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THE LOCAL COMPACTNESS OF vX

DouGLAS HARRIS

Necessary and sufficient conditions are given for the local
compactness of the Hewitt realcompactification vX of a com-
pletely regular Hausdorff space X; the conditions are expressed
in terms of the space X alone. In addition, the local com-
pactness of other extensions is considered.

Introduction. There has been much recent interest in determining
conditions on a completely regular Hausdorff space X that are equi-
valent to the local compactness of its Hewitt realcompactification v.X.
This interest stems primarily from the fact that the seemingly artificial
hypothesis “vX is locally compact” enters quite naturally into the
examination of the relation v.X x vY = (X X Y). Apparently the only
known condition equivalent to the local compactness of vX is one
discussed by Comfort in [1] and [2]. As remarked by Comfort, the
condition is not on X alone, but involves v.X essentially in its statement.

In the present paper a condition on X is given which is equivalent
to the local compactness of vX (Theorem 2.7) and a number of known
results are obtained as corollaries of this characterization theorem.
Another characterization (Theorem 2.3) is given of the local compact-
ness of vX in terms of real maximal ideals.

It was shown by Comfort in [1] and [2] that the local pseudo-
compactness of X plays an important role in connection with the local
compactness of vX. The precise role is established below, where it
is shown that the local pseudocompactness of X is equivalent to the
local compactness of the extension 7X of X constructed by Johnson
and Mandelker in [9]. In addition a characterization is given of those
spaces for which the extension X constructed by Johnson and Man-
delker is locally compact.

Our attention will be restricted entirely to completely regular
Hausdorff spaces. The terminology and notation of [4] will be used
without further comment.

Given fe C(X) the symbols N(f) and S(f) represent respectively
{xe X: f(x) # 0} and cly{xe X: f(x) # 0}; these sets are called the
cozero set and the support of f. If A and B are subsets of X, write
A « B if A is completely separated from X — B. We shall frequently
apply [4, 1.15] to construct additional separating zero sets when A « B.

The symbol M? will denote the maximal ideal in C(X) which
corresponds to the point » of X, and _#* will denote the corresponding
z-ultrafilter (written A4® in [4]). Similarly O® represents the ideal
defined in [4, 7.12] and ~* the corresponding z-filter.
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2. The local compactness of vX, The family Cy(X) of fune-
tions with pseudocompact support, discussed at length in [9] and [11],
plays the major role in our condition for local compactness of vX.
This is to be expected since by 2.1(d) below the isomorphism f — f*
is an isomorphism of Cy(X) with Cx(vX). We write Z3(X) for the
corresponding collection of zero sets.

The following results are either found in [4] or may be established
using results from [4].

2.1 (a) Z(f*) = el.x Z(f)-

(b) N(f°) = int,; (0 X — Z(f)).

(¢) S(f*) = elx S(f) = cl,x N(f)-

(d) S(s) is compact if and only if S(f) is pseudocompact.
The following result from [11] is frequently useful.

2.2. Every support in a pseudocompact space is pseudocompact.

Since the isomorphism f — f induces a bijection between real
maximal ideals in C(X) and fixed ideals in C(vX), the following result
is an immediate consequence of [4, 4D3].

THEOREM 2.3. The space vX s locally compact if and only if
Cy(X) is not contained in any real maximal ideal.

We turn now toward a condition expressible in terms of X alone.
For each ¢ > 0 and each fe C(X), define U(f) = {xecX:| f(x)| = ¢};
this is a zero set in X. The following results are essential for our
characterization theorem.

2.4. (a) If e >8>0 then N(f) > Ul(S) > ULf.)
(b) IfpepBXand fe C*(X)then f4(p)=0 if and only if U.(f) ¢ #Z7

for each ¢ > 0. (Also _#Z” may be replaced by ~7* in this condition).
(¢) For each fe C(X), U(f) = cl,yUS).

Proof. The proofs of (a) and (c) are straightforward.

(b) For any e > 0, if U(f)e 27, then pecly; U.(f) and f(p) =,
a contradiction. Hence U.(f)¢ #Z°*.

