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The purpose of this paper is fo present a proof, under
additional conditions, of the following conjecture: Let = be a
set of primes, and let all z-subgroups of G be 2-closed. (If
2¢ m, this condition is satisfied.) If G is 7-homogeneous, then
G is n’-closed.

All groups considered here are finite. If 7 is a set of prime
numbers, we say that the element z of a group G is a w-element if
|x| is divisible only by primes in wn. In particular, one may speak
of a p-element, p a prime. Similarly, a group G is called a w-group
if |G| is divisible only by primes in 7. In addition, 7(G) will denote
the set of primes dividing |G |. The set of primes not in 7 will be
denoted by 7’. A group G is termed 7-closed, if the subset of G
consisting of w-elements is a subgroup of G. We say that a group
G is w-homogeneous if N (H)/C,(H) is a m-group for every nonidentity
w-subgroup H of G.

It is well known that 7’-closed groups are m-homogeneous. The
converse, in general, does not hold. For instance, 4; is not 5-closed,
but it is 5’-homogeneous.

For = = {p}, p a prime, the conjecture reduces to Frobenius’
theorem ([11], Theorem 7.4.5).

The conjecture is closely connected to other well known problems
in group theory. The proof of the conjecture would imply the solu-
tion of Baer’s problem [3] (see also [5], p. 117), the answer to which
is not known.

Baer’s Problem. Let m & n(G). Suppose that G is @ and ='-
homogeneous. Is G a direct product of a w-group and a ©'-group?

In order to show the connection with Frobenius’ problem, we
need some additional notation. For any prime p, we denote by |G|,
the highest power of the prime p that divides |G|. Define G to be
weakly m-closed if for every subgroup U of G the number of m-ele-
ments of U is exactly [1,..| Ul,-

Baer proved that if G is weakly n-closed then G is 7’-homogeneous
([2], Lemma 2). Therefore, in the case that 2e x, the proof of the
above conjecture would imply also a solution of Frobenius’ problem
([2], p- 325).
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Frobenius’ Problem. Let G be a weakly w-closed group. Is G
w-closed?

Our first result is that the conjecture holds if 2¢ 7.

THEOREM A. Let m be a set of primes which includes 2. Assume
that all m-subgroups of G are 2-closed. Then G is w-closed if and
only if G is m-homogeneous. (Compare with [2], Satze A, A*.)

In the next omnibus theorem, 2¢ 7. The proofs of Theorems B
and C, as well as the proof of Corollary B, rely on the recent clas-
sification of simple 3’-groups by J. Thompson.

THEOREM B. Let 7w be a set of odd primes. Then G is n'-closed
if G is m-homogeneous and any one of the following conditions holds:

(i) 3¢n(G).

(ii) The n'-subgroups of G are solvable (hence if Ny(H) is ='-
closed for every monidentity w-subgroup of G and the n'-subgroups of
G are solvable, then G is w'-closed).

(ili) G has dihedral or abelian S,-subgroups.

(iv) Ewvery chain of subgroups has length at most 7.

A similar result holds if every 8rd maximal subgroup is nilpotent,
or if every 2nd maximal subgroup is 2’-closed.

Theorem B (ii) together with Burnside’s p*¢® Theorem yields:

COROLLARY A. If |G| has exactly 4 prime divisors and 7 is a set
of odd primes, then G is w'-closed if and only if G is T-homogeneous.

The proof of part (ii) of Theorem B uses the following lemma,
which follows from a theorem of Baer ([11], Theorem 3.8.2).

LEMMA 2.6. If a group G is 2'-homogeneous then G is 2-closed.

We shall say that G is a D.-group if all the maximal 7-subgroups
of G are conjugate S.-subgroups of G.

We conjecture that if 7 is a set of primes, then D, and 7-homo-
geneity imply 7’-closure. (The alternating group A4, for example, is
5’-homogeneous, but it is not a D,-group ([12], p. 143) and it is not
5-closed.) The following theorem proves this conjecture under addi-
tional conditions.
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THEOREM C. If G is a D.-group and m-homogeneous, then G is
n'-closed if ome of the following conditions holds:

(i) 3¢ n(G).

(ii) The proper subgroups of G are w'-closed.

Theorems A, B, and C imply the following corollary about groups
all of whose proper subgroups are 7m’-closed.

COROLLARY B. Let © be a set of primes. Let G be a fintte group
such that every proper subgroup of G s w'-closed, and assume that
any one of the following conditions holds:

(i) 2em and the m-subgroups of G are 2-closed.

(ii) 2¢7m and 3¢ n(G).

(ili)) 2¢ 7w and the w'-subgroups of G are solvable.

(iv) 2¢m and G has dihedral or abelian S,-subgroups.

(v) 2¢m and every chain of subgroups has length at most 7.

