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When A is in the Banach algebra &{&?) of all bounded
linear operators on a Hubert space ^ the derivation gener-
ated by A is the bounded operator ΔA on &(3έf) defined by
ΔA{X) = AX — XA. It is shown that the range of a deriva-
tion generated by a Hubert-Schmidt or a diagonal operator
contains no nonzero one-sided ideals of &(<%?). Also, for a
two-sided ideal ^ of &{J%f), necessary and sufficient con-
dition on an operator A are given in order that the range
of ΔA equals the range of ΔA restricted to ^ .

l In the following £ίf will denote an infinite dimensional com-
plex Hubert space.

For a fixed A e . ^ ( ^ ) , we will concern ourselves with the fol-
lowing problems:

(a) For what Be^{^f) is B&{ΔA)a &{ΔA) or

A).
(b) For what Be &{3ί?) is B ^ ( J g ^ ) c &{ΔA) or

( c ) For what B e ^ ( ^ T ) is &(AB)a
It is easy to verify that for A, X, Ye
( i ) ΔA = ΔA+X for all λ G ^

and
(ii) ΔA(XY) = XΔA{ Y) + ΔA(X) Y.
The identity (ii) yields some simple facts about the range of a

derivation which show the interrelation of the above problems. (For
a proof see [8].)

LEMMA 1. Let A, Be &(έ%f) and let Af belong to the commutant
{AY of A. Then

(a) both A'&(ΔA) and &{ΔA)A! are contained in &{ΔA).
(b) if &(ΔB)a&(ΔA), then both ΔA, (J3)<^(J3T) and &{3i?)ΔA, (B)

are contained in &{ΔA).
( c ) B&(ΔA) c &{ΔA) if and only if ΔA{B)έg{^) c
( d) &{ΔA)B c &{ΔA) if and only if ^{^f)ΔA{B) c

From (b) of Lemma 1 it follows that if &(ΔA) does not contain
left- or right-ideals, then a necessary condition for &{ΔB) c &(AA) is
that Be {A}". In fact, more is true:

LEMMA 2. Let A e &(3ίf). If &(AA) contains either no nonzero
left-ideals or no nonzero right-ideals, then ΔB(J?~) c &{ΔA) implies
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618 R. E. WEBER

Be {Ay. (J^~ denotes the ideal of finite rank operators.)

Proof. Assume that &(ΔA) contains no nonzero left-ideals (the
argument for the other assumption is similar). Let P be a finite
rank projection. If A'e{A}', then

ΔA{B)PX = A!ΔB(PX) - ΔB(A!PX)

is in &(ΔA) for all l e ^ ( ^ ) . Therefore, Δ )
and hence ΔA,(B)P — 0. However, this is true for any such P and
hence ΔA,(B) = 0.

For the sake of completeness we include a somewhat simpler
proof of a theorem of Stampfli [6]. In the proof, ox(A) denotes the
left essential spectrum of A and is defined to be the set of those
λ for which the coset of the Calkin algebra <^(3ίf)\5>ίr (where 3T
is the ideal of compact operators) containing A — λ fails to have a
left inverse. The right essential spectrum σr(A) is defined in the
obvious way.

THEOREM 1. Let Ae^(β^). Then &(ΔA) contains no nonzero
two-sided ideals of

Proof. Replace A by A — λ where λ e σ^A) Π σr(A) if necessary
in order to assume that there exist orthonormal sequences {fn} and
{gn} such that Σ I I 4 / ; i Γ / 2 < - and Σ II A*gn ||

1/2 < - . (See [6].)
Then for all

Σ I ((AX - XA)fny gn) I1/2 ̂  Σ II ̂ ΊHII A*gn | Γ +\\Afn | Π < - .

