VERTICALLY COUNTABLE SPHERES AND THEIR WILD SETS

L. D. LOVELAND

A 2-sphere S in E^3 is said to have vertical order n if the intersection of each vertical line with S contains no more than n points. It is shown that $S \cup \text{Int } S$ is a 3-cell that is locally tame from $\text{Ext } S$ modulo a 0-dimensional set if S has vertical order 5. A subset X of E^3 is said to have countable (finite) vertical order if the intersection of X with each vertical line consists of countably (finitely) many points. A 2-sphere in E^3 with countable vertical order can have a wild set of dimension no larger than one.

For each 2-sphere S in E^3 there is a homeomorphism $h: E^3 \rightarrow E^3$ such that each vertical line intersecting $h(S)$ does so in a 0-dimensional set [2, Theorem 10.1]; thus the condition that a 2-sphere be "vertically 0-dimensional" imposes no restriction on the wildness of the 2-sphere. A study of vertically finite 2-spheres (spheres with finite vertical order) was begun in [10] where it was proven that a 2-sphere in E^3 having vertical order 3 is tame. Even though there are wild 2-spheres having vertical order 4, it is known that $S \cup \text{Int } S$ is a 3-cell if S has vertical order 5 [11]. We extend this result to show that the set $W(S)$ of points where the 2-sphere S fails to be locally tame must be 0-dimensional if S has vertical order 5. An example is given at the end of the paper to show that 5 is the largest integer for which this result is true. We also show that the wildness of a vertically countable sphere is limited to a 1-dimensional set.

In the remainder of the paper we use $\pi: E^3 \rightarrow E^2$ to denote the vertical projection of E^3 onto the horizontal plane E^2. For convenience, we always assume that E^2 is located vertically below the sphere or cube under investigation. We use $L(x)$ to denote the vertical line containing the point x.

A vertical line L is said to pierce a subdisk D of a 2-sphere S if there is an interval I in L such that $I \cap S$ is a point $p \in D$ and I intersects both $\text{Int } S$ and $\text{Ext } S$. We say that L links the boundary $\text{Bd } D$ of a disk D if L intersects every disk bounded by $\text{Bd } D$.

2. Spheres having countable vertical order.

Theorem 2.1. If S is a 2-sphere in E^3 having countable vertical order, then $W(S)$ contains no open subset of S.

Proof. Suppose that $W(S)$ contains a disk D in S. We shall
produce a contradiction by exhibiting a vertical line \(L \) whose intersection with \(D \) contains a Cantor set.

Assertion A. If \(D' \) is a subdisk of \(D \), then there is an open subset \(U \) of \(E^3 \) such that \(\pi(U) \subseteq \pi(D') \).

To prove Assertion A it suffices to show that \(\pi(D') \) is not one-dimensional. This follows from [9, Theorem VI.7, p. 91] since the map \(\pi \mid D' : D' \to \pi(D) \) is closed.

Assertion B. If \(D' \) is a subdisk of \(D \) and \(U \) is an open subset of \(E^3 \) such that \(\pi(U) \subseteq \pi(D') \), then there exist disjoint disks \(D_1 \) and \(D_2 \) in \(D' \) and an open subset \(N \) of \(U \) such that each vertical line through \(\text{cl}(N) \) intersects both \(D_1 \) and \(D_2 \).

In order to select the disks \(D_i \) in Assertion B we first show the existence of a vertical line \(L \) containing two points \(r \) and \(t \) in \(U \) and containing two sequences \(\{u_i \} \) and \(\{l_i \} \) of points such that

1. \(\{u_i \} \) converges to \(r \) from above,
2. \(\{l_i \} \) converges to \(r \) from below,
3. there is a component \(V_1 \) of \(E^3 - S \) containing every \(u_i \), and
4. \(E^3 - (S \cup V_1) = V_2 \) contains every \(l_i \).

Notice that some vertical line \(L' \) intersects \(D' \) in more than two points [7, Theorem 2.3], so we may choose two points \(r' \) and \(t' \) in \(L' \cap D' \). Let \(B \) be an open ball centered at \(r' \) such that \(B \cap S \subseteq D' \). If \(r' \) does not satisfy the four conditions above relative to \(L' \), it must be because some interval \(I \) in \(L' \cap B \) has \(r' \) as its midpoint and lies, except for \(r' \), in a single component, say \(V_1 \), of \(E^3 - S \). Let \(B_1 \) and \(B_2 \) be disjoint round open balls of equal radius centered at points of \(L' \) above and below \(r' \), respectively such that \(B_1 \cup B_2 \subseteq V_1 \cap B \). Now close to \(r' \) and vertically between \(B_1 \) and \(B_2 \), there must exist a point \(e \) of \(V_2 \). Then \(L = L(e) \) intersects \(V_2 \) between its two intersections with \(V_1 \cap (B_1 \cup B_2) \), so \(L \) intersects \(D' \) at least twice. Let \(r \) be the lowest point of the component of \(L \cap (S \cup V_1) \) containing \(L \cap B_1 \), and choose \(t \) to be some other point of \(L \cap S \). Since \(S \) has countable vertical order it is clear that \(r \) is a limit point of \(L \cap V_1 \) from above and of \(L \cap V_2 \) from below. Thus conditions (1), (2), (3), and (4) are satisfied.

Choose a disk \(D_1 \) in \(D' \) such that \(r \in \text{Int} \, D_1 \) and \(t \notin D_1 \). We claim that there is an open set \(U_1 \) containing \(r \) such that every vertical line through \(U_1 \) intersects \(D_1 \). Suppose there is no such open set, and for each \(i \) let \(E_i \) be a horizontal disk centered at \(l_i \) and lying in \(V_2 \). There must be a sequence \(\{x_i \} \) such that \(x_i \in E_i \), for each \(i \), no \(L(x_i) \) intersects \(D_1 \), and \(\{L(x_i)\} \) converges to \(L(r) \). For each \(i \) let \(y_i \) be the first point of \(S \) above \(x_i \) on \(L(x_i) \) (such a point will exist for suf-
ficiently large integers \(i \) since \(u_i \) and \(l_i \) are different components of \(E^3 - S \), and let \(I_i \) be the vertical interval \([x_i, y_i]\) in \(S \cup V_i \). Since some subsequence of \(\{y_i\} \) converges, we assume for notational convenience that \(\{y_i\} \) converges to a point \(y \). Of course \(y \in L(r) \cap S \). It is clear that \(y \) is not above \(r \) on \(L(r) \) because \(\{r, y\} \subset \text{lim inf } I_i \subset S \cup V_i \), whereas \(\{u_i \rightarrow r \} \) and \(u_i \in V_i \). Nor is \(y \) below \(r \) on \(L(r) \) because \(\{l_i \rightarrow r, \} \subset E_i \), and \(x_i \) lies vertically below \(y_i \). Thus \(\{y_i\} \) converges to \(r \), and we have the contradiction that most of the \(y_i \)’s must belong to \(D' \) while \(L(y_i) \cap D' \) was supposed to be empty. The existence of \(U_1 \) is established.

Now choose a disk \(D_2 \) such that \(D_1 \cap D_2 = \emptyset, t \in \text{Int } D_2, D_2 \subset D', \) and \(\pi(D_2) \subset \pi(U_1) \). From Assertion A there is an open set \(U_2 \) such that every vertical line through \(U_2 \) intersects \(D_2 \). Such a line will also intersect \(U_1 \) and hence \(D_1 \). Choose \(N \) to be any open subset of \(U \) such that \(\pi(\text{cl}(N)) \subset \pi(U_1) \cap \pi(U_2) \).

Now that the two assertions have been proven it might be clear how to proceed inductively to produce a vertical line containing uncountably many points of \(S \); nevertheless, we give a brief outline. From Assertion A there is an open set \(U \) such that every vertical line through \(U \) intersects \(D \). Now we apply Assertion B to obtain an open set \(U_1 \), whose closure lies in \(U \), and two disjoint disks \(D_1 \) and \(D_2 \) in \(D \) such that every vertical line through \(\text{cl}(U_1) \) intersects both \(D_1 \) and \(D_2 \). This ends the first step in the construction. Assertion B can now be applied to \(D_1 \) to obtain two disjoint disks \(D_{11} \) and \(D_{12} \) in \(D \), and an open set \(N_2 \) such that vertical lines through \(\text{cl}(N_2) \) intersect both \(D_{11} \) and \(D_{12} \). Now B is applied to \(D_2 \) and \(N_2 \) so that at the completion of step 2 we have an open set \(U_2 \) whose closure lies in \(U_2 \) and four disjoint disks \(D_{11}, D_{12}, D_{21}, \) and \(D_{22} \), in \(D \) where each vertical line through \(\text{cl}(U_2) \) intersects each of the four disks. When the construction is finished it is clear that a vertical line through \(\bigcap_i \text{cl}(U_i) \) will intersect each of the \(2^n \) disks at the \(n \)th step. Thus such a line contains an uncountable set of points of \(S \). This contradiction establishes the theorem.

Corollary 2.2. If \(S \) is a 2-sphere in \(E^3 \) having countable vertical order, then \(S \) is locally tame modulo a 1-dimensional subset.

3. Spheres of vertical order order 5. The following four lemmas are used to establish the main result (Theorem 3.5).

Lemma 3.1. If \(S \) has vertical 5, then \(S \) is locally tame at each point of \(S \) that is vertically above or below a point of \(\text{Int } S \); that is, \(\pi(\text{Int } S) \cap \pi(W(S)) = \emptyset \).

Proof. Let \(p \) be a point of \(S \) such that \(L(p) \cap \text{Int } S \neq \emptyset \). Thus
$L(p)$ must link the boundaries of each of two disjoint disks D_1 and D_2 in S. Let B be a ball lying in $\text{Int} S$ such that each vertical line through B links both $\text{Bd} D_1$ and $\text{Bd} D_2$. If $p \in D_1 \cup D_2$, then there is a disk D_3 in S such that $p \in \text{Int} D_3$, $D_3 \cap (D_1 \cup D_2) = \emptyset$, and $\pi(D_3) \subset \pi(B)$. Then each vertical line intersecting D_3 also intersects both D_1 and D_2. Since D has vertical order 5 it is clear that D_3 has vertical order 3. Thus D is locally tame at p [7, Theorem 2.3] and so is S.

We may now assume that $p \in \text{Int} D_1$. Let D'_1 be a subdisk of D_1 such that $\pi(D'_1) \subset \pi(B)$, and, for each $\xi > 0$, let X^ξ be the union of all vertical intervals of diameter no less than ξ in $S \cup \text{Int} S$ that intersect D'_1. It is an exercise to see that X^ξ is closed, and it follows from [6, Theorem 5] that X^ξ is a $*$-taming set. Now consider a point q in D'_1 but not in $X^{1/\xi}$ for any ξ. It follows that q lies in no vertical interval in $S \cup \text{Int} S$. Thus $L(q)$ does not pierce D'_1 at q, and $L(q)$ must pierce D'_1 at some other point t by the choice of B. Let D be a disk in D'_1 with t in its interior such that $q \in D$ and $L(q)$ links $\text{Bd} D$. Then there is a disk D_q in $D'_1 - D$ such that $q \in \text{Int} D_q$ and each vertical line through D_q links $\text{Bd} D$. Thus such a line intersects both D and D_q. This means that D_q has vertical order 3 and is tame [7, Theorem 2.3]. Now we see that each point of D'_1 either lies in the interior of a tame disk in D'_1 or lies in $\bigcup_i X^{1/i}$. Since a tame disk is a $*$-taming set and a countable number of tame disks suffice to cover $D'_1 - \bigcup_i X^{1/i}$, we see that D'_1 lies in a $*$-taming set of the form $(\bigcup_i X^{1/i}) \cup (a \text{ countable collection of tame disks})$ in $S \cup \text{Int} S$ [5, Theorem 3.7 and Corollary 3.8]. Thus S is locally tame at p from $E^3 - (S \cup \text{Int} S)$ by the definition of a $*$-taming set. Since S is locally tame from $\text{Int} S$ [11], it follows that S is locally tame at p.

Lemma 3.2. If M is a continuum in $W(S)$ and S is a 2-sphere having vertical order 5, then M is tame.

Proof. We may assume that M is nondegenerate since singleton sets always lie on tame spheres. From the previous lemma it is clear that $\pi(M) \subset \text{Bd} \pi(\text{Int} S)$. Let $U = \text{Int} S$ and let X be the component of $\text{Bd} \pi(U)$ containing $\pi(M)$. We shall show the existence of a space homeomorphism $H: E^3 \to E^3$ such that $\pi(H(M))$ is either an arc or a simple closed curve. Then $H(M)$ is clearly tame since it lies in $\pi^{-1}(\pi(H(M)))$.

The continuum X can be shown locally connected as in [7, Part 0.2]. Notice that $\pi(U)$ is open and connected. We let U' be the component of $E^2 - X$ containing $\pi(U)$ and for convenience in what follows we assume that U' is bounded. Notice that $\text{cl} \, (U') = X \cup U'$ since every point of S is accessible from $\text{Int} S$. Let $B^2 = \{(x, y) \mid x^2 + y^2 \leq 1\} \subset E^2$. There is a continuous function $f: B^2 \to \text{cl} \, (U')$ such that
$f \mid \text{Int } B^2$ is a homeomorphism of $\text{Int } B^2$ onto U' and $f^{-1}(x)$ is a totally disconnected subset of $S' = \text{Bd } B^2$ for each $x \in X$ (see [12, p. 186]). Now we follow [7, §§ 2.1, 2.2, 2.3, and 2.4] to find a homeomorphism H of E^3 onto E^3 such that $\pi(\pi^{-1}(X) \cap S))$ is a simple closed curve. Thus $\pi(H(M))$ is either an arc or a simple closed curve since $\pi(H(M)) \subset \pi(H(\pi^{-1}(X) \cap S))$.

In the case where U' is not bounded the map f above takes $E^2 - \text{Int } B^2$ onto $\text{cl } (U')$ and causes some notational difficulties when we try to follow [7] as above. However, [7] still serves as an outline and we leave the details to the reader.

Lemma 3.3. If M is a nondegenerate continuum in $W(S)$ and S is a 2-sphere having vertical order 5, then each point of M is a limit point of $W(S) - M$.

Proof. Suppose some point $p \in M$ is not a limit point of $W(S) - M$, and choose a disk D on S such that $p \in \text{Int } D$, $\text{Bd } D$ is tame [3], and $D \cap W(S) \subset M$. Let $X = M \cup (\text{Bd } D)$, and let S' be a 2-sphere containing $M \cup D$ that is locally tame modulo $X[1]$. From Lemma 3.2 we see that X is a taming set [4, Theorem 8.1.6, p. 320]. Thus S' is tame. This is a contradiction and the result follows.

Lemma 3.4. If D is a disk in a 2-sphere S, S has vertical order 5, $p \in \text{Int } D$, and V is an open subset of E^3 such that $p \in V$ and, for each vertical line L piercing D at a point in V, $L \cap \text{Int } S$ has exactly one component whose closure intersects D, then D is locally tame at p.

Proof. If $L(p)$ intersects $\text{Int } S$, then the conclusion of Lemma 3.4 follows from Lemma 3.1. Thus we now assume $L(p) \cap \text{Int } S = \emptyset$. Choose a 2-sphere H in the shape of a right circular cylinder such that $p \in \text{Int } H$, $H \cap S \subset D$, $\text{Bd } D \subset \text{Ext } H$, $[L \cap (\text{Int } H)] \cap S = \{p\}$, the top and bottom disks T and D of H lie in $\text{Ext } S$, and each vertical line intersecting H also intersects V.

Let X be a component of $(\text{Int } S) \cap H$, and let $K = \text{Bd } X$. We shall show that $X \cup K$ is a disk by showing that K is a simple closed curve. To show that K is connected it suffices to prove that each simple closed curve J in X bounds a disk in X. Such a curve J cannot be essential on the annulus $H - D \cup T$ since J would link $L(p)$ while $L(p) \subset (\text{Ext } S) \cup S$ and $J \subset \text{Int } S$. Thus J must bound a disk E in $H - D \cup T$. From the hypothesis of Lemma 3.4 it is clear that $E \subset X$. Thus K is connected. The fact that K has vertical order 5 insures that K is arcwise accessible from both its complementary domains in H, and this implies that K is a simple closed curve.

Thus the closure of each component of $(\text{Int } S) \cap H$ is a spanning
disk for the 3-cell \(C = S \cup \text{Int} S \). There can be at most a countable collection \(\{D_1, D_2, \ldots\} \) of these spanning disks since their interiors are pairwise disjoint. The fact that \(D \) has vertical order 5 insures that \(\{D_i\} \) is a null sequence. We use these spanning disks to construct a 2-sphere \(S' \) containing \(p \) and lying in \(D \cup (\bigcup_i D_i) \) and in \(H \cup \text{Int} H \). From the hypothesis on \(D \) we see that the interior of \(S' \) is vertically connected; thus \(S' \) is tame [7, Main Theorem]. This means that \(D \) is locally tame at \(p \).

Theorem 3.5. If a 2-sphere \(S \) in \(E^3 \) has vertical order 5, then \(S \cup \text{Int} S \) is a 3-cell and \(S \) is locally tame from \(\text{Ext} S \) modulo a 0-dimensional set.

Proof. That \(C = S \cup \text{Int} S \) is a 3-cell follows from [11]. It remains to show that the set \(W \) of wild points of \(S \) is 0-dimensional. Suppose to the contrary that there is a nondegenerate continuum \(M \) lying in \(W \). Since \(C \) is a 3-cell there is an embedding \(g: M \times [0, 1] \rightarrow C \) such that \(G = g(M \times [0, 1]) \subset \text{Int} S \) and \(g(m, 0) = m \) for every \(m \in M \). We let \(F = g(M \times [0, 1]) \), and we note that it follows from Lemma 3.1 that \(\pi(M) \) lies in the boundary of \(\pi(F) \) in \(E^3 \). For the same reason, \(\pi(G) \cap \pi(M) = \emptyset \). Let \(U \) be a disk in \(E^2 \) and let \(p' \) be a point of \(\text{Int} U \) such that \(U \cap (\pi(\text{Bd} F)) \subset \pi(M) \) and \(p' \in \pi(M) \). Choose a point \(p \) in \(M \cap \pi^{-1}(p') \). In the next paragraph we show the existence of a disk \(E \) in \(S \) with \(p \in \text{Int} E \) and \(\pi(E) \subset U \cap \pi(F) \).

The difficulty in choosing \(E \) is the requirement that \(\pi(E) \subset \pi(F) \). If no such \(E \) exists there must exist a sequence \(\{p_i\} \) of points of \(\text{Int} S \) converging to \(p \) such that \(\pi(p_i) \in U - \pi(F) \) for each \(i \). Using the 0-ULC of \(\text{Int} S \) it is easy to select a point \(g \in G \subset \text{Int} S \) close enough to \(p \) and an integer \(N \) large enough that \(g \) and \(p_N \) are the end points of an arc \(A \) in \(\text{Int} S \) where \(\pi(A) \subset U \). Now \(\pi(A) \) contains an arc with one end point \(a \) in \(\pi(G) \) and the other end point \(b \) in \(U - \pi(F) \). If this arc is traversed from \(b \) to \(a \), then there is a first point \(f \) of \(\pi(F) \) encountered. This point \(f \) clearly belongs to \(\text{Bd} \pi(F) \). This contradiction establishes the existence of \(E \).

Now that the existence of \(E \) is clear we proceed by using Lemma 3.3 to pick a point \(q \) in \(E \cap (W - M) \). Let \(V \) be an open ball centered at \(q \) such that \(V \cap S \subset E \) and \(V \cap F = \emptyset \). Since \(L(q) \cap \text{Int} S = \emptyset \) (see Lemma 3.1) there are open balls \(B_1 \) and \(B_2 \) centered at points above and below \(q \), respectively, that lie in \((\text{Ext} S) \cap V \). We choose a disk \(D \) in \(V \cap S \) with \(q \in \text{Int} D \) vertically between \(B_1 \) and \(B_2 \) such that \(\pi(D) \subset \pi(B_1) \cap \pi(B_2) \). We shall show that \(D \) is locally tame at \(q \) to obtain a contradiction to \(q \in W \).

In order to apply Lemma 3.4 we must show that if a vertical line \(L \) pierces \(D \) at a point of \(V \), then \(L \cap \text{Int} S \) has exactly one
component whose closure intersects \(D \). Suppose to the contrary that for some such line \(L \) there are two components \(X \) and \(Y \) of \(L \cap \text{Int} \, S \) whose closures intersect \(D \). Now \(X \cup Y \subset V \) since \(D \) lies between \(B_1 \) and \(B_2 \). Since \(L \cap \text{Int} \, S = \emptyset \) and \(\pi(D) \subset \pi(F) \), we see that \(L \cap G \neq \emptyset \). Thus \(L \cap (\text{Int} \, S) \) has a third component \(Z \), different from both \(X \) and \(Y \) because \(Z \) lies either above \(B_1 \) or below \(B_2 \). Now the only way to avoid there being 6 points in \(L \cap S \) is for \(X \) and \(Y \) to share an end point \(x \). In this case there is a point \(e \) of \(\text{Ext} \, S \) close enough to \(x \) to insure that there are three components of \(L(e) \cap \text{Int} \, S \) with pairwise disjoint closures. Now \(L(e) \cap S \) contains 6 points contrary to the hypothesis.

4. Examples and questions. One can use a countably infinite null sequence of Fox-Artin [8] "feelers" whose wild points form a dense subset of an arc to see that a vertically countable 2-sphere can have an arc in its wild set. Thus Corollary 2.2 cannot be improved in this direction.

Example 4.1. A wild 2-sphere \(S \) having vertical order 6 such that \(W(S) \) is not 0-dimensional. In Figure 1 we see an embedding of

![Figure 1.](image)

the Alexander Horned Sphere, having vertical order 4, inside a wedge-shaped 3-cell in \(E^3 \). We attach a null sequence of such wedges to a right circular cone, as indicated in Figure 2, to obtain the desired example \(S \). Notice that \(W(S) \) is the union of a tame simple closed curve with countably infinite number of tame Cantor sets. Furthermore, every point of \(S \) is a piercing point of \(S \).

In Example 4.1 we see that every nondegenerate continuum in \(W(S) \) is tame.
Question 4.2. If S is a 2-sphere in E^3 having finite vertical order, then must every nondegenerate continuum in $W(S)$ be tame?

We do not know the answer to Question 4.2 even when “vertical order n” replaces “finite vertical order”, unless $n \leq 5$ where Theorem 3.5 applies. The proof of Lemma 3.2 shows an affirmative answer to Question 4.2 if it is also known that $\pi(W(S)) \cap \pi(\text{Int} \ S) = \emptyset$.

REFERENCES

2. ———, Conditions under which a surface in E^3 is tame, Fund. Math., 47 (1959), 105-139.

Received November 21, 1972.

Utah State University
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustafa Agah Akcoglu, John Philip Huneke and Hermann Rost, A counter example to the Blum Hanson theorem in general spaces</td>
<td>305</td>
</tr>
<tr>
<td>Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule</td>
<td>309</td>
</tr>
<tr>
<td>David W. Boyd, A new class of infinite sphere packings</td>
<td>383</td>
</tr>
<tr>
<td>K. G. Choo, Whitehead Groups of twisted free associative algebras</td>
<td>399</td>
</tr>
<tr>
<td>Charles Kam-Tai Chui and Milton N. Parnes, Limit sets of power series outside the circles of convergence</td>
<td>403</td>
</tr>
<tr>
<td>Allan Clark and John Harwood Ewing, The realization of polynomial algebras as cohomology rings</td>
<td>425</td>
</tr>
<tr>
<td>Dennis Garbanati, Classes of circulants over the p-adic and rational integers</td>
<td>435</td>
</tr>
<tr>
<td>Arjun K. Gupta, On a “square” functional equation</td>
<td>449</td>
</tr>
<tr>
<td>David James Hallenbeck and Thomas Harold MacGregor, Subordination and extreme-point theory</td>
<td>455</td>
</tr>
<tr>
<td>Douglas Harris, The local compactness of vX</td>
<td>469</td>
</tr>
<tr>
<td>William Emery Haver, Monotone mappings of a two-disk onto itself which fix the disk’s boundary can be canonically approximated by homeomorphisms</td>
<td>477</td>
</tr>
<tr>
<td>Norman Peter Herzberg, On a problem of Hurwitz</td>
<td>485</td>
</tr>
<tr>
<td>Chin-Shui Hsu, A class of Abelian groups closed under direct limits and subgroups formation</td>
<td>495</td>
</tr>
<tr>
<td>Bjarni Jónsson and Thomas Paul Whaley, Congruence relations and multiplicity types of algebras</td>
<td>505</td>
</tr>
<tr>
<td>Lowell Duane Loveland, Vertically countable spheres and their wild sets</td>
<td>521</td>
</tr>
<tr>
<td>Nimrod Megiddo, Kernels of compound games with simple components</td>
<td>531</td>
</tr>
<tr>
<td>Russell L. Merris, An identity for matrix functions</td>
<td>557</td>
</tr>
<tr>
<td>E. O. Milton, Fourier transforms of odd and even tempered distributions</td>
<td>563</td>
</tr>
<tr>
<td>Dix Hayes Pettey, One-one-mappings onto locally connected generalized continua</td>
<td>573</td>
</tr>
<tr>
<td>Mark Bernard Ramras, Orders with finite global dimension</td>
<td>583</td>
</tr>
<tr>
<td>Doron Ravdin, Various types of local homogeneity</td>
<td>589</td>
</tr>
<tr>
<td>George Michael Reed, On metrizability of complete Moore spaces</td>
<td>595</td>
</tr>
<tr>
<td>Charles Small, Normal bases for quadratic extensions</td>
<td>601</td>
</tr>
<tr>
<td>Philip C. Tonne, Polynomials and Hausdorff matrices</td>
<td>613</td>
</tr>
<tr>
<td>Robert Earl Weber, The range of a derivation and ideals</td>
<td>617</td>
</tr>
</tbody>
</table>