ + QY)/2, Q; = (Q — Q")/(2¢). Then both are
¥-symmetric and Q = Q, + 1Q;.

(3) Let Q¥ =0, -0, 0,e¢V,, 0,eVy, s¥(9,) Ls™(®D,), s%(P,) L



352 HUZIHIRO ARAKI

S&(d,) be the decomposition given by Theorem 4 (6). Denote s’ = s¥(9,).
We have @, = s'Q¥. Hence w, = Wyor = Wor. Since Q¥ = J,Q¥ =
3@, wor < |]7+(Q) |fwy = || Q |’wy. Hence by Theorem 3 (8), there
exists a ¥-positive @, ¢ R such that ¢, = Q¥ and ||Q,|| < || Q][] Simi-
larly there exists 7-positive @, ¢ R such that @, =Q,7 and ||Q.|| = || Q]|
Since ¥ is separating, (10.2) holds.

Since ¥ is separating for R, we have s¥(Q.7) = s(Q,Q5), k=1, 2.
Since s%(®,) 1 s*(®,), we have (10.3).

(4) Let 0= wse. Then 0 =|7Q)|0r = | Q| wy. Hence
there exists a ¥-positive @, € R such that 0,0 = Q¥. Since W, =
Wqr, there exists a partial isometry u'e R’ such that J,Q¥ = w'Q.¥
and w*u = s®(Q.¥) = j{s¥(Q.Y¥)} = 7-{s(Q.QF)} where we have used
the property J,Q.% = Q.¥.

We now have Q¥ = J,w'Q.¥ = jo (v ), Q¥ = uQ,¥ where u = j,(u').
Since ¥ is separating for R, @ = uQ,. We have u*u = j,(u'*u') =
s(Q.QF). Hence Q, = |Q|r and u satisfy (10.4) and (10.5).

Conversely, assume that @ = u,Q,, Q. is ¥-positive, u, is partially
isometric, w;, Qi € R, uiw, = s(Q:Q%), k=1, 2. Then w,,qr = ®g,r Where
we have used J.Q.¥ = Q.¥. Since Q¥ ¢ Vy, such Q.7 is unique by
Theorem 7 (1) and we have Q, = @,.

Since u,Q: = u,Q; = u,Q,, we have (u, — u,)s(@QF) = 0. Since
ufu, = s(QQF) = s(Q:QF) = usu,, we have u,;s(QQ) = u;, k =1, 2, and
hence u, = u,.

(5) Q is ¥-symmetric if Q is ¥-positive by (5.2). By Theorem 3
(7) with a = 1/4, 7(i/4)Q = 0 if Q¥ e V,. If Q is ¥-symmetric, then
JQU = Q¥. Hence 4¥*Q*¥ = Q¥, which implies 47'2Q¥ = Q*¥. Hence
Ty @ € R can be defined by Lemma 6 for Im z € [0, 1/2]. Hence (47'*Q4¥*)~
is in R. If it is positive, then Q¥ € V, by Theorem 3 (7).

THEOREM 15. If o < lwy, there exists Qe R, 0 < Q < I'* such that
0.0 = Qi(Q)Y.

Proof. Let p,(A) = (050, 47/*A¥) for Ac R. Then p,c Ri. Since
0 < lwy, there exists @ e R such that Q¥ = 0,0, ||Q,|*< 1. Then
Q.Y = j ()7 and

P Q)Y = 5T (1/4)Q)Y
where
0= Tw(i/‘l)Ql =@, = HQl ” e

by Theorem 3 (7).
Set Q; = 7,(Q,). We have

o(A4) = (QF, AV) = (¥, AQUT) .



VON NEUMANN ALGEBRAS AND RADON-NIKODYM THEOREM 353

Hence o, = || Q:]] wy < I"*w,. By Theorem 7 (1), there exists a ¥-posi-
tive @;€ R such that 0,0, = Q7, || ;|| £ I'*. Let Q = 7(i/4)Q;. By
Theorem 3 (7), ||Q|| = || Q|| = 1" and Q@ = 0. We have Q¥ = J,Q.¥ =

77(Q:)¥ and hence

(ov0, £ AT) = (QY, AQY) = (QF, Ajr(Q)Y)
= (QUr(QNT, AY) = ({rs(i/0)QTe({Te(t/H)Q:} )Y, 4" AY) .

Since 4y*A¥, Ae R, is dense, we have

o0 = Qir(Q)Y .

11. Additional remarks. In this paper, we have assumed that
R has a faithful normal state. This assumption is not essential in
defining d'(0,, 0,) and (o0, 0+0,). They can be defined relative to sRs
where s = s(0,) V s(0,)- With such definition, Theorem 9 holds.

The cone W, has been introduced as the weakly closed convex
hull of Qj(Q), Qe R. It is a weakly closed selfadjoint convex cone
which form a semigroup under multiplication. It is total in
W= (RURY".

If pe W, is of the form p = 3}; @, ,; with z;, y; € Vy, then o(w) =0
for all we W,. If pe W,, p = @, and p(w) = 0 for all we Wy, then
© = w, for ye Vy by Theorem 3. It is of interest to determine the
dual of W, in W,. If R is a type I factor, the dual of W, consists

of 0= zli w:cjﬂj; T, Yi € VW‘
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Appendix. The result that V, is selfdual can be proved directly
as follows:

We define V; first as the closed convex hull of {Qj,(Q)¥; Q< R}.
Then (5.1)~(5.4) are immediate. In particular (5.4) shows V,cC V7.
Let @€ V3.

By noncommutative Radon-Nikodym theorem, there exists a
positive selfadjoint A, affiliated with R and a partial isometry «'e R’

such that @ = w'A¥. If A, = SkdE;_, we set A = A,FE, and
0" = E,j,(E,)0 = j(E) )W ALY .

Then lim @* = @ and @*¢c V;. Since w,L < WLy, there exists te R,
0 <t<1 and a partial isometry we R’ such that

D" = wtAM, w*dF = LA, sM(PY) = ww* .
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Set @' = AY, A, = j(w*)tA:c R. Then @ = w*j(w*)d"e V,.
Since #* e Vy, we have (z, J,0%) = (0%, Jux) = (9%, x) = (x, ®*) = 0 for
xwe Vy. Since Vy is total, we have J,0* = @~ and hence j(w)wd’ =
Jr(ww*)@* = @*. Hence it is enough to show @' ¢ V,. Let @, = AV,
A, = Ay(f§) defined by (3.7) and (3.11). Then @; ¢ Vyand lim,.,, @} = @',

Let 4; = 7(i/4)A,. Since A¥ e Vy, we have

(40T, AL4QY) = (QF, ALPQT) = (QF, A (Q*)¥)
= (J(Q)Q¥, A¥) = 0 .

Since 4y*R¥ is dense, we have A, = 0. Let B = A!* B, = B(f?).
Then lim B2 = A; and

1 45(B7 — AV [P = ({BF — AJ¥, 47(B; — A}¥)
= ({B: — A}, Jo{B: — AJ¥)—0

as v— +0. Therefore,
im 4B = 4P AT = {cp(—i/A)ANT = AT = 0, .
We also have
APB = Cj(C)¥

for C = t,(—1/4)B, due to J,C¥ = C¥. Hence 4y*B:¥ ¢ V,. This com-
pletes the proof.
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