Conversely let U.(f)¢ * for each ¢ > 0. For every ¢ >0 we
have {xe X: | f(z)| < e}e . #Z? by [4, 7.12(b)]; hence f¥(p) <e. Thus
fip) = 0.

Let U(X) represent the set of units in C(X); by [4, 1.12], these
are the functions with empty zero set. Clearly the image of U(X)
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under the isomorphism f — f* is U@pX).
A scale on X is a function e: f — &(f) from U(X ) to the positive
real numbers. If ¢ is a scale, put & (e) = {U..»(f): f e UX)}.

THEOREM 2.5. A z-ultrafilter is real if and only if it contains
& (e) for some scale .

Proof. Let ¢ be a scale on X and let _#” be a hyper-real z-
ultrafilter. By [4, 8.8] there is a bounded unit f in C(X) with
f#(p) = 0; hence U, (f)¢ #7. Thus _#* does not contain &(g).

Let pevX. For any fe U(X) put ¢(f) = | f(p)|. Since f is a
unit of CX), (f) > 0, and thus ¢ is a scale on X. Since pe U, s(f") =
el U.n(f) T elsx U p(f), it follows that U, (f)e . #Z7. Thus &(¢) C
AR

COROLLARY 2.6. A filter & on X is contained in a real z-ultrafil-
ter if and only if every member of & meets every member of &(¢)
for some scale e.

THEOREM 2.7. The space vX 1is locally compact if and only if X
satisfies the following condition: (RL). For every scale ¢ there are
fu o0 fre UX) and ge Cu(X) such that Z(g) N (N, U.pp(f2)) = 6.

Proof. Let X satisfy (RL). For any peuvX, by 2.5 there is a
scale ¢ on X such that &()c . #Z?. By (RL), €(X) & #7; thus
vX is locally compact by 2.3.

Suppose vX is locally compact and ¢ is a scale on X. By 2.3,
(X)) & #Z* for any pevX. Thus, by 2.5, &(X) U & (¢) lacks the
finite intersection property; that is, condition RL is satisfied.

REMARK 2.8. It is clear that we need consider in condition EL
only those scales for which the family & (¢) has the finite intersection
property, since the condition is trivially fulfilled when some finite
subfamily of % (¢) has empty intersection. The condition is also fulfilled
trivially when #%(X) contains a unit of C(X), and this occurs pre-
cisely when X is pseudocompact.

Certainly if Z(X) lacks the countable intersection property then
it is not contained in a real z-ultrafilter. It will now be shown that
&(X) lacks the property precisely when vX is locally compact and
o-compact. Our condition is shown to be related to one given by
Hager in [7].

THEOREM 2.9. The following are equivalent for a space X.
(@) vX is locally compact and o-compact.
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(b) Fu(X) lacks the countable intersection property.
(c) (Hager) X = Uy, A,., where each A, is pseudocompact and
A, LA, for each n.

Proof. (a) implies (¢). If vX is locally compact and o-compact
then [3, XI, 7.2] vX = U, U,, where each U, is open and has compact
closure and cl,, U, c U,,, for each n. By [4, 8.11(a)], U, < U,,,. Sett-
ing A, =cl; (U, N X) it follows from [2, 4.1] that each A, is pseudo-
compact.

(¢) implies (b). Let X = U, 4., with A, pseudocompact and
A, L A, for each n. Choose for each n a function f, such that
A, c N(f.)cS(f.)c A.... Then, by [2.2] each f, € Cy(X), and clearly
n:::1Z(fn) = é.

(b) implies (a). Let N, Z(f.) = ¢, where f,e Cy(X) for each
n. Then, by 2.1(a) and [4, 8.7], N Z(f.) = ¢, and thus Uz, S(f3) =
vX. By 2.1(d) each S(f%) is compact, thus vX is o-compact. By 2.3,
vX is locally compact.

Comfort [2, 4.6] gives another condition (C) which is equivalent
to the local compactness of vX. A direct proof of the equivalence of
(C) with the condition of Theorem 2.3 will now be given.

2.10. Z(X) is not contained in any real z-ultrafilter if and only
if: (C) For each pevX there exist pseudocompact subsets A and B
of X such that peelx 4 and A € B.