(vi) G is a D.-group.

Then G 1is one of the following:

(a) G s m'-closed, or

(b) 7 = {p}, p a prime, every proper subgroup of G is nilpotent,
|G| = p*¢®, q a prime, the S,-subgroup of G are cyclic and G is p-closed.
(Compare this corollary with ([14], Chap. (iv), Satz 5.4.)

ExampPLE. Let 7w = {2, 38}. Every proper subgroup of the alter-
nating group A, is n’-closed. But A; is neither 7’-closed nor solvable.

These results are part of the author’s doctoral research at Tel-
Aviv University. The author is extremely grateful to his thesis
advisor, Professor M. Herzog, for his guidance and encouragement.

The author is also grateful to Dr. Avinoam Mann and Professor
J. Muskat for their constructive remarks.

2. Proofs. We incorporate a portion of the proofs of Theorems
A and B into independent lemmas.

LEMMA 2.1. Let G be either PSL (2, ) or S,(q). Let @ be a
subset of w(G) comsisting of odd primes and assume |w| = 2. Then
G is mot mw-homogeneous. Moreover, if P is an S,-subgroup of
PSL (2, »*) where pe w and p+# r, or P is an S,~subgroup of S,(q) where
pem then 2/| Ny(P)/Cy(P)|.

Proof. If P is an S,-subgroup of PSL (2, r*), where pe w and p #
r, then it is well known that 2/| Ny(P)/Cy(P)|. Therefore, PSL (2, %)
is not m-homogeneous.
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It follows by Theorem 4, Proposition 16, and Theorem 9 of [17]
that in S,(q), 2/| Ny(H)/Cs(H)| for every nonidentity subgroup H of
S,(g) of odd order.

The following four basic results concerning w-homogeneous groups
were proved in [1].

LemMA 2.2 ([1], Lemma 2.3). Subgroups, direct products, and
epimorphic 1mages of m-homogeneous groups are T-homogeneous.

Lemma 2.3 ([1], Lemma 2.4). If K is a normal subgroup of the
’-homogeneous group G, and if K and G/K are w-closed, then G 1is
m-closed.

LEMMA 2.4 ([1], Theorem 2.5). The group G is w-closed if, and
only if, G is mw-separable and ©'-homogeneous.

LEmMMA 2.5 ([1], Lemma 2.1). m-closed groups are n’-homogeneous.

We now obtain at once
LEMMA 2.6. If a group G is 2'-homogeneous then G is 2-closed.

Proof. Let G be a minimal counterexample. Lemmas 2.2 and
2.3 imply that G is a nonabelian simple group. Let K be the con-
jugate class of an involution u of G; obviously [K|> 1. Then by
Theorem 38.8.2 of [11] there exists ve K, v u, such that uv is not a
2-element. If |uv| = 2*m, m > 1 odd, set t = (uv)*; then |t| = m >
1 is odd. Now t* = ¢™'; therefore, N, ({t))/Cs<t)>) is not a 2'-group.
Hence G is not 2’-homogeneous, a contradiction.

Proof of Theorem A. If G is m'-closed, then without any assump-
tion on © G is w-homogeneous by Lemma 2.5. Therefore, we will
prove here that, under the assumptions of Theorem A, if G is =-
homogeneous then G is 7'-closed. Let 7, = 7 N #(G). If 2¢ 7(G) then
Lemma 2.4 and [8] imply that G is 7’-closed. If =, = {2} this is
Frobenius’ theorem. Let G be a minimal counterexample. Then G
has the following properties:

(a) G is m-homogeneous, 2e 7, and |7, | = 2.

(b) The z,-subgroups of G are 2-closed.

(¢) G is not 7j-closed.

For the remainder of the proof we shall denote 7, by 7. Lemma
2.2 implies that subgroups and epimorphic images of G are 7-homo-
geneous. Clearly m-subgroups of subgroups of G are 2-closed. There-
fore we also have:
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(d) Proper subgroups of G are m’-closed (hence solvable, by [8]).
We want to prove

(e) @G is simple.

Suppose not, and let N be a minimal normal subgroup of G.
Since by (d) N is solvable, N is a p-group. If penw and K/N is a
w-subgroup of G/N, then K is a m-subgroup of G. Therefore, the
w-subgroups of G/N are 2-closed. G/N is 7’-closed, by induction. By
Lemma 2.3, G is n'-closed, a contradiction. Assume now that p¢ .
If K/N is a m-subgroup of G/N, then by the Schur-Zassenhaus
theorem K = K, N where K, is an S.-subgroup of K. Therefore, K/N
has a normal S,-subgroup. By induction G/N, and hence G, are n'-closed,
a contradiction. Hence G is simple.

Moreover, by (d) G is a minimal simple group. By [21] G is one
of the following:

(1) PSL,(2*) where p is any prime.