If &(ΔA) contains a two-sided ideal, then it contains all finite rank
operators. In particular, if f®g denotes the rank one operator
f®g(x) = (x, g)f, then (f(g)f)Xe^(ΔA) for all/e ^ and
Hence

Since

f.,ff.)l1'! = ΣI(*/.,σ<8>/)ff.)Γ

then

Σ

for all fe ^f and 1 G . ^ ( ^ ) . However, if we choose X such that
Xfn-Qn and / such that {\(gny f)\) is not summable, we have a
contradiction.
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2» Let Sf denote the set of Hilbert-Schmidt operators on
Equipped with the trace inner product (A, B) = tr (AB*), S^ is a
Hubert space [5]. If 4 e ^ ( ^ ) , then the restriction of ΔA to S? is
a bounded operator on £f with adjoint {ΔA\S^Y — AA*\^. Hence
£f = &{AA \Ssy © ({A*}'Π ̂ ) where the double bar indicates closure
with respect to the topology on £f.

THEOREM 2. Let i e ^ Then &(ΔAy =

Proof. It follows from the above remarks that &(AA)
L c

l ^ ) 1 ^ {A*}'Π S^. It remains to show the reverse inclusion.
Let Te {A*}' Π ̂  Then for l e

), Γ) = tr (Γ*Λ(X)) = tr (T*AX) - tr
= tr (AT*X) - tr (T*X4) = tr (T*XA) - tr (Γ*XA) = 0 .

Therefore T

COROLLARY. Let AeS< Then &(ΔAy 0 ({A*}' Π

THEOREM 3. If Ae S^, then &(ΔA) does not contain any nonzero
left- or right-ideals.

In the proof of Theorem 3 we will make use of the following
result.

LEMMA 3. Let i e ^ // ( / ( x ) / ) ^ ( ^ r ) c έ?(ΔA), then Af = 0.

Proof. Since £p(ΔA) 1 {A*}' Π ̂  then 0 = tr (A(f (x)/)X) =
tr (Af®X*f) = (A/, X*/) for all Xe <^{£^). Hence A/ = 0.

Proo/ o/ Theorem 3. Suppose that ( / ® / ) ^ ( ^ ) c ^ ( ^ ) . Then
/ (x)/ = ̂ (-ϊ) for some l e <^{2^) and by Lemma 3, / = (/ (x) / ) / =
AX/ - XAf = AX/. Since (/ ® f)^{^) = AA(X)^(^) c &{ΔA\
then by Lemma 1, X^(AA)a&{AA). Therefore, ((X/)(g)(X/))^( ί^r)c
-Σ(/ Θ fW(<%?) c ^ ( Λ ) and by Lemma 3, X/e ker(A). Hence
/ = AX/ = 0. The remainder follows by taking adjoints.

COROLLARY 1. Let Ae<9* and 5 e . ^ ) . Then
if and only if Be {A}'.

Proof. This follows from Lemma 1 and the theorem.

COROLLARY 2. Let 4 e ^ // ΔB(^~) c &(ΔA) then Be {A}".

Proof. This follows from Lemma 2 and the theorem.
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3* We now turn our attention to diagonal operators. When
expressing a diagonal operator as the sum A — Σ ocj?n, unless other-
wise stated we shall assume that Pn is the rank one projection onto
the subspace spanned by enJ where {en} is an orthonormal basis.
(However, we do not require that the an's be distinct.) Each operator
X has a matrix {xi3) with respect to this fixed basis.

The principle result of this section is that the range of a deriva-
tion generated by a diagonal operator contains no nonzero left- or
right-ideals. The theorem is slightly more general.

THEOREM 4. Let Ae &{£έf) have the property that there exist
reducing subspaces ^ C of A, each finite dimensional, such that

= Σ Θ - ^ C Then &(AA) contains no nonzero positive operators.

Proof. Let P = AA(X) where P is positive. If Pn is the orthogo-
nal projection onto ^£n, then PnP | ̂ C = AnXn — XnAn where An =
A I ^ C and Xn is the compression of X to ^/fn. Since ^ ^ is finite
dimensional, then tr (PnP | ̂ *C) = 0. Hence PnP \ ^€n being a positive
operator with zero trace, must be 0. Therefore, PnPPn = 0 (on £(?).
Hence Pl'lP. = 0 and P1'2 = 0.