Proof. If X satisfies condition (C) and _#Z” is a real maximal ideal
then there are pseudocompact sets A and B and functions f, g€ C(X)
such that peecl,y A and A Z(f) < N(g) c B. It follows from 2.2 that
geCy(X). Since pecl,y A then fe M?, and thus g¢ M’. Thus
Cu(X) & M».

Conversely, for any pcvX there is fe Cy(X) and ge.#? such
that Z(f) N Z(g) = ¢; thus Z(g) € N(f) and there exist &, ke C(X)
such that Z(g) c N(k)c Z(h)C N(f). Put A = S(k) and B = S(f).
Since A < S(f), it follows from 2.2 that A is pseudocompact. Also
peel;yZ(g), since ge #7, so pecl,y A. Finally, Ac Z(h) and X —
Bc Z(f), with Z(h) N Z(f) = ¢, so A K B. Thus condition (C) is
satisfied.

3. The local pseudocompactness of X. The space X is locally
pseudocompact if every point has a pseudocompact neighborhood. Lo-
cally pseudocompact spaces are discussed in [1] and [2]. The results
in this section clarify the relationship between the local pseudocom-
pactness of X and the local compactness of vX.
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3.1. The space X is locally pseudocompact if and only if Cu(X)
is not contained in any fixed maximal ideal.

Proof. Let X be locally pseudocompact. Then any point 2 in X
has a pseudocompact neighborhood A. Therefore, there is fe C(X)
with ze N(f)c A. Thus x¢ Z(f) and by 2.2, the set S(f) is pseudo-
compact, so fe Cy(X). Therefore, Cy(X) is not contained in any fixed
maximal ideal. Conversely suppose Cy(X) is contained in no fixed
maximal ideal. Then for each x¢ X there is f e Cy(X) with & e N(f),
and thus S(f) is a pseudocompact neighborhood of z.

For any space Y denote by L(Y) the set of all points of Y that
have a compact neighborhood in Y; i.e., L(Y) =Y — R(Y), where R(Y)
is as defined in [8, p. 87]. Clearly L(Y) is locally compact. For any
space X define £ X = {p e BX: &y(X) & . #*}; equivalently, kX = X —
(& (X)), where 0(Z(X)) is as defined in [4, T0].

THEOREM 3.2. For each space X, kX = L(vX) = int;x vX, and
thus £X is locally compact.

Proof. The relation L(X) = int;y vX follows from [4, 3.15(Db)].
By [9, 3.1], X — £X = 0(Z(X)) = clpx (BX — vX), so kX = intzz vX.

COROLLARY 3.3. The space X is locally pseudocompact if and
only if XCkX. In this case £X is the largest locally compact space
between X and vX.

The following result is due to Comfort ([1] and [2]).

COROLLARY 3.4. The space X ts locally pseudocompact if and
only if there is a locally compact space Y between X and vX.

4. Functions with small support. Another ideal in C(X) plays
an important role in connection with local compactness. Before dis-
cussing this ideal, the class of small sets will be examined, where a
set Ac X is small if any zero set contained in A is compact.

4.1. The set A is small if and only if every zero set that intersects
X — A in a compact set is compact.

Proof. Certainly in the latter condition holds then A is small.
Now suppose A is small and Z is a zero set such that Z N (X — A4) is
compact. If a is a cover of Z by cozero sets then finitely many of
the cozero sets cover Z N (X — A). Their union is a cozero set N(g)
and Z(g) N Z is compact, since it is a zero set. Thus, finitely many
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additional members of a can be chosen to complete the choice of a
finite subcover of Z.

4.2. The finite union of small cozero sets is small.

Proof. Let N(f) and N(g) be small, and let Z(k) < N(f) U N(g).
Then Z(k) N (X — N(9)) = Z(k) N Z(g) < N(f). Since N(f) and N(g)
are small it follows from 4.1 that Z(#) is compact.

A function f e C(X) has small support if and only if N(f) is small.
Equivalently, according to [4, 4E2], the function f belongs to every
free maximal ideal in C(X). It is clear from this latter characterization
that the collection C,(X) of functions with small support is an ideal;
this can also be shown directly from 4.2.

