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Separable algebras have been studied recently by M.
Auslander, D. Buchsbaum and Chase-Harrison-Rosenberg.
The question of a Galois theory for linear topological rings
opposite to the Krull type theory obtained in the above works
was raised by H. Rohrl. In this paper, a Galois theory re-
lating the complete subalgebras of restricted type of a com-
plete algebra A to a set of subgroups of a discrete group
of automorphisms of A is developed.

The notion of a linear topological module has been discussed in
[1], [5], [6], [7]; while the concepts pertaining to separables algebras
are now available in the monograph [4] for the most part. We
employ two results of [3] which we will state below. All rings
considered will be commutative with 1.

f
DEFINITION 0.1 [3]. Two ring morphisms A B are strongly

g
distinet if, for each nonzero idempotent e¢c B, there is ac A with
f(a)e = gla)e. Where B is connected, f and ¢ are strongly distinet
if and only if they are distinct.

THEOREM 0.2 [3]. Let G be a finite group of automorphisms of
the ring A having (pointwise) fized ring k. The following statements

are equivalent:
(0) A s aseparable k-algebra [and the elements of G are pairwise

strongly distinct].
(1) There are families of elements of A, (@)=, (y.)ie, with

n
Z}l wwa(/yi) - 510
=

for each o¢ G, where 0, is the Kronecker delta.
(2) For each o G\{1} and each maximal ideal m < A, there is
ac A with a — o(a) g m.

f
(8) For each connected k-algebra B and each pair AZ—3 B of

k-algebra morphism, there is a unique o€ G with og = f.
Proof. (0)— (1) — (2) — (0) is contained in [3], Theorem (1.3), and

the implication (2) — (3) is Corollary (3.2) of [3]. We establish (3) —
(2). Let m < A be a maximal ideal and suppose o€ G\{1}. Then the
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k-algebra A/m is connected, so the two k-algebra morphisms g, oq:
A — A/m are distinct (¢ is the quotient map), otherwise ¢ = 1. Hence,
there is ae A with a — o(a) ¢ m.

DEFINITION 0.3 [3]. When any of the equivalent conditions (0)-
(3) of (0.2) hold for (4, G), we call (4, G) a Galois extension of %
with group G.

Note that when A is connected and (4, G) is a Galois extension
of %, (0.2)(8) shows that G the full group of k-algebra automorphisms
of A.

DEFINITION 0.4 [3]. Let (4, G) be a Galois extension of k& and
let B be a subring of A. B will be called G-strong if the restrictions
to B of any two elements of G are either equal or strongly distinct.

THROREM 0.5 ([3] 2.3). Let (4, G) be a Galois extension of k.
Then there is Galois correspondence (g, r) between the set of separable
k-subalgebras of A which are G-strong and the set of subgroups of G.
If B is a separable G-strong k-subalgebra of A, then g(B): = {oe
Glo() = b for all be B}). Moreover, if 0@, g(6B) = og(B)a™. A
subgroup H of G is normal in G if and only if r(H): = {a€ A|o(a) =
a for all o€ H} is a G-invariant subalgebra of A, in which case (r(H),
G/H) is a Galois extension of k with group G/H.

We now pass to linear topological case.

DEFINITION 0.6, The ring A with a filter basis of ideals Z/(4)
has a limear topology with ae A having a basis of neighborhoods the
family (a+ U)U e % (4), and the pair (4, Z(A)) or briefly A will be
called a linear topological rimng. A linear topological k-algebra is a
continuous ring morphism

(k, z (k)) == (4, Z(4)) .

1. Quasi-Galois extensions. Consider the following situation:

(0) k- A is a linear topological k-algebra.

(1) F is a final subset of Z(4).

(2) IeF implies that A/ is a connected Galois extension of
kik N I with Galois group G;.

PrOPOSITION 1.1. There is a unique contravariant monic valued
fumctor G: F— Gr (Gr is the category of groups) such that G(I) = G,
and such that I < I' in F implies the commutativity of the diagram:
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a7 S8, 4ip

N

Al —"— AT

for each o€ G(I'), where al. is the canonical quotient map.

Proof. TFor each g G(I'), there is by (0.2), (3), a unique ¢’ € G(I)
such that o’al, = ato. We define G(I’, I)(g): = 0. The uniqueness
available in (0.2), (8), guarantees that G(I’, I) is a group morphism,
and the surjectivity of al. entails the injectivity of G(I', I).

DerFmviTION 1.2. The triple (4, F, G) will be called an extension
of k if:

(0) %k— A is a linear topological k-algebra.

(1) F is a final subset of U(A); so F is a filter basis.