(2) PSL,(8%) where p > 2 is any prime.

(3) PSL,(p) where p is any prime with »p > 3, and »p =2 or 3
(mod 5).

(4) S,(2°) where p is any odd prime.

(5) PSL;(3).

If G is a group of type (1) or (4), then for gez, g odd (|7 | = 2),
there exist Q, a ¢-subgroup of G, and a 2-element w of G, such that
e Ny(Q) but u¢ Cy(@), by Lemma 2.1. Now T = <(u)Q is a non 2-
closed 7-group, a contradiction.

If G is PSL,(r") of type (2) or (3) and 7 contains a prime u =+
r, 2, then again Lemma 2.1 yields a contradiction. Hence 7 = {2, r}.
Let R be an S,-subgroup of G. It is well known that C(R) = B
and that | Ny(R)| = 1/2(+* — 1)] R|. Since G is 7m-homogeneous we
obtain that 1/2(r* — 1) = 2* and therefore N (R) is a m-subgroup of
G. By assumption N,y (R) is 2-closed, a contradiction.

If G is PSL,(8), then 7=(G) = {2, 3,13}. If m = {2, 13} then ([14],
Satz 7.3, p. 187) implies that 3/| Ny(P)/C.(P)|, where P is an S,
subgroup of G. Hence G is not m-homogeneous, a contradiction. If
G is isomorphic to PSL,(3) and 7= = {2, 8}, then a study of the char-
acter table of PSL,(3) implies the existence of a subgroup K of order
54 in PSL,(38) which is not 2-closed, in contradiction to (b). The
proof of Theorem A is now complete.

Before beginning the proof of Theorem B we need several defini-
tions.

A chain of subgroups of G is a set of subgroups of G linearly
ordered by inclusion:

G=G>2G>2---D2G,D---D1.

The length of a chain is the number of its distinet terms, minus 1.
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A subgroup G, of G is kth maximal if it is the kth term in some
chain of proper subgroups, each of which is maximal in its predecessor
and % is the smallest such integer.

Proof of Theorem B. Let G be a minimal counterexample.

Proof of (i). Lemmas 2.2 and 2.3 imply that G is simple. By
Thompson’s classification of simple 8’-groups G isomorphic to S,(g).
Therefore, Lemma 2.1 implies that G is not z-homogeneous, a con-
tradiction.

Proof of (ii). G has the following properties:

(a) G is m-homogeneous, 2¢ 7w and |7 N #(G) | = 2.
(b) The n'-subgroups of G are solvable.

(¢) G is not 7'-closed.

Lemma 2.2 implies that subgroups and epimorphic images of G
are 7m-homogeneous. Clearly subgroups of G have solvable #’-sub-
groups. Therefore we also have:

(d) Proper subgroups of G are m-closed (hence solvable, by [8]).
We want to prove:

(e) G is simple.

Suppose not, and let N be a minimal normal subgroup of G.
Since by (d) N is solvable, N is a p-group. If pen’ and K/N is a
n’-subgroup of G/N, then K is a 7m’-subgroup, so that K is solvable,
by hypothesis. Thus K/N is solvable. If perm and K/N is a «'-
subgroup of G/N, then by the Schur-Zassenhaus theorem K = NK..
where K. is an S_-subgroup of K. By assumption K/N is solvable.
Therefore, G/N has solvable 7n’-subgroups. By induction G/N, and
hence G (by Lemma 2.3), are n'-closed, a contradiction. Hence G is
simple. Moreover, by (d) G is a minimal simple group. By [21] G
is of one of the 5 types mentioned in the proof of Theorem A.

Lemma 2.1 implies that G is not of type (1), (2), (3) or (4).
Frobenius’ theorem and Lemma 2.6 imply that G is not PSL,(3),
since | PSL,(3)| has only 3 prime divisors, a contradiction.

Now, if N = Ny(H) is n'-closed, for any m-subgroup H #= 1 of G,
then N/C,(H) is a n-group. Hence by the preceding paragraph G is
7'-closed.

We now obtain at once

Proof of Corollary A. If |G| has only 4 prime divisors; then
Frobenius’ theorem, Lemma 2.6, and Theorem B (ii), together with
Burnside’s p%q® theorem, yield that G is 7’-closed.

We return to the proof of Theorem B.
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Proof of (iii). Let G have a dihedral S,-subgroup. If there ex-
ists 1 = N <] G, then the S,-subgroups of N are of one of the following
types: dihedral, cyclic or trivial. In the first case N is n'-closed by
induction, in the second case N is 2'-closed and in the third N is
solvable by [8]. Lemma 2.4 then implies that in every case N is
n'-closed. Similarly G/N is also 7'-closed. Therefore, Lemma 2.3 im-
plies that G is 7'-closed, a contradiction. Hence G is simple. By
Theorem 16.3 of [11] G is isomorphic to either PSL (2, q), ¢ odd, ¢ >
3, or to A4,. Lemma 2.1 implies that G is isomorphic to 4,. But
| A;| has only 4 prime divisors, therefore, Corollary A implies that G
is m’-closed, a contradiction.

Let G have abelian S,-subgroups. Clearly G is simple. Walter
[18, 19] proved that one of the following holds:

(1) G is isomorphic to Lyq), ¢ > 3, ¢ = 3,5 (mod 8) or q = 2%

(2) @G is isomorphic to J(11); or

(3) G is of Ree type.

Lemma 2.1 eliminates the first possibility. Now J(11) is of order
2%.3.5.7-11-19. If P is an S,-subgroup of J(11) for » = 3, 5, 7, 11, 19,
then 2/| N(P)/C(P)| by [15]. Hence J(11) is not m-homogeneous, so
that G must be of Ree type. Then G is of order ¢°(q — 1) (g + 1)
(¢? — q + 1) where ¢ = 3%+, k= 1. If 3ex and P is an S,subgroup
of G, then N(P) = PW, where W is cyclic of order ¢ — 1. Now if
J is the involution of W, then J¢ C(P). Hence if 3¢ 7 then G is not
nw-homogeneous. We know also [20] that G possesses Abelian Hall
subgroups M* and M~ of orders ¢ + 1 + 3m and ¢ + 1 — 3m, where
m=38 and ¢*—q+1=(@+1+3m)g+1—3m). If ¢is a prime
such that either ¢/|M*| or t/|M~| and T is an S,-subgroup of M%*,
then N(T) = N(M*) = M*W*, where W* are cyclic of order 6. But
C(T) = M*. Hence if tenw then G is not z-homogeneous. Now by
the definition of G [20] there exist cyclic subgroups R* of order
1/2(¢ = 1). The normalizer N (R, of any subgroup R, =+ 1 of R* is
contained in {J) x L,q), where J is an involution of G. If R, is of
odd order then R, & L,(q) and 2/| Nyi(R,)/Cs(R,)|. Therefore, if 7 con-
tains of primes dividing either ¢ + 1 or ¢ — 1, then G is not m-homo-
geneous. Since |G| = ¢%(q — 1)(¢ + 1)(¢* — ¢ + 1) where ¢ = 3%, k =
1, (ii)) follows.

Proof of (iv). Lemmas 2.2 and 2.3 imply that G is simple.
Gagen’s theorem [9] and Harada’s theorem [13] imply that G is
isomorphic to one of the following groups: PSU, (3), PSU, (5), 4,, M,,,
J(11), or PSL (2, q), for certain values of ¢g. The last possibility is
eliminated by Lemma 2.1. In the proof of (iii) we found that J(11)
is not m-homogeneous. Since the remaining groups have orders with
at most 4 prime divisors, they are n’-closed, by Corollary A and
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Lemma 2.6.

Proof of Theorem C. Let G be a minimal counterexample. In
both cases Lemmas 2.2, 2.3, and ([14], Chap. (iv), Hilf. 7.2, p. 444)
imply that G is simple. Therefore, if (i) 3¢ #(G) then, assuming
Thompson’s classification of simple 3’-groups, G is isomorphic to S,(q).
If in addition 2¢ 7 then Theorem B implies that G is 7’-closed, a
contradiction. If 2exw then Theorem 9 of [17] implies that G is not
a D_-group, again a contradiction. In case (ii) Theorem 3.1 of [7] im-
plies that G is 7'-closed. This contradiction completes the proof of
Theorem C.

It is well known that if every proper subgroup of G is p’-closed
but G is not p’-closed, then every proper subgroup of G is nilpotent,
|G| = p*¢’, q a prime, and the S,-subgroups of G are cyclic (see [14],
Chap. (iv), Satz 5.4, p. 434).

Theorems A, B, and C imply the same conclusion under additional
conditions for groups every proper subgroup of which is 7'-closed.

Proof of Corollary B. Let G be a minimal counterexample. If
G is not 7'-closed, then Theorems A, B, and C imply that there exist
S, a m-subgroup of G, and x, a 7’-element of G, such that xe N,(S)
but 2 ¢ Cy(S). Therefore, Theorem 6.2.2 of [11] implies that there
exists a prime p in 7 and P, an S,-subgroup of S, such that x e N,(P)
but x ¢ Co(P). Set T'= P<{x). If T< G, then by hypothesis T'= P x
(x> and xc Cy(P), a contradiction. If T =G = P{x), then every
proper subgroup of G is by hypothesis p’-closed, but G itself is not
p'-closed. Hence ([14], Chap. (iv), Satz 5.4, p. 434) implies (b).
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