COROLLARY 1. If A satisfies the hypothesis of the theorem and
if either B&(AA) or &{A^B is contained in &(AA), then Be {A}'.

COROLLARY 2. If A satisfies the hypothesis of the theorem and
A), then Be {A}".

COROLLARY 3. Let A be normal with finite spectrum. Then for
Be &{3ί?\ &(AB)<z&(AA) if and only if Be {A}".

Proof. If Be {A}" then B is a polynomial of A and hence
. (See [1, p. 79].) The converse follows from Corollary 2.

LEMMA 4. Let A, Be &{£ίf) where A = Σ«<•?<• Then &{AB) c
if and only if B = Σ β%P% for some set of scalars β0, β,

and for every operator X = {xi3) e έ%?{£έf) there exists an operator
Y = (Vij) e &(£{f) such that (α4 - a3) = (β{ - βά)xiά for all if j .

Proof. This follows from Corollary 2 and the fact that [AA{X)]i3 =
(at - a3)xi3 if X = (xi3).

THEOREM 5. Let i e ^ ( ^ T ) be diagonal. If for
c &{AA), then B — f(A) for some function f which is Lipschitz

on the spectrum of A.
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Proof. Let A = Σ « Λ If ^ ( Λ ) c ^ ( Λ ) , then by Corollary
2, B = Σ &P4 for some sequence of scalars {/2J and for any X =
(a?<y) € &(<%f), there exists a Y= (y^) e &{&?) such that yiά = ((& -
βj)/(tti — oί-ά))^i3 whenever α{ Φ aά. It follows that ((βt — &•)/(#< — αy))
is bounded by some positive number M. Define / such that f(a{) — βim

Then / is a Lipschitz function defined on a dense subset of σ(A) onto
a dense subset of σ{B). Therefore, we can extend / to be Lipschitz
on σ(A) onto σ(B).

It was shown in [7] that if B is an analytic function of A, then
&(ΛB) c &{ΔA). To have range inclusion it is neither necessary that
B be an analytic function of A nor sufficient that B be a continuous
function of A as seen in the next two examples.

EXAMPLE 1. Let A = Σ <*Λ where dim Pw = 1, a0 = 0, and

tt for w even

(l/ for n odd .

Let B = ΣjβnPn where /30 = 0 and /3% = -ί/fl,2 for ^ ^ 1. A direct
computation shows that if n < m, then | (/3% — βm)/(an — am) \ ̂  2/π
Now, for any X = (aĵ  ) 6 &(£ίf), consider the matrix Γ = {yiό) where
1/ίi — ((A — βi)/(oCi — a3))xn whenever a{ Φ CCJ and zero otherwise.
Then

Σ l ^ i Σ Σ

For m > 0,

and for n > 0,

Hence

+ II X||2 + Σ4/m2||X|
l

Therefore, Ύe&(£ίf) and by Lemma 4, ^ ( J Λ ) c &{AA). Now,
assume / is an analytic function on α (A) such that for even n, f(i/n) =
-ί/^ 2. Then /(«) = zH. Hence for odd n,f(l/ri) = i/n2 Φ -i/n2 and
BΦf(A).

EXAMPLE 2. Let A = Σ ocnPn where P# is rank one for all n,
a0 = 0, and an = 1/n2 for n > 0 and let 2? = Σ βnP* where /90 = 0
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and βn = 1/n for n > 0. Then B is a continuous function of A, in
fact B = /(A) where f(z) = z1/2. Let X = {xi3) e .^(3ί?) where

(1/n for n > 0 and i = 0

(0 otherwise .

If ΔB(X) = AA{Y) where Γ = (Vij), then

y o = Xnoiβn - βo)/(an - a0) = (l/n)(l/n)/(l/n2) = 1

for all n. Hence Γ g ^ ( ^ T ) and ^ ( J B ) ζz!
Other derivations whose ranges do not contain any nonzero one-

sided ideals are those generated by unitary and self-adjoint operators.
(See [9].)