(2) G:F— Gris a contravariant monic valued functor such that

(i) G() is a finite subgroup of the group of k/k N Iauto-
morphisms of A/I;

(ii) for each I <TI in F and oe G(I') the diagram of (1.1) is
commutative. .

If for each Ie F, (A/l, G(I)) is a Galois extension of k/k N I with
Galois group G(I), we will call (4, F, G) a quasi-Galois extension of
k with group G.

An immediate consequence of (1.1) is the

COROLLARY 1.3. If (4, F, @) is a quasi-Galois extension of k, and
if for each Ic F, A/l is connected, then the fumctor G is uniquely
determined.

Let (4, F, G) be an extension of K. We will define a group G
of continuous k-automorphisms of A

(A= lim A/ and %(4) = (ker (A 5 A/)Ie 7 (A)))

Iex(4)

and show that when (4, F, G) is a quasi-Galois extension of %, then
there is a Galois correspondence (g, r) between a specific class of
subgroups of G and a class of complete k-subalgebras of A. Each of
these classes is characterized by the quality of their approximations,
i.e., we require that their approximations satisfy a specific condition
for each Ic F.

Since F'is a filter basis, the family (G(I));.» of groups is cofiltered,
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and we can form the colimit G: = hm G(I), the colimit being taken
over Ie F. We denote by g G(I)—+G the canonical colimit mor-
phisms; they are injective, and for I £ I’ in F yield a commutative
diagram:

G 2 6

lgl' i{h

Another useful description of G is obtained as follows. Fix I'e F
and consider any I < I’ in F. We then have a commutative diagram:

a1 8800, 4 g

la{, la{,/

AP — AT

for each oe G(I'). Evidently, the family of morphism (G(I', I}{9));-1
is filtered and compatible with the quotient maps a}, so we can form
the limit & of this family, obtaining, for each I < I’, the commutative
diagram:

Py
[

A — A
bk
ap S0 o

We let H denote the set of all such ¢ for I'e F and o€ G(I") arbi-
trary. The foregoing diagram shows that each J is a continuous
f-automorphism of A. If 6, 7¢ H, say o € G(I') and 7€ G(”), we define
6t = {1, where ¢t = G(I, I)(0)-G(I", I)(z) and I < I') I”. Since F is
a filter basis, / does not depend on I, and so is well-defined; moreover,
this multiplication makes H a group.

ProrosiTioN 1.4. The mapping H— é, given by ¢ — g,(0), where
ceG(I), is a group isomorphism.

Proof. Define h;: G(I)— H by putting h,(6) = 6. The h, are then
group morphisms compatible with the inclusions G(I, I) for I < I;
hence, there is a unique group morphism /h: G — H such that g/h =
h; for all Ie F. Next, define g¢: H—G by putting ¢(d) = g,(0) if
ce G(I). To see that ¢ is well-defined, let 6 = 7, where o¢ G(I’) and
7€ G(I"”), and choose I<I’, I"”. Then
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1=0o@)" =[G, D) -6, D))"
= [G(I', D(@)G(I", I)(z7)]" .

This shows that the diagram:

A—* 4

e e

AT —" 5 AT

is commutative, where ¢ = G(I', I)(0)G(I"”, I)(z™"). But a;is surjective,
so we conclude that /¢ =1, and so G(I, I)(o) = G(I”, I)(z), proving
that g.(0) = g(G(L, I)(0)) = g(G(I", I)(7)) = gr.(7) as required.

A gimilar argument shows that ¢ is a group morphism. Finally,
let o€ G(I), then h(g(6)) = h(g(0)) = h(c) = 6. On the other hand,
each element z of G has the form g:(0) for some [€ F, gince F' is a
filter basis. It follows that g(h(x)) = gh(g:(0)) = g(h(0)) = g(G) =
g9,/(c) = z. Thus, we have the group identities 1 = gh and 1 = hg
showing that ¢ is a group isomorphism.

ProposITION 1.5. If (4, F, G) is an extension of k such that for
each Ie F, the fived ring of G(I) is k/k N I, then the fixed ring of G
is k.

Proof. We have already observed that G(I) < Auto,c,km(A/I)
implies that the elements of G are kautomorphlsms of A. Now
suppose we A belongs to the fixed ring of G. Then we have com-
mutative diagram:

where 0,,  and v are the canonical inclusions and wv = p:k— A is
the limit of the morphisms p; and where ¢ e G(I). k[a] has the
topology induced by v, so all the morphisms are continuous. By
hypothesis, va,0 = vda; = va;, so that va,; factors through the fixed
ring of G(I), namely k/k N I. Let the factorization be wa; = w,p0;.
For I <TI in F, we have w;klLpo, = w,0,al, = va,a} = va, = w0
and since 0, is monic, w k! = w;. Thus, we obtain a family (w;)I€ F
compatible with the morphisms kL: k/k N I— k/k N I'. Passing to the
limit, we obtain a commutative diagram
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kla] LA

H |-

Blo] — " k/k 0 I

for each Ie F. w is continuous, and va, = w,;0; = wk,0; = w(uv)a;
for each I< F, so passing to the limit again, v = (wu)r. But v is
monie, so we conclude that 1 = wu showing that u is surjective.
Since u is already injective, u is an isomorphism and we conclude
that ack as desired.