REMARK 4.3. The term small support may be misleading; the con-
dition applies to N(f) and not S(f). The ideal C.(X) contains the ideal
Cy(X) [4, 4D5 and 4E2]. Spaces for which Cx(X) = C,(X) are called
H-compact and are fully discussed in [9] and [11]; in [9] the ideal
C(X) is called I(X).

The following result should be compared with [4, 4D1 and 4D3],
as well as with Theorem 2.3.

THEOREM 4.4. The space X is locally compact if and only if
C(X) vs not contained in any fired maximal ideal.

Proof. If X is locally compact then Cr(X) is not contained in
any fixed maximal ideal; since Cx(X)c C(X) then C,(X) is not con-
tained in any fixed maximal ideal.

Now if C(X) is not contained in any fixed maximal ideal then
for each x e X there is f e C,(X) such that ze N(f). Thus, there is
a zero set neighborhood of x such that Zc N(f), and it follows that
Z is compact. Thus X is locally compact.

REMARK 4.5. One sense in which Theorem 4.4 is more appropriate
than the characterization [4, 4D3] of local compactness is when the
generalization to T, spaces and T, compactifications is considered. In
[5] the compact small sets of a space X are defined as those sets such
that any closed set contained in A is compact. It is shown there that
the spaces for which each point has a compact-small neighborhood are
appropriate generalizations of locally compact completely regular spaces.
It is shown in [6] that results analogous to Theorem 4.4 hold for
locally compact-small spaces.

5. The local compactness of 7X and +X. Two additional
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subspaces of vX are of special interest in connection with local com-
pactness. Mandelker defines (in [11]) a space X to be +r-compact if
C«(X) = Cy(X), and Mandelker and Johnson define (in [9]) a space
X to be p-compact if C(X) = Cy(X); they construct extensions 7X
and X as the intersections respectively of the 7- compact and the
r-compact subspaces of SX.

The following results are shown in [9].

5.1. (a) 7nX = X Uint;; vX.
() +vX — X = Ureopn IS(f) — S(HI-

The next results are immediate from 5.1(a) and Theorem 3.2.

5.2. (a) kX = intyy 71X = inty; v X.

(b) nX=XUkX

The next theorem characterizes the local compactness of 7X. The
proof is immediate from 5.2 and Corollary 3.3.

THEOREM 5.3. The space nX is locally compact if and only if
X s locally pseudocompact.

THEOREM 5.4. The space X s locally compact if and only if
X 1s locally pseudocompact and &Ey(X) is round.

Proof. Let X be locally compact. Then X is locally pseudo-
compact by Corollary 3.4. Also X is open in BX, so X — X is
closed. By [9, 5.3], Cu(X) = M**¥* and thus B8X — X is round;
hence by [10, 4.2] (X)) is round.

Let X be locally pseudocompact and let &% (X) be round. By 3.3
and 5.2(a), XckXcyX. Let pevX — X. Using 5.1(b) choose fe
Cy(X) so that pe S(f*); since Z%(X) is round there is g € Cy(X) with
Zg L Zf. By [4, 7.14], cl;y Z(f) is a neighborhood of cl;; Z(g), and
thus there is a compact set F' with X — cls Z(f) C F X — ¢l Z(g).
Sinece N(f)< BX — cloy Z(f) and (by [9, 3.1]) X — vX Cclsy Z(g), it
follows that e S(f*)c FFc BX — ¢l Z(g9) < vX, and hence

peint,, vX = £X .

Thus X = £X and so X is locally compact.
It is instructive in the use of scales to deduce directly from
Condition (RL) that X is locally pseudocompact and Z5(X) is round.

5.5. If X satisfies Condition (RL) then X is locally pseudocompact
and Z(X) is round.

Proof. The first paragraph of the proof of Theorem 2.7 shows
that X will be locally pseudocompact. Now suppose f € Cy(X). Then
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S(f) is pseudocompact, and it follows that every ke U(X) is bounded
aways from zero on N(f). Choose a scale ¢ so that |h| = e(h) on N(f),
for each he U(X). Since (RL) is satisfied, there are h,, - -+, h, ¢ U(X)
and ge Cy(X) such that Zg N (N U.4y(k)) = @. Clearly

Z(g) c UL {we Xt | h(@)| < e(h)} € Z(f) -
It follows that g € f.
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