It was shown in [7] that the range of a derivation generated by
a nonunitary isometry does contain nonzero left-ideals. Other oper-
ators which possess this property are some of the weighted shifts.

4* Another question concerning the range of a derivation and, in
this case, a two-sided ideal ^ of . ^ ( ^ ) is whether

THEOREM 6. Let i e ^ ( J T ) and let ^ be a proper two-sided
ideal of .^?(£ίf). Consider the following conditions:

(a) {Aγ + ^

(b) ^ ( Λ ) =
(c) ^ ( Λ ) c ^ .
(d) A=T-Xfor some Te<J^ and λ e <if.

(a) is equivalent to (b), (c) is equivalent to (d), and (b) implies (c).

Proof. That (a) is equivalent to (b) is a consequence of the fact
that X = T + A! for some Γe ^ and A' e {A}' if and only if ΔA(X) e
AA{^)' That (c) is equivalent to (d) is a consequence of a theorem
of Calkin [2] where he shows that the center of .^{^f)\J^ consists
of scalars. It is immediate that (b) implies (c).

REMARK. An example to show that (c) does not imply (b) for
the case when ^ is the ideal of compact operators can be obtained
by letting A be the adjoint of the weighted shift with weights {2, 1,
1/2, 1/3, •••} and showing that each element of {A}' is the translate
of a Hilbert-Schmidt operator. (See [8].)

If we require only that the closures be equal, we have the
following;

THEOREM 7. Let Ae ^{^f) be compact and let ^~ be the ideal
of finite rank operators. Then &(ΔA)~~ =
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Proof. Let fe &{&?)*. Then / = f0 + fτ for some trace-class
operator T where fτ(X) = tr (XT) and where f0 annihilates the com-
pact operators. (See Dixmier [3].) If / annihilates AA(^") then
fτ{AA{F)) = f(AA(F)) = 0 for all Fe^. However,

fτ(ΔA(F)) = tr ((AF - FA)T) = tr (AFT - FAT)

= tr (FTA - FAT) = tr (FAA( - T))

for all Fe^. Since ^ is dense in the trace-class operators, then
ΔA( — T) — 0 and Te {A}'. Hence fτ annihilates the range of ΔA and
since A is compact, f(AA(X)) = fτ(AA(X)) = 0 for all Xe

If A is normal then Theorem 6 can be improved;

THEOREM 8. Let A e ^ ( ^ ) be normal and let ^ be a
two-sided ideal of ^(^f). The following are equivalent'.

(a) {AY + ^
( b ) <%(ΔA) =
( c ) &(ΔA) c ^ and σ(A) is finite.
( d ) A—T— λ for some Te U^ some λ e ^ 7 and σ(A) is finite.

Proof. That (a) is equivalent to (b) and (c) is equivalent to (d)
follows from Theorem 6. If A is normal with finite spectrum, then
by a theorem of Anderson [1, p. 96] &(ΔA) + {Ay = .^(^f). Hence,
if A = T - X for some Te^ and λe <gf then ^(ΔA)cz^ and (d)
implies (a). To show that (a) implies (d), assume that σ(A) is infinite
and that {A}' + J? = ^ ( J T 7 ) . Then by Theorem 6, A - λe ̂  for
some λ e ^ . Since ^ is contained in the ideal of compact operators,
we can assume that A is compact. Let A = Ax@ A2 on ^ 0 ^/έL

where A1 is an infinite dimensional diagonal operator with distinct
eigenvalues and let P be the orthogonal projection onto ^ C Hence,
if J e {A}r, then PXP is diagonal. However, if we let U be the
unilateral shift on ^ then {Ay + ̂  = .^(Z^) implies that U =
D + K for some diagonal operator D and some compact operator K.
This is clearly a contradiction (let {en} be an orthonormal basis for
^y£ by which U is the shift, then ((D — U)en, en+1) = 1 for all n).
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