THEOREM 1.6. Let (A4, F, G) be an extension of k such that for
each Ie F, the fixed ring of G(I) is k/k N 1. Then the following state-
ments are equivalent.

(0) (A, F, Q) is a quasi-Galois extension of k.

(1) For each e G\l and each open, mazimal ideal m < A, there
iswe A with x — 6(z) ¢ m.

In addition, if Iec F implies that A/I is connected, (0) and (1)
are equivalent to a third condition.

(2) A is a quasi-separable k-algebra, t.e., Ic F implies A/l is
a separable k/k N I — algebra.

Proof. Consider the diagram

3 ~
— A

i

«

A/l

where ¢ is the canonical limit morphism, and «; and a; are the quo-
tient maps. Let m < A be an open, maximal ideal and let é¢ G\L.
We may suppose Ic F is such that m = ker (a;) and ¢ = g,(0). Since
+7'(m) is an open, maximal ideal of A, a(7*(m)) is a maximal ideal of A/I,
and o € G\l shows that there is a € A/I such that a — d(a) ¢ a;(z7'(m)),
assuming (0), by (0.2). Suppose ye A is such that a,(y) = a, then
Uy) — Gi(y) & m; otherwise, a,i(y) — a;0i(y) = a,(y) — oay)e a;(m) =
a;(i7'(m)) contrary to our choice of a,(y) = a. Thus, i(y) — di(y)¢ m
as desired.

Now suppose m is a maximal ideal of A/ and let 0 € G(I)\1. Then
a;'(m) is an open, maximal ideal of A, and ¢,(0) = ¢ G\l. We obtain,
therefore, z € A with & — 6(x) ¢ a7'(m). It follows that a,(x) — a;6(x) =
a;(x) — oa(x) ¢ m showing that A/I is a Galois extension of k/kN I
with Galois group G(I) by (0.2).

If, in addition, Ie F' implies that A/I is connected, and (0) holds,
then by definition A is a quasi-separable k-algebra. The converse
implication follows from (0.2).
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COROLLARY 1.7. Suppose (4, F, G) is an extension of k such that
for each L€ F, the fized ring of G(I) is k/k N I. If the condition (x)
below holds, then (A, F, G) is a quasi-Galois extension of k.

(x) For each k-algebra B and each pair of continuous k-algebra
morphisms f, g: A — B, there is a unique 6¢ G such that § = & 5 f.

Proof. Let 6e G\l and let m < A be an open, maximal ideal.
If o —G6(a)em for all ac A, then the two Fk-algebra morphisms
q: A — A/m and Gq agree on A, so by (*) we must have that 6 =1
which is a contradiction. We conclude that there is ae A with
a — d(a)¢ m, and so by (1.6) (4, F, G) is a quasi-Galois extension
of k.

DeriniTiON 1.8. Let (4, F, G) be an extension of k. For each
subgroup H of G let r(H) denote the pointwise fixed ring of H and
let Hy: = g7'(H). For each k-subalgebra B of A let g(B) denote the
subgroup of G fixing B elementwise.

For I< I in F we then have a commutative diagram:

h

H— 00w
TJI Tgl
hy
H, — G(I)
TJ} IG(I', I
H—" o)

where &, h;, and h; are the canonical inclusions, and J, and J! are
the monomorphisms induced by g, and G(I’, I) respectively.

ProrosiTION 1.9. The colimit of the family (Hy, J) is H with
the colimit morphisms being the J,.

Proof. We have just observed the compatibility of the family
of morphisms J; with the mappings J?. for I < I’ in F, and it remains
to establish their universality. Let z;: H, — X be any family of group
morphisms compatible with the mappings J.(I < I’ in F'). Define
x: H— X by putting 2(0): = z,(0), if g{o) =ad. If g.(c’) = also,
choose I” < I, I' so that Ji'(¢) = Ji'(¢’). Then «,(0) = x..(J7'(0)) =
x5.(J1'(0") = x;.(0") shows that x is a group morphism, and the equality
Jw = %; for Ie F shows that 2 is uniquely determined. Hence, J,;: H;,—
H is a colimit for (H, J7.).

