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RoGeErR T. LEWIS

Oscillation and nonoscillation results are presented for
the operator

Loy = 3 (=11 H(pay =)
k=

where p,(x) > 0 on (0, ) and for k=0,1, ---, n, p, is a real-
valued, n — k times differentiable function on (0, o). Also,
y is an element of the set of all real-valued, 2n — fold con-
tinuously differentiable, finite functions on (0, o).

In particular, a nonoscillation result is given for L,,
without sign restrictions on the coefficients. Oscillation re-
sults are given for L, without the requirement that p,; be
negative for large x. Finally, the oscillation of

Leowy = (=1)" (ry™)® + py

is considered for r(x) not necessarily bounded.

The oscillatory behavior of L, has been considered by Leighton
and Nehari [8], Barrett [1], and Hinton [4]. In general, L,, has been
considered by Glazman [2], Hinton [5], Hunt [6], and Hunt and
Namboodiri [7].

DEFINITION 0.1. The operator L,, is called oscillatory on [a, D]
provided there is a function y, ¥y = 0, and numbers ¢ and d for which
a<c¢<dZ b such that L,,y =0 and

y®) =0 = y*) for k=0,1, ---,n — 1.

Otherwise, L,, is called nonoscillatory on [a, b]. The operator L,, is
called oscillatory on [a, =) if for any given ¢ = a there is a d > ¢
such that L,, is oscillatory on [c, d].

DEFINITION 0.2. Given a positive integer n and a number a define
D,(b) for all b > a to be the set of all real-valued functions y with
the following properties:

(a) y™ is absolutely continuous on [a, b] for £ = 0,1, --+, n — 1,

(b) y™ is essentially bounded on [a, b], and

() y* (@) =0=y"(0) for k=0,1,---,n — 1.

For ye D,(b) define

1) = | 3 me)@)do
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which is called the quadratic functional for L,,.
The following theorem has provided the primary motivation for
the results which are to follow.

THEOREM 0.1 (Reid [9]). The following two statements are
equivalent.

(i) The operator L,, is nonoscillatory on [a, b].

() If yeD,(b) and y = 0 then I(y) > 0.

Consequently, in order to show that L,, is oscillatory on (0, <),
given any a > 0, it will suffice to construct a ye ®,(b) for some b >
a for which I,(y) is not positive and y == 0. This is the technique of
proof for all of the oscillation theorems which follow.

This method of proof is especially conducive to oscillation theorems
which require that integral conditions be met by the coefficients of
L,,. For example, Glazman [2, p. 104] showed that (—1)"y“™ + py

is oscillatory on (0, =) when rp = — oo (see Theorem 3.2).

Initially, the construction of y is suggested by the conditions of
the hypothesis on the coefficients of L,, and the corresponding quad-
ratic formula. For example, to establish the above result, Glazman
let y = 1 over the major portion of the interval [a, b]. To show that
y™ — (qy')’ is oscillatory when rq = — o (see Theorem 2.2) the author
let y(x) = ©# — a over a portion of [a, b]. Next, we construct y over
the remaining portion of [a, b] to insure that y e D,(b) and the integral
of p,_-y™ ™" is bounded above for £ =0, 1, ---, n independent of b.

For other proofs using this method the reader should consult
Glazman [2, pp. 95-105] and Hinton [4].

1. The nonoscillation of L,,.

LEMMA 1.1 (Glazman [2, p. 83]).
(i) If g(a) = 0 for some a > 0 and g’ is continuous on [a, b], then

Lo o@yds < (52 ) o @y

for m a positive integer. Moreover, if g = 0 on [a, b], the above in-
equality 1s strict.

(i) If g=#0, g'™ is continuous on [a, b], and g(a)=—+-+-=9""""(a)=0,
then
b _ 2m 2§b
2m Zd (m) Zd .
[Lo=ords < (15— o —Ty) ).
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A well known result in oscillation theory is a sufficient condition
for the nonoscillation of L, due to Hille [3]. A generalization of this
result for L., is given in the next theorem.

THEOREM 1.1. For L,, defined above with p(x) =1 let Plx) =
i(x) and

r@) = | Prar
for m an integer greater than or equal to one when

— o0 < S‘” ,:”_’(t)dt < oo .

If for k=1 --,n and ©=a we have —co <rP,§"<<><> for
m=20,1 .-+, k-1, 2P| =Za, and SiaM, <1 where

M, = k! 2*7(2k)!, then L,, is nonoscillatory on [a, b] for all b> a.

Proof. The proof is given only for » > 1. Suppose L,, is oscil-
latory on [a, b]. Then, there are numbers ¢ and d and a function y
which is not identically zero such that L,y =0 and y™(c) =0 =
y*(d) for k =0,1, ---, » — 1. Since (L,,y)y = 0 then

n d B ;
— 122=1 (— 1)”—kSc(pky(n~—k))(n—k)y — (_l)ngcy(zm y = Se[ym]z ,

by integrating by parts = times. By integrating by parts n — k&
times we find that

d d
[ yoy = = oy

However, by integrating by parts & times and using Leibniz’s rule
we obtain

A e e S R W () TR B R
}i; ( >Sd ly(?&:“’b) ! |y(n-—k:i—i) l .tk‘ P]ic i

lI/\

¢ ¢ tlc-—-z
k 'y n—1) | I y(’n—k-!—i) |
é g( > Sc tk tk_i
_ (n) y(n—k)] k— 1( )Sd ]y('ﬂ~—i)] ) ly(n—k+i) }]
('n k) k— ('n—m (n—k+1)
sl - SO
[ ol =201
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[ y(n)”Z 3 2k+22k - 1))
23

< )”ym”2< ...2.i(2i - 1))(1.3. .2(;;_@')_1)”

= a;,Cy Sc [y™]*

by Lemma 1.1 and the Cauchy inequality where

2k+1

s P VY

2k
+2<)<[13 -(272—1)][1-3---(2(k—i)—1)])'
A simplification shows that
C, = [2%k!/(2K)!] i (gf) .

Since

0=(1-1)*= :Z:Pl)‘(zf) =3 (3) - 52 1)

1=0 i=1

then

= Lar =[50+ 262 )] =260

Therefore,
C. = [2*7'k!]/(2k)! = M, .

Consequently,

[ wmr = = 5 1] e syey

|
M T

d n d d
[ 2wy < & et | ey < [ wer

which is a contradiction. Therefore, L,, is nonoscillatory on [a, b].

It will be useful in applying Theorem 1.1 to note that M,,, =
8M,/(2k + 1).

For the remainder of this paper we will assume that p,(x) is
identically zero for k¥ =1 to n — 2 and will denote (%), p._.(x), and
2.(®) by 7(x), q(x), and p(x) respectively. Similarly, P¥x) and P}_,(x)
will be denoted by P.(x) and Q.(x) respectively.

If p(x) = kx™, r =1, and ¢ = 0, then L,y = 0 is the familiar Euler
equation. In this case, L, is oscillatory if and only if £ < —9/16.
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Also, £ < —9/16 and p(x) = ka™ implies 2*P,(x) < —3/32. Theorem 1.1
shows that L,y = y® + py is nonoscillatory when «?| P,(z) | < 3/32.

2. The oscillation of L, Using Theorem 0.1, Hinton [4]
showed that L, is oscillatory when | 1/r = «, ¢ < 0, and S P = —co,
The same technique yields the following results.

THEOREM 2.1. Suppose that r(x) < N, q(x) < M and rp = —oo
Jor x>0, then Ly = (ry")" — (q¥") + py 1s oscillatory on (0, ).

THEOREM 2.2. If 0 < r(z) < M, rq = — oo, and wazl p(@)] < <=
then Ly = (ry")" — (q¥') + py s oscillatory on (0, ).

Proof. Let &(x) = 2%/2. Define y(x) as follows:

0 r<a

& — a) a<r<a+1

x—a—1/2 a+l=a<h

—&x —b,) + b, —a b<x<b=0>0+1
y@) ={b —a b,=a <b

—&(@ —b) + b —a by < & < b,

—&'(b, — b)(w — b)) + b, —a — &b, — b)) b <x<b

&z —b) by<ax<bd

0 bz,

It is easy to show that
d o
g (") + py* < 16M + S 2 p|
if we require that b, — b, = b — b, < 1. There is a number ¢ such that
1+ 16M + wazim + Sa+ a') + S g=0
for all x = c.
Let Y, (z) = S q(t)dt. Since Y,(x) tends to — < as x tends to <<
there is a number b, which is the last zero of Y, (x). Hence,
by by
[ awy = vyl - 2| vy v <o

since Y,(b) =0 =19'(hy), ¥’ = —1, ¥y’ =0, and Y, <0 on (b, b,].
Let Yy (x) = Sb q(t)dt and let b, be the last zero of Y,. Pick b,so0



226 ROGER T. LEWIS

that —1/2< Y, (¢) <0 on [b, b] and b, — b; = lb. Since ¥’ =0 on
[b, b, —1 =y =<0 on [b, ], ¥, <0 on [b, ), S:q(y’)2 <0 we have
that '

b b b
[, awy < awy = vyt -2{ v,
1 3 3
by b
- —2['v-vY. - 2] v,
bg bs
by by
<2S Y'Y, < 2\ 1YY, <1.
by Jbg
Consequently,

I(y) = S:r(y”Y +q(')’ + py’

by
¢+1=0
+1

a

) a+1
< 16M + S 2 p| + S q(y')? + S

which completes the proof.
We now know that L, is oscillatory on (0, ) is for » bounded

either °°10 = —o and ¢ <0 or mq = —oo and p £0. These facts
suggest the results of the following theorem.

THEOREM 2.3. If g"’p = o, rq = — oo, and 0 < 1(z) < M then
L, is oscillatory on (0, ).

Proof. Except for some changes in the parameters we may define
y(x) as in the proof of Theorem 2.2. As before, if b, — b, = b; — b; <
b

1 then S r@") < 16M.
Therc:a is a number ¢ such that

a+1 z
1+16M+S q(y’)2+S q<0

a+t+

for all © =¢. Let Y(z) = qu(t)dt and let b, be the last zero of Y(x).
Integrating by parts we obtain the fact that

b

b

Sb q@'y = —2Sb yy'Y
since Y(b,) =0 = y'(b). Since ¥y’ =0, ¥y’ = —1, and Y <0 on [b, b)]
then

b b
_2Sb y’y/IY< —“ZSb yly’IY.

Since y” = 0 on [b, b;] and [b,, bs], ¥’ <0 on [b; b], ¥’ =1 on [b; b],
and Y < 0 on [b; b], then
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b by by
__25 ylyIlY < _25 y’yIIY — 2S yIY .
by bs by
But, on [b;, b], ¥’ < 1. Consequently,
b by by
[ awr <2f"vy=2f"v.
by b3 b3
Since Swp = — oo, there is a number d > b, such that for = d
by x
S py2+(b1—a)2§bp<0.
a 2
Let W(x) = S: p and b; = d be the last zero of W. Hence,
b b
S Py = —2& yy' W(t)dt <0 .
b3 b
Let N =max{| Y(®)|:x€[b, b; + 1]} which we may assume is

greater than or equal to one. Pick b, so that b, — b, = 1/(2N). Con-
sequently,

b
[, gy <1.

Pick b, so that lim,.,- y(x) = (b, — b5)’/2 and pick b so that b — b, =
b, — b, We now have that

a+1 z b b
1w <168+ ey + | g+ 1+ "o+ [P0 - arp <0
a a+1 a 2

THEOREM 2.4. If 0 <r@) =M, —o < Smp < oo, rPl = — oo,

rl gl < oo, and q®)— 0 as ©— oo then L, is oscillatory on (0, «).

Proof. Let &) = —(8%® — 5a9)/2, a(w) = V', and B(x) = a*. Let

0 r<a

§@ — a) esr<a+1

a(x — a) a+1l=2<h

—B@ — b)) + a(b, —a) + Bb, — b)) b =2x<b
y(@) ={a(b, — a) + B(b, — b,) b, < & < by

—B@ — b)) + y(by) by <x < b,

a(b — x) b=a <b

(b — ) b,=ax<b

0 b,
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Given b, and b, we choose b,, b;, and b so that b, — b, = b, — b,, b; —
by=0b—(a+1), and b= b, + 1. Actually, only b, and b, will be
chosen for reasons other than symmetry and the continuity of ¥ and %’.
First, note that since we are going to pick b, ---, by so that

Yy € D,(b) then

b b b ,

[ = —Pylt+ | Py = | Py .
Hence,

1) s | M"Y + W) + P -

Calculations show that

1
0

SbM(y”)z < M[ZS (G — %) + 2 + %S”m—m] =M

since ¥’ being continuous requires that 0 < b, — b, = b, — b, < 1/4.
Since lim,...q(x) = 0 and ¢ is continuous then ¢ is bounded by
some number, B, on [a, ). Let

A= 4leu2 + BY(——?—W + 5u)2du +1.
0 0 2
There is a number ¢ so that

a4l
M+ 2+ W) + Py
+4+B+@+D|" alew s -| P
a+1 a+l
and |P(x)| <1 for all ¥ = ¢ since P,—0 as & — oo.
Let R(x) = SxPl(t)dt and b, be the last zero of R(x). Pick b, so

that 1/(2Vb, — a) = —2(b, — b,) which insures that 3’ is continuous
at b. We now have that

by , by by
|Lawr={" @-aa =] s@-a gl
a+1 a+1 a+1

b o

<@+[" =gl <@+ gl
a+1 a+1
and
by by
[Fawy = B[4 — by < B

since b, — b, < 1/4. Also,
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bs b by
| Py = 2Rl - 2( 10 + v IR = —2{ YR
¢ ' , by t ,
= —dro| wrn-['(rol @]
by by b2
ba by
<2{" P | wr <1
since y'(b)) =0 = R(b), y" =0, y=0, and R <0 on [b, b)]. Pick b,

so that | Py(z)| = [6y(b.)(b. — a)] ™ and |g(x)| = 4(b, — a — 1) for o =
b,. Consequently,

b b b
|, @y = | Py =2 IPIyivi=1
by bs by
since |y | = y(b,), |¥'| <83, and b — b, = b, — a. Also,
b , by b5
|, awy = B ‘16 — by + W[ & - 0)la@) |
b
+ B 50, — &) — 9(b, — ay/2f
by
<@-1+a|lal=4.
In conclusion,
a1 o
1w = M+ |y + @+ D aal+ B+ 4
+ S““Pl(yzy + SblﬂPl +1+1<0.
The conditions of Theorem 2.4, Swlql/x < oo and lim,_,q(z) = 0,

could be replaced by the conditions, Smlq| < co and ¢ bounded, to

obtain the same result with a similar proof.

THEOREM 2.5. Suppose 0 < r(x) < M, Smp < oo, SWPI < oo, and

P(x) < Cx™* for > 0. If lim, . inf 2*P(x) < —7-31—2M then Ly =
(ry”)’ + py 1s oscