THE RANGE OF A DERIVATION AND IDEALS

ROBERT EARL WEBER
THE RANGE OF A DERIVATION AND IDEALS

R. E. WEBER

When \(A \) is in the Banach algebra \(\mathcal{B}(\mathcal{H}) \) of all bounded linear operators on a Hilbert space \(\mathcal{H} \), the derivation generated by \(A \) is the bounded operator \(\Delta_A \) on \(\mathcal{B}(\mathcal{H}) \) defined by \(\Delta_A(X) = AX -XA \). It is shown that the range of a derivation generated by a Hilbert-Schmidt or a diagonal operator contains no nonzero one-sided ideals of \(\mathcal{B}(\mathcal{H}) \). Also, for a two-sided ideal \(\mathcal{I} \) of \(\mathcal{B}(\mathcal{H}) \), necessary and sufficient condition on an operator \(A \) are given in order that the range of \(\Delta_A \) equals the range of \(\Delta_A \) restricted to \(\mathcal{I} \).

1. In the following \(\mathcal{H} \) will denote an infinite dimensional complex Hilbert space.

For a fixed \(A \in \mathcal{B}(\mathcal{H}) \), we will concern ourselves with the following problems:

(a) For what \(B \in \mathcal{B}(\mathcal{H}) \) is \(B\mathcal{R}(\Delta_A) \subset \mathcal{R}(\Delta_A) \) or \(\mathcal{R}(\Delta_A)B \subset \mathcal{R}(\Delta_A) \).

(b) For what \(B \in \mathcal{B}(\mathcal{H}) \) is \(B\mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A) \) or \(\mathcal{B}(\mathcal{H})B \subset \mathcal{R}(\Delta_A) \).

(c) For what \(B \in \mathcal{B}(\mathcal{H}) \) is \(\mathcal{R}(\Delta_B) \subset \mathcal{R}(\Delta_A) \).

It is easy to verify that for \(\lambda \in \mathbb{C} \)

(i) \(\Delta_A = \Delta_{A+\lambda} \) for all \(\lambda \in \mathbb{C} \)
and

(ii) \(\Delta_A(XY) = X\Delta_A(Y) + \Delta_A(X)Y \).

The identity (ii) yields some simple facts about the range of a derivation which show the interrelation of the above problems. (For a proof see [8].)

LEMMA 1. Let \(A, B \in \mathcal{B}(\mathcal{H}) \) and let \(A' \) belong to the commutant \(\{A\}' \) of \(A \). Then

(a) both \(A'\mathcal{R}(\Delta_A) \) and \(\mathcal{R}(\Delta_A)A' \) are contained in \(\mathcal{R}(\Delta_A) \).

(b) if \(\mathcal{R}(\Delta_A) \subset \mathcal{R}(\Delta_A) \), then both \(A'\mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A) \) and \(\mathcal{B}(\mathcal{H})\mathcal{R}(\Delta_A) \subset \mathcal{R}(\Delta_A) \) are contained in \(\mathcal{R}(\Delta_A) \).

(c) \(\mathcal{R}(\Delta_A)B \subset \mathcal{R}(\Delta_A) \) if and only if \(\Delta_A(B)\mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A) \).

(d) \(\mathcal{R}(\Delta_A)B \subset \mathcal{R}(\Delta_A) \) if and only if \(\mathcal{B}(\mathcal{H})\Delta_A(B) \subset \mathcal{R}(\Delta_A) \).

From (b) of Lemma 1 it follows that if \(\mathcal{R}(\Delta_A) \) does not contain left- or right-ideals, then a necessary condition for \(\mathcal{R}(\Delta_B) \subset \mathcal{R}(\Delta_A) \) is that \(B \in \{A\}' \). In fact, more is true:

LEMMA 2. Let \(A \in \mathcal{B}(\mathcal{H}) \). If \(\mathcal{R}(\Delta_A) \) contains either no nonzero left-ideals or no nonzero right-ideals, then \(\Delta_B(\mathcal{I}) \subset \mathcal{R}(\Delta_A) \) implies
Proof. Assume that $\mathcal{R}(\Delta_A)$ contains no nonzero left-ideals (the argument for the other assumption is similar). Let P be a finite rank projection. If $A' \in [A]'$, then

$$\Delta_A(B)PX = A'\Delta_B(PX) - \Delta_B(A'PX)$$

is in $\mathcal{R}(\Delta_A)$ for all $X \in \mathcal{B}(\mathcal{H})$. Therefore, $\Delta_A(B)P\mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A)$ and hence $\Delta_A(B)P = 0$. However, this is true for any such P and hence $\Delta_A(B) = 0$.

For the sake of completeness we include a somewhat simpler proof of a theorem of Stampfli [6]. In the proof, $\sigma_l(A)$ denotes the left essential spectrum of A and is defined to be the set of those λ for which the coset of the Calkin algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}$ (where \mathcal{K} is the ideal of compact operators) containing $A - \lambda$ fails to have a left inverse. The right essential spectrum $\sigma_r(A)$ is defined in the obvious way.

Theorem 1. Let $A \in \mathcal{B}(\mathcal{H})$. Then $\mathcal{R}(\Delta_A)$ contains no nonzero two-sided ideals of $\mathcal{B}(\mathcal{H})$.

Proof. Replace A by $A - \lambda$ where $\lambda \in \sigma_l(A) \cap \sigma_r(A)$ if necessary in order to assume that there exist orthonormal sequences $\{f_n\}$ and $\{g_n\}$ such that $\sum ||A f_n||_2 < \infty$ and $\sum ||A^* g_n||_2 < \infty$. (See [6].) Then for all $X \in \mathcal{B}(\mathcal{H})$,

$$\sum ||(AX -XA)f_n, g_n||_2 \leq \sum ||X||_2^2(||A^* g_n||_2^2 + ||Af_n||_2^2) < \infty.$$

If $\mathcal{R}(\Delta_A)$ contains a two-sided ideal, then it contains all finite rank operators. In particular, if $f \otimes g$ denotes the rank one operator $f \otimes g(x) = (x, g)f$, then $(f \otimes f)X \in \mathcal{R}(\Delta_A)$ for all $f \in \mathcal{H}$ and $X \in \mathcal{B}(\mathcal{H})$. Hence

$$\sum ||(f \otimes f)Xf_n, g_n||_2 \leq \sum \langle (Xf_n, f^*)(\overline{g_n}, f) \rangle < \infty$$

for all $f \in \mathcal{H}$ and $X \in \mathcal{B}(\mathcal{H})$. However, if we choose X such that $Xf_n = g_n$ and f such that $\{(g_n, f)\}$ is not summable, we have a contradiction.
2. Let \mathcal{S} denote the set of Hilbert-Schmidt operators on \mathcal{H}. Equipped with the trace inner product $(A, B) = \text{tr}(AB^*)$, \mathcal{S} is a Hilbert space [5]. If $A \in \mathcal{B}(\mathcal{H})$, then the restriction of Δ_A to \mathcal{S} is a bounded operator on \mathcal{S} with adjoint $(\Delta_A|_{\mathcal{S}})^* = \Delta_A|_{\mathcal{S}}$. Hence $\mathcal{S} = \mathcal{B}(\mathcal{S} | \mathcal{S}) = (A^*)' \cap \mathcal{S}$ where the double bar indicates closure with respect to the topology on \mathcal{S}.

Theorem 2. Let $A \in \mathcal{S}$. Then $\mathcal{R}(\Delta_A)^{-} = \mathcal{B}(\Delta_A|_{\mathcal{S}})^{-}$.

Proof. It follows from the above remarks that $\mathcal{R}(\Delta_A)^{-} \subset \mathcal{B}(\Delta_A|_{\mathcal{S}})^{-} = (A^*)' \cap \mathcal{S}$. It remains to show the reverse inclusion. Let $T \in (A^*)' \cap \mathcal{S}$. Then for $X \in \mathcal{B}(\mathcal{H})$

$$(\Delta_A(X), T) = \text{tr}(T^*\Delta_A(X)) = \text{tr}(T^*AX) - \text{tr}(T^*XA) = \text{tr}(AT^*X) - \text{tr}(T^*X) \Delta_A = \text{tr}(T^*X) - \text{tr}(T^*X) = 0 .$$

Therefore $T \in \mathcal{B}(\Delta_A)^{-}$.

Corollary. Let $A \in \mathcal{S}$. Then $\mathcal{R}(\Delta_A)^{-} = \mathcal{B}(\Delta_A|_{\mathcal{S}})^{-} = \mathcal{S}$.

Theorem 3. If $A \in \mathcal{S}$, then $\mathcal{R}(\Delta_A)$ does not contain any nonzero left- or right-ideals.

In the proof of Theorem 3 we will make use of the following result.

Lemma 3. Let $A \in \mathcal{S}$. If $(f \otimes f) \mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A)$, then $Af = 0$.

Proof. Since $\mathcal{R}(\Delta_A) \perp (A^*)' \cap \mathcal{S}$, then $0 = \text{tr}(A(f \otimes f)X) = \text{tr}(Af \otimes X^*f) = (Af, X^*f)$ for all $X \in \mathcal{B}(\mathcal{H})$. Hence $Af = 0$.

Proof of Theorem 3. Suppose that $(f \otimes f) \mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A)$. Then $f \otimes f = \Delta_A(X)$ for some $X \in \mathcal{B}(\mathcal{H})$ and by Lemma 3, $f = (f \otimes f)f = AXf - XAf = AXf$. Since $(f \otimes f) \mathcal{B}(\mathcal{H}) = \Delta_A(X) \mathcal{B}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$, then by Lemma 1, $X \mathcal{B}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$. Therefore, $(Xf \otimes (Xf)) \mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A)$ and by Lemma 3, $Xf \in \ker(A)$. Hence $f = AXf = 0$. The remainder follows by taking adjoints.

Corollary 1. Let $A \in \mathcal{S}$ and $B \in \mathcal{B}(\mathcal{H})$. Then $B \mathcal{R}(\Delta_A) \subset \mathcal{R}(\Delta_A)$ if and only if $B \in (A)'$.

Proof. This follows from Lemma 1 and the theorem.

Corollary 2. Let $A \in \mathcal{S}$. If $\Delta_B(\mathcal{S}) \subset \mathcal{R}(\Delta_A)$ then $B \in (A)'$.

Proof. This follows from Lemma 2 and the theorem.
3. We now turn our attention to diagonal operators. When expressing a diagonal operator as the sum $A = \sum \alpha_n P_n$, unless otherwise stated we shall assume that P_n is the rank one projection onto the subspace spanned by e_n, where $\{e_n\}$ is an orthonormal basis. (However, we do not require that the α_n's be distinct.) Each operator X has a matrix (x_{ij}) with respect to this fixed basis.

The principle result of this section is that the range of a derivation generated by a diagonal operator contains no nonzero left- or right-ideals. The theorem is slightly more general.

Theorem 4. Let $A \in B(H)$ have the property that there exist reducing subspaces M_n of A, each finite dimensional, such that $H = \bigoplus M_n$. Then $\mathcal{R}(A)_{\mathbb{R}}$ contains no nonzero positive operators.

Proof. Let $P = A(X)$ where P is positive. If P_n is the orthogonal projection onto M_n, then $P_nP|_{M_n} = A_nX_n - X_nA_n$ where $A_n = A|_{M_n}$ and X_n is the compression of X to M_n. Since M_n is finite dimensional, then $\text{tr}(P_nP|_{M_n}) = 0$. Hence $P_nP|_{M_n}$ being a positive operator with zero trace, must be 0. Therefore, $P_nPP_n = 0$ (on H). Hence $P^{1/2}P_n = 0$ and $P^{1/2} = 0$.

Corollary 1. If A satisfies the hypothesis of the theorem and if either $B\mathcal{R}(A)$ or $\mathcal{R}(A)B$ is contained in $\mathcal{R}(A)_{\mathbb{R}}$, then $B \in \{A\}'$.

Corollary 2. If A satisfies the hypothesis of the theorem and $A_{\mathbb{H}} \subset \mathcal{R}(A)_{\mathbb{R}}$, then $B \in \{A\}''$.

Corollary 3. Let A be normal with finite spectrum. Then for $B \in B(H)$, $\mathcal{R}(A)_{\mathbb{R}} \subset \mathcal{R}(A)$ if and only if $B \in \{A\}''$.

Proof. If $B \in \{A\}''$ then B is a polynomial of A and hence $\mathcal{R}(A)_{\mathbb{R}} \subset \mathcal{R}(A)$. (See [1, p. 79].) The converse follows from Corollary 2.

Lemma 4. Let $A, B \in B(H)$ where $A = \sum \alpha_i P_i$. Then $\mathcal{R}(A)_{\mathbb{R}} \subset \mathcal{R}(A)$ if and only if $B = \sum \beta_i P_i$ for some set of scalars β_0, β_1, \cdots and for every operator $X = (x_{ij}) \in B(H)$ there exists an operator $Y = (y_{ij}) \in B(H)$ such that $(\alpha_i - \beta_i)y_{ij} = x_{ij}$ for all i, j.

Proof. This follows from Corollary 2 and the fact that $[J_A(X)]_{ij} = (\alpha_i - \beta_i)x_{ij}$ if $X = (x_{ij})$.

Theorem 5. Let $A \in B(H)$ be diagonal. If for $B \in B(H)$, $\mathcal{R}(A)_{\mathbb{R}} \subset \mathcal{R}(A)$, then $B = f(A)$ for some function f which is Lipschitz on the spectrum of A.

Proof. Let $A = \sum \alpha_i P_i$. If $\mathcal{B}(A_B) \subset \mathcal{B}(A_A)$, then by Corollary 2, $B = \sum \beta_i P_i$ for some sequence of scalars $\{\beta_i\}$ and for any $X = (x_{ij}) \in \mathcal{B}(\mathcal{H})$, there exists a $Y = (y_{ij}) \in \mathcal{B}(\mathcal{H})$ such that $y_{ij} = ((\beta_i - \beta_j)/(\alpha_i - \alpha_j))x_{ij}$ whenever $\alpha_i \neq \alpha_j$. It follows that $((\beta_i - \beta_j)/(\alpha_i - \alpha_j))$ is bounded by some positive number M. Define f such that $f(\alpha_i) = \beta_i$. Then f is a Lipschitz function defined on a dense subset of $\sigma(A)$ onto a dense subset of $\sigma(B)$. Therefore, we can extend f to be Lipschitz on $\sigma(A)$ onto $\sigma(B)$.

It was shown in [7] that if B is an analytic function of A, then $\mathcal{B}(A_B) \subset \mathcal{B}(A_A)$. To have range inclusion it is neither necessary that B be an analytic function of A nor sufficient that B be a continuous function of A as seen in the next two examples.

Example 1. Let $A = \sum \alpha_n P_n$ where $\dim P_n = 1$, $\alpha_0 = 0$, and

$$\alpha_n = \begin{cases} \frac{i}{n} & \text{for } n \text{ even} \\ \frac{1}{n} & \text{for } n \text{ odd} \end{cases}$$

Let $B = \sum \beta_n P_n$ where $\beta_0 = 0$ and $\beta_n = -i/n^2$ for $n \geq 1$. A direct computation shows that if $n < m$, then $|(\beta_n - \beta_m)/(\alpha_n - \alpha_m)| \leq 2/n$.

Now, for any $X = (x_{ij}) \in \mathcal{B}(\mathcal{H})$, consider the matrix $Y = (y_{ij})$ where $y_{ij} = ((\beta_i - \beta_j)/(\alpha_i - \alpha_j))x_{ij}$ whenever $\alpha_i \neq \alpha_j$ and zero otherwise.

Then

$$\sum_{i,j} |y_{ij}|^2 = \sum_{n=0}^{\infty} \sum_{j=n}^{\infty} |y_{nj}|^2 + \sum_{m=0}^{\infty} \sum_{i=m}^{\infty} |y_{im}|^2.$$

For $m > 0$,

$$\sum_{i=m}^{\infty} |y_{im}|^2 \leq 4/m^2 \sum_{i=m}^{\infty} |x_{im}|^2 \leq 4/m^2 \|X\|^2$$

and for $n > 0$,

$$\sum_{j=n}^{\infty} |y_{nj}|^2 \leq 4/n^2 \|X\|^2.$$

Hence

$$\sum_{i,j} |y_{ij}|^2 \leq \|X\|^2 + \sum_{m=1}^{\infty} 4/n^2 \|X\|^2 + \|X\|^2 + \sum_{m=1}^{\infty} 4/m^2 \|X\|^2.$$

Therefore, $Y \in \mathcal{B}(\mathcal{H})$ and by Lemma 4, $\mathcal{B}(A_B) \subset \mathcal{B}(A_A)$. Now, assume f is an analytic function on $\sigma(A)$ such that for even n, $f(i/n) = -i/n^2$. Then $f(z) = z^2i$. Hence for odd n, $f(1/n) = i/n^2 \neq -i/n^2$ and $B \neq f(A)$.

Example 2. Let $A = \sum \alpha_n P_n$ where P_n is rank one for all n, $\alpha_0 = 0$, and $\alpha_n = 1/n^2$ for $n > 0$ and let $B = \sum \beta_n P_n$ where $\beta_0 = 0$.
and $\beta_n = 1/n$ for $n > 0$. Then B is a continuous function of A, in fact $B = f(A)$ where $f(z) = z^{1/2}$. Let $X = (x_{ij}) \in \mathcal{B}(\mathcal{H})$ where

$$x_{nj} = \begin{cases} 1/n & \text{for } n > 0 \text{ and } j = 0 \\ 0 & \text{otherwise} \end{cases}$$

If $\Delta_B(X) = \Delta_A(Y)$ where $Y = (y_{ij})$, then

$$y_{n0} = x_{n0}(\beta - \beta_0)/(\alpha_n - \alpha_0) = (1/n)(1/n)/(1/n^2) = 1$$

for all n. Hence $Y \in \mathcal{B}(\mathcal{H})$ and $\mathcal{B}(\Delta_B) \not\subset \mathcal{B}(\Delta_A)$.

Other derivations whose ranges do not contain any nonzero one-sided ideals are those generated by unitary and self-adjoint operators. (See [9].)

It was shown in [7] that the range of a derivation generated by a nonunitary isometry does contain nonzero left-ideals. Other operators which possess this property are some of the weighted shifts.

4. Another question concerning the range of a derivation and, in this case, a two-sided ideal \mathcal{I} of $\mathcal{B}(\mathcal{H})$ is whether $\mathcal{B}(\Delta_A) = \Delta_A(\mathcal{I})$.

Theorem 6. Let $A \in \mathcal{B}(\mathcal{H})$ and let \mathcal{I} be a proper two-sided ideal of $\mathcal{B}(\mathcal{H})$. Consider the following conditions:

(a) $A' + \mathcal{I} = \mathcal{B}(\mathcal{H})$.

(b) $\mathcal{B}(\Delta_A) = \Delta_A(\mathcal{I})$.

(c) $\mathcal{B}(\Delta_A) \subset \mathcal{I}$.

(d) $A = T - \lambda$ for some $T \in \mathcal{I}$ and $\lambda \in \mathcal{C}$.

(a) is equivalent to (b), (c) is equivalent to (d), and (b) implies (c).

Proof. That (a) is equivalent to (b) is a consequence of the fact that $X = T + A'$ for some $T \in \mathcal{I}$ and $A' \in (A)'$ if and only if $\Delta_A(X) \in \Delta_A(I)$. That (c) is equivalent to (d) is a consequence of a theorem of Calkin [2] where he shows that the center of $\mathcal{B}(\mathcal{H})/\mathcal{I}$ consists of scalars. It is immediate that (b) implies (c).

Remark. An example to show that (c) does not imply (b) for the case when \mathcal{I} is the ideal of compact operators can be obtained by letting A be the adjoint of the weighted shift with weights $\{2, 1, 1/2, 1/3, \cdots\}$ and showing that each element of $(A)'$ is the translate of a Hilbert-Schmidt operator. (See [8].)

If we require only that the closures be equal, we have the following;

Theorem 7. Let $A \in \mathcal{B}(\mathcal{H})$ be compact and let \mathcal{F} be the ideal of finite rank operators. Then $\mathcal{B}(\Delta_A) = \Delta_A(\mathcal{F})$.
Proof. Let $f \in \mathcal{B}(\mathcal{H})$. Then $f = f_0 + f_\tau$ for some trace-class operator T where $f_\tau(X) = \text{tr}(XT)$ and where f_τ annihilates the compact operators. (See Dixmier [3].) If f annihilates $\Delta_A(\mathcal{I})$ then $f_\tau(\Delta_A(F)) = f(\Delta_A(F)) = 0$ for all $F \in \mathcal{I}$. However,

$$f_\tau(\Delta_A(F)) = \text{tr}((AF - FA)T) = \text{tr}(FAT - FAT)$$

for all $F \in \mathcal{I}$. Since \mathcal{I} is dense in the trace-class operators, then $\Delta_A(-T) = 0$ and $T \in \{A\}'$. Hence f_τ annihilates the range of Δ_A and since A is compact, $f(\Delta_A(X)) = f_\tau(\Delta_A(X)) = 0$ for all $X \in \mathcal{B}(\mathcal{H})$.

If A is normal then Theorem 6 can be improved;

Theorem 8. Let $A \in \mathcal{B}(\mathcal{H})$ be normal and let \mathcal{I} be a proper two-sided ideal of $\mathcal{B}(\mathcal{H})$. The following are equivalent:

(a) $[A]' + \mathcal{I} = \mathcal{B}(\mathcal{H})$.
(b) $\mathcal{R}(\Delta_A) = \Delta_A(\mathcal{I})$.
(c) $\mathcal{R}(\Delta_A) \subset \mathcal{I}$ and $\sigma(A)$ is finite.
(d) $A = T - \lambda$ for some $T \in \mathcal{I}$, some $\lambda \in \mathbb{C}$ and $\sigma(A)$ is finite.

Proof. That (a) is equivalent to (b) and (c) is equivalent to (d) follows from Theorem 6. If A is normal with finite spectrum, then by a theorem of Anderson [1, p. 96] $\mathcal{R}(\Delta_A) + [A]' = \mathcal{B}(\mathcal{H})$. Hence, if $A = T - \lambda$ for some $T \in \mathcal{I}$ and $\lambda \in \mathbb{C}$ then $\mathcal{R}(\Delta_A) \subset \mathcal{I}$ and (d) implies (a). To show that (a) implies (d), assume that $\sigma(A)$ is infinite and that $[A]' + \mathcal{I} = \mathcal{B}(\mathcal{H})$. Then by Theorem 6, $A - \lambda \in \mathcal{I}$ for some $\lambda \in \mathbb{C}$. Since \mathcal{I} is contained in the ideal of compact operators, we can assume that A is compact. Let $A = A_1 \oplus A_2$ on $\mathcal{M} \bigoplus \mathcal{M}^\perp$ where A_1 is an infinite dimensional diagonal operator with distinct eigenvalues and let P be the orthogonal projection onto \mathcal{M}. Hence, if $X \in \{A\}'$, then PXP is diagonal. However, if we let U be the unilateral shift on \mathcal{M}, then $[A]' + \mathcal{I} = \mathcal{B}(\mathcal{H})$ implies that $U = D + K$ for some diagonal operator D and some compact operator K. This is clearly a contradiction (let $\{e_n\}$ be an orthonormal basis for \mathcal{M} by which U is the shift, then $((D - U)e_n, e_{n+1}) = 1$ for all n).

References

Received November 28, 1972 and in revised form October 10, 1973. This paper contains part of a doctoral dissertation written under the direction of Professor J. P. Williams at Indiana University.

Indiana University Southeast
Mustafa Agah Akcoglu, John Philip Huneke and Hermann Rost, *A counter example to the Blum Hanson theorem in general spaces* 305

Huzihiro Araki, *Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule* 309

David W. Boyd, *A new class of infinite sphere packings* 383

K. G. Choo, *Whitehead Groups of twisted free associative algebras* 399

Charles Kam-Tai Chui and Milton N. Parnes, *Limit sets of power series outside the circles of convergence* 403

Allan Clark and John Harwood Ewing, *The realization of polynomial algebras as cohomology rings* 425

Dennis Garbanati, *Classes of circulants over the p-adic and rational integers* 435

Arjun K. Gupta, *On a “square” functional equation* 449

David James Hallenbeck and Thomas Harold MacGregor, *Subordination and extreme-point theory* 455

Douglas Harris, *The local compactness of vX* 469

William Emery Haver, *Monotone mappings of a two-disk onto itself which fix the disk’s boundary can be canonically approximated by homeomorphisms* 477

Norman Peter Herzberg, *On a problem of Hurwitz* 485

Chin-Shui Hsu, *A class of Abelian groups closed under direct limits and subgroups formation* 495

Bjarni Jónsson and Thomas Paul Whaley, *Congruence relations and multiplicity types of algebras* 505

Lowell Duane Loveland, *Vertically countable spheres and their wild sets* 521

Nimrod Megiddo, *Kernels of compound games with simple components* 531

Russell L. Merris, *An identity for matrix functions* 557

E. O. Milton, *Fourier transforms of odd and even tempered distributions* 563

Dix Hayes Pettey, *One-one-mappings onto locally connected generalized continua* 573

Mark Bernard Ramras, *Orders with finite global dimension* 583

Doron Ravdin, *Various types of local homogeneity* 589

George Michael Reed, *On metrizability of complete Moore spaces* 595

Charles Small, *Normal bases for quadratic extensions* 601

Philip C. Tonne, *Polynomials and Hausdorff matrices* 613

Robert Earl Weber, *The range of a derivation and ideals* 617