Next, let H be a subgroup of G, and obtain the diagram:
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[43

r(H) —— A

B b e

[

r(H) — 21— AT ——"— AJI

lr} J{aj, la}
v s

294

r(H,) ———— AT —— AT

T ~
— 5 A

which is commutative, where «, a;, a; are inclusions providing their
respective domains with the induced topology. For each o€ H,, aa,0 =
ada; = aa,;, so that a, factors through r(H,), defining r,. Then aa, =
r; for all ITe F. Similarly, if 1< I’ in F, and ¢’'¢G(I') and o =
G(I', I)(¢’), then o;al.0' = a,al, so that «f factors through »(H,),
defining #7.. Then rla, = wa,al.. Still using the above diagram, we
obtain from the equality r,a; = 7rLa; the relation r, = »,rl, since
«; is monic. This shows that the mapping +,: #(H)— r(H;) are com-
patible with the mapping (/) < I’ in F.

PRrROPOSITION 1.10. The mappings v v(H)— v(H,) form a limit
Jor the family (r(Hy), r)).

Proof. Let x;: X — »(H;) be any family of continuous ring mor-
phisms compatible with the ;.. Composing this family coordinatewise
with the family («;)Ie F, we obtain a family (x,a;)Ie F compatible
with the canonical quotient maps af.. Hence, there is a unique con-
tinuous mapping #: X — A such that »a, = x,a, for each Ie F. Now
let 6e H, say 6 = g;(0) for some I'e F. For all I< I in F, 26a; =
xa,G(I, I)(0) = x,0,G(L, I)(0) = x;0; = za, since G(I', [)(o)e H,. This
being true for all small I¢ F, passing to the limit, we have 20 = «z,
showing that & must factor through »(H). Let z = ya for some
y: X — r(H). vy is then unique, since « is monie, and yr;a; = yaa; =
z;0; implies that yr; = 2; since «; is monic. This completes the proof.

REMARK. The topology induced by « on #(H) coincides with
the limit topology for ker (r;) = ker (r;«;) = ker (aa;). For the re-
mainder of this section we assume (4, F, G) is a quasi-Galois exten-
sion of k.

For each subgroup H of G we are led to a commutative diagram:

P
g

r(H) =—=—— r(H) — A A
b b bk
r(H), ——~— v(H,) Al AT
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where r(H) is the image of aa; and »(H), < »(H;), since o € H; implies
e;0 = e;«;, where ey, is the canonical factorization of a; through
»(H),. Since e; is surjective, aj0 = «, shows that r(H), < r(H;), say
m;: r(H); — r(H;) so that o) = m;a;. Since «; is monic and e;m, o, =
710, e;M; = 7y, 50 the first square is commutative.

It follows immediately from the definitions that H < gr(H) for
each subgroup H of G.

LeEMMA 1.11. Suppose H < G satisfies the condition Ie F— H, =
glr(H),], where g is appropriately defined. Then gr(H) = H.
Proof. Of course, by g[r(H);] we mean the set
{ceG)|xzer(H),—> 0(x) = a} .
Let 6 € gr(H) and suppose ¢,(¢) = 6. Then the equality m,a;,0 = m;«a;

shows that o ¢ g[r(H),] = H; by hypothesis; hence 7 = g,(0) e H.

DEFINITION 1.12. Call a k-subalgebra B of A G-strong if for each
Ic F, B, is a G(I)-strong subalgebra of A4/I.

LeEMMA 1.13. Let H< G. The following statements are equi-
valent:

1.14. (0) Ie F— r(H), = r(H)), i.e., r; 18 surjective. ~

(1) IeF— H, = g[r(H);] and r(H) is a G-strong separable k-
subalgebra of A.

Proof. Suppose (0), then since (4, F, G) is a quasi-Galois extension
of k, »(H); = r(H;) shows that »(H;) is a G(I )-strong separable k/k N
I-subalgebra of A/I for Ie F. »(H) is a closed k-subalgebra of the
complete separated ring A, i.e., is complete. Finally, H; = gr(H;) =
glr(H);] by (0) and (0.5). Conversely, if (1) holds, then

r(H;) = rg[r(H),] = r(H),

since r(H) is a G-strong quasi-separable k-subalgebra of A and rg =
1 by (0.5).

COROLLARY 1.15. If H < G satisfies (1.14), gr(H) = H.

Now let B be a complete k-subalgebra of A and put H = g(B).
We obtain the following supplement to the last diagram

B—2 )

bl

B, — 1 r(H),
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for each Ie F. For evidently B < r¢(B) = r(H).

LEMMA 1.16. Suppose B is a complete E—subalgebm of A satisfying
the condition.

1.17. Ie F— B; = r[g(B),]. . ~
Then B is a G-strong quasi-separable k-subalgebra of A, rg(B) = B,
and g(B) satisfies Condition 1.14.

Proof. Since B; = r[g(B),] is the fixed ring of a subgroup of G(I),
it follows from (0.5) that B, is a G(I)-strong separable k/k N I-sub-
algebra of A/I, proving our first assertion. Next, we have the
equalities:

B = lim B; = lim (r[g(B),]) = r(lim [g(B)]) = r9(B)

by (1.9) and (1.10). Using this fact, we obtain [rg(B)]; = B; = r[g(B),]
showing that (1.14) holds for g(B).

REMARK. If H < G satisfies Condition 1.14, then r(H) satisfies
Condition 1.17 for »(H); = r(H;) = r[(gr(H));] since H = gr(H).

THEOREM 1.18. Let (4, F, G) be a quasi-Galois extension of k.
Then the pair of maps (g, r) s a Galois correspondence between the
set of all complete k-subalgebras of A satisfying Condition 1.17 and
the set of all subgroups of G satisfying Condition 1.14.

Proof. We need only observe that gr =1 and rg =1 are valid
equations when restricted to the sets mentioned in the statement of
the theorem.

ProposrTioN 1.19. Suppose H is normal subgroup of G satisfying
Condition 1.14. Then for each Ic F, H; is a normal subgroup of G(I).

Proof. Form the diagram:

~

P(H) ———s T(H) " A LNy

|- B o e

P(H); ——t—s r(H), —2— A/ AT

Our hypotheses on H show that r; is surjective. Now let oe G(I)
and ke H;. Then r,a,07'ho = a(c™) héa; = aa, = r,a;, since

(67 hée H.
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However, », is surjective, so «,07'ho = «;, and we conclude that
0~ 'ho € H; since gr(H,;) = H;. Hence, H, is a normal subgroup of G(I).
Consider the following diagram of groups:

0 H—" ¢ % ,GH___
r 8 t
0 j} " j; o G}/H’ — 0

where the rows are exact, » and s are monomorphisms, while ¢ is the
unique group morphism making the right square commutative.

LemmaA 1.20. If (H', r, k') is a pullback for h and s, then t is a
Mmonomorphism.

Proof. Let t(z’) =1, then ¢'(¥') = 2’ for some y'e(G’, and so
9s(y’y = 1. Hence h(z) = s(y’) for some ze H. But since H' is a
pullback, there is 2’ € H’ such that »(z') = z and #/(z') = y’. Therefore,
1=¢ghWE)=d¢%) =2, and we conclude that ¢ is a monomorphism.

Now suppose H is a normal subgroup of G satisfying condition
(1.14). For each I < I in F we are led to a commutative diagram

of groups:

hr

0 H, G(I) —'— G)/H, —
AJ;, TG(I’, I TG/H(I’, I)
0 LH M ey eIy H, —— 0

where ¢; and ¢; are the canonical quotient maps, and G/H(I', I) is
the map produced by the remainder making the whole diagram com-
mutative with exact rows. Since J7, and G(I’, I) are monic, while
H;, is a pullback, it follows from our foregoing Lemma that G/H(I', I)
is also a monomorphism.

Thus, we obtain a contravariant monic valued functor G/H: F—
G such that Ie F implies that G/H(I) = G(I)/H, is the Galois group
of r(H;) over k/k N I by (0.5). Finally, the diagram

G/H(I', I)(5)
r(H,;) ——— r(H))
l'rf, J’r},
T(H]) d _— T(Hl’)

is commutative for each ¢ G/H(I'). For if ¢ = q,(0), then G/H(I,
() = q,(G(I', I)(0)) and the corresponding diagram
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G, I)(o)

All ————— A/I
laf, J{aj,
Alr 7 _ Al

is commutative.
This establishes the corollary below.

COROLLARY 1.21. Let A be a separated and complete linear
topological k-algebra. Suppose (A, F, G) is a quasi-Galots extension
of k, and suppose H is a normal subgroup of G satisfying condition
(1.14). Then there is a final subset F' of F such that (r(H), F' N r(H),
G/H) is a quasi-Galois extension of k, where

FrarH) = {I'Nr(H)|I'cF}.

Proof. Define F” to be the smallest subset of F such that for
each intersection »(H) N I with Ie F, there is I'e F’ with r(H)N I' =
r(H) N I. Because r(H) has the induced topology, F” is final in % (r(H))
and our foregoing constructions show that (»(H), F' N r(H), G/H) is
a quasi-Galois extension of k.

2. Examples. In this section we will show how to construct a
number of examples of the foregoing material. Two lemmata are
useful in this direction.

LEMMA 2.1. Let X and Y = (Y)),.; be distinct indeterminants
over the ring A. Let fe A[X] be a monic polynomial, and suppose
I < (A[XT1/(IY] is an ideal. Let I' be the ideal generated by the
image of Iin A[X, Y] under the canonical inclusion A[X]/(f)cC AlX,
Y. Then we have (A[X]/(DIY/I = A[X, YI(FA[X, Y] + I').

Proof. We have a commutative diagram:

0— FAIX]®. A[Y] — A[X] @, A[Y] — AEL @, A[¥]— 0

| P

0 ——— FA[X, Y] ——— A[X, Y] -—— é(%l[yl — 0

with exact rows. Hence, ker (a) = fA[X, Y]. If g is the quotient
mapping (A[X]/(/HIY]— (AIX]/(NIY]/I and Ba(P) = 0, then a(P)e
I, so there is Qe I' such that a(P)e I' + fA[X, Y]. Evidently, this
latter ideal is contained in ker (ag), completing the proof.
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LEmmaA 2.2. Suppose I < k[X,, -+, X, ] Qk[X], X = (X)iz1. Then
EIXT/(X] - I + K[ X] Xy, Xy, + - #0) 2 B[X,, - -+, X]/L

Proof. Let k[X]—— k[X,, ---, X.] ——>Ek[X,, ---, X,JJ)I be the
composition of the evaluation at the point (X, X,, ---, X,, X,, 0,0, --+)
followed by the canonical quotient morphism +. Clearly, k[X]- I +
k[X]-<{X,., +-+) is contained in the kernel of the surjection @.; if
W(D(f)) = 0, then f = (f — O(f)) + D(f) € k[X] shows that

Fe kX + E[X]-{Xoiy, =)

1. Example of o quasi-Galois extension. Suppose A4, is a com-
plete Noetherian local ring with residual field k,. Let %k, <k, < ---
be a tower of finite Galois field extensions of k, with corresponding
Galois groups G(k./k,).

Since k, is a finite Galois extension of k, we can find a monic
polynomial f,e A,[X,] such that k[X,]/(f.) = k., where f, is the reduc-
tion of f, modulo j(4,), the Jacobson radical of 4,. Following [8] p.
63 we see that A, = A,[X]/(f) is a complete Noetherian local ring
which is an A,-algebra of finite type; moreover, A4, is a Galois extension
of A, with Galois group isomorphic to G(k,/k,) in the sense of [3].

Since k, is a finite Galois extension of k&, we repeat the above
construction obtaining a monic polynomial f,e A,[X,] such that 4,: =
A[X)/(f,) is a Galois extension of A, with Galois group G(k./k,).

We have the ring inclusions 4, < A,[X,}/(f)) = (AJ[X]/(fDIX)/(S).
Since f, is monic, we can view f,€ A4,[X,, X,] and apply Lemma 2.:
to obtain the isomorphism:

AO[XL] [X2]/(f2) ~ AO[le XZ] — AO[X1; Xz} .
(/) [HALX, Xi] + fodi[X,, X {Fo fo

Iterating the above, we obtain 4,,, = AJX,, -+, X,/ < fi, =, Fary
and have that A,., is a finite Galois extension of 4, with Galois group
Gk, /k.); A,., is also a finite Galois extension of A, with Galois group
G(kyi/dy).

Now define ideals I, < B: = A)X,, X,, ---] as follows:

L= B{fy ooe, Fod + B {Xpssy Xopagy -+ for m=1.

LemmA 23. 1) I, = I,.,.
(2) I.Nn A4, =(0).
(3) B/I, = A,.

Proof. (1): Since f,.,€ 4,[X, -+, X, ]C B, it follows that
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Bf,..clI,sothat I, = 1I,,..

(2): Is clear.

(3): Follows from Lemma (2.2).

Let U(B) have as filter basis the family (I,),»;. Then for I, =
I,.,, we have a commutative diagram

Ay — A, = B/L.: Gk, /ko)

!I LT

A, — A, = B/1,: G(k./k,)

where A, is a Galois extension of 4, with group G(k./k,)(¢ = », n + 1).
By (1.1) there is a group morphism G(k,/k,) — G(k,../k,) which is
injective and satisfies the commutativity criterion of (1.1).

Letting F' = (1,).>, and G: F— Gr be such that G(I,) = G(k./k,)
we obtain a quasi-Galois extension (B, F, @) of A,.

2. Another quasi-Galois extention. Let K, < K, < :-- be a
tower of Galois field extensions (all finite), K,,, is a finite Galois
extension of K,, so K,.; = K,[X,.:.]/(fx:) for a monic polynomial f,,,,
and repeating the technique of 1, we get for 4 = K [X,, X,, ---] and
F = (1), I, appropriately defined, that A/I, = K, so that finally (4,
F, @) is a quasi-Galois extension of K, with G(I,) = G(K,/K,).

REMARK. In 1 each term B/I, is a local ring, while in 2 each
term A/I, is an integral domain. These are two general classes of
connected rings. Later we will give an example of a quasi-Galois
extension where the approximating terms ave not connected, i.e., have
proper idempotents.

3. Quasi-Galots extenstons in rings of continuous functions.
This example is fairly complicated, so I first state the results. Let
(X));er be a cofiltered family of topological spaces such that 7 < j in
I implies z,;: X; — X; is an inclusion for which the identity

2:7(Top (X,)) = Top (X))

holds. Let X = li_IEElI X, and let z;: X; — X be the colimit morphisms.

Then the z, are injective.

Next, let C: Top— RIN be the functor assigning to each top-
ological space X, the ring of continuous real valued functions with
domain X, where Top denotes the category of topological spaces.

LeMmAa 24, C(X) = lgn[ C(X) via f — (% f)ier

Now suppose (G;);.; is a cofiltered family of groups such that
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1 <7 implies ¢,;: G,— G; is the monomorphism, and let G = lim, G,
with ¢;: G, — G being the canonical colimit morphisms. The z are
injective. We will suppose that G, acts continuously on X, G;: X, —
X.,, in such a way that for 4 < jin I we have a commutative diagram
for all ceG,:

Ty

X — X;
G ngw(g)
v >
X % X,

LEMMA 2.5. G acts continuously on X, and if ge G, there is I¢
I for which g/{o) = g and the diagram below is commutative:

Ty

X, — X
ia ly=yl(a) .
X, ———x

Due to the foregoing assumptions we obtain commutative diagrams:

X, — X, C(X,(G,) —— C(X)
b o] |
XJG. e X,G, C(X,/G;) —— C(X,)

for 7 £ 7 in I, where X,/G, is the space of G.-orbits of X, with the
quotient topology, while ¢, is the canonical quotient morphism. A
more general result than (2.4) is the following:

LEMMA 2.6. C(X/G) = 111311 C(X,/G) via f—(fiher, where q.f, =
x.qf and q¢: X — X/G is the quotient map.

Finally, suppose the following conditions are fulfilled.

(a) Each X, is compact.

(b) G;: X,— X, is a finite group without fixed points.

(¢c) Both C(X)— C(X)) and C(X/G)— C(X,/G,) are surjective.
Then:

(0) ker[C(X)— C(X)] N C(X/G) = ker [C(X/G) — C(X;/G))].

(1) (C(X), F, H) is a quasi-Galois extension of C(X/G), where
F = (ker [C(X) — C(X)]);.; and H (ker [C(X)— C(X)]) = G..

Proof. Draw the diagram:
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X —" , x -7 R

b b,

Xz/Gz

and assume z,.f =0 and ¢f = f. Then ¢%.f = 0 implies Z,f = 0
which implies f ¢ ker [C(X/G) — C(X,/G.)]. Conversely, T.f = 0 implies
wgf =0 and ¢f: = fe C(X/G) N ker [C(X) — C(X,)] which completes
the proof of (0).

For (1), it follows that for each ie I the diagram

C(X/G) —— C(X)

l l

CX,/G) —— C(X)

is commutative. H(ker [C(X)— C(X)]) = G, acts on C(X,) by the
formula af(x) = f(o(x)) for all x€ X, and e G,. Since X, is compact
and G, acts without fixed points, it follows from (0.2), (2), that C(X,) —
C(X,) is a Galois extension with group G,. Moreover, we have for
1 <7 in I, a commutative diagram

C(§:5(0)) .
ox,) -4 ox)): 6, Cl4,,(0))
l J( Gij =:H@i = 7)
cx) —2 ex: 6, C(o)

since the corresponding diagram omitting the C’s is commutative.

Letting U(C(X)) have as filter basis the family F' = (ker [C(X)—
C(X)):.r we see that (C(X), H, F) is a quasi-Galois extension of
C(X/G).

As example of such a situation as described above, let, for each
n = 1, X, be the topological coproduct of 3" copies of [0, 1], and let
G, the cyclic group of order 3” acting on X, by permuting the sum-
mands. G, acts continuously and has no fixed points, while X, is
compact. We have li_r_x)lng1 G, = Z(3") and li_ril,bél X, is simply the copro-
duct of a countable number of copies of [0, 1], where we interpret
always X, < X, and G, < G,,,. Itis clear that the diagrams following
(2.4) and (2.5) are commutative, and that the conditions (a)-(c) are
fulfilled in this case.

We will now prove assertions (2.4), (2.5), and (2.6).

LemMa 24. C(X) = l(iinl C(X).

Proof. For each ¢ <j in I, we have by definition a commutative
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diagram:
H l=

If (f).er€lim C(X;), then for ¢ < j we have a diagram

X % X
| 2
X7 R

so there is a unique f:X— R such that x,f = f, for ¢e l. This
shows that f — (x;f).cr is bijective, and the uniqueness guarantees
that this mapping is a ring morphism.

LeMMA 2.5. G acts continuously on X.

Proof. G is formed by taking colimits of diagrams like:

X, —2 X
lff lgij(a)
X, —— X,

where j = ¢ for all 6 G(¢). This leads to commutative diagrams:

Xj x.]_._._, X
lgii(g) lg
Xj xl_"‘—‘) X

where g = lim;,; 9;5(0). It follows immediately that 27'¢7'(0) € Top (X))
for all j = 7 and all 0¢€ Top (X); moreover, if ke I, let j = ¢, k, then
25'97(0) = zpje;'g7'(0) € Top (X)) = X3/ (Top (X;)) by definition of

Top (X) -

Hence, g is continuous.

Proof. Let y: X,/G,— Y be such that Z,;y; =y, for ¢+ <j in L
Then composing ¢;: X, — X,/G; with y, yields a family (¢,¥.);.; compatible
with the z,;: X; — X; for ¢ £j. Hence, there is a unique y: X— Y
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such that x,y = q.y. for ie I by (2.4). Next, let ge G, say g = g.(0)
for ¢ € G(¢). We then have the equations: x,0y = ¢:;(0)x;y = ;¥ since
y is constant on G;-orbits of X, i.e., 2,4 = q,;4,. Passing to the colimit
over j = 1, we get gy = y showing that ¥ is constant on G-orbits of
X. Hence, there is a unique 7: X/G — Y such that y = q¥y. Since
¢; is surjective and q; = %,y = x.9Y = ¢.%Y, we conclude that y, =
%,y for all 1€ I. Thus, the mapping f — (T,f).;; is bijective and as
before the uniqueness assures that it is a ring morphism.

4. A non-connected quasi-Galois extension. Let (4, F, G) be a
quasi-Galois extension of £ and let n = 2. Put A"=An..- 74 (n
factors) and F'™ = {[*|Ie F'}. The diagonal map 4: k — A™ makes A4
a k-algebra, and Ie¢ F implies A"/I" = (A/I)". Moreover, I<TI in F
induces (af): (A4/1)" — (A/I')" which is surjective. It follows from
[2] (Chapter IX §7, Prop. 7.3) by induction that (A/I)" is a separable
k-algebra via the diagonal map 4;: k; — (A/I)*, where k;, = k/k N L.

Next, let G"(I) = G(I)x - -- nG(I) (n factors) and let H(I) denote
the diagonal subgroup of G*(I), that is the image of the diagonal
map 4: G(I) — G(I). G*(I) acts componentwise on (A/I)". Let H be
any subgroup of the symmetric group of n letters which moves all
the letters to all positions, e.g., the ecyclic group of order n. We
think of H as acting on each (A/I)" as a permutation of the factors.
Finally, let K(I) be the normal product of H with H(I), so that each
element of K(I) may be put in the form 74(¢) with #e¢ H and oe
H(I).

Lemma 2.7. (a) K(I) acts on (A/I)* with fixed ring 4,.(k/k N I)
for IeF.

() (A/I)y" is a Galois extension of k/k N I with group K(I) for
Ie F.

Proof. 1t is clear how K(I) acts on (4/I)* using the represen-
tation of elements of K(I) in the form wd(s). If (a, ---, a,) is fixed
by K(I), then because K(I) moves each component to every other
component, and each component lies in %k/k N I-1, we must have that
the element (a, ---, a,)€ 4/(k/k N I), proving (a).

Next, let (), (¥,) be two families of elements of A/I such that
S, o(y,) = 0, for all o€ G(I). Such exist by (0.2), (1). Then we have
S d@)rd(o)(dly) = 4 (Gl 2.0(y:)) = 41(0,,) = 014000 = Oizas; hence, (b)
holds using (0.2), (1), again.

There is an evident group morphism K(I') — K(I) extending G(I') —
G(I) which is monic. We denote the so generated functor by K: F'™' —
G, and obtain a quasi-Galois extension (A", F'™, K) of k such that
(A/I)" is not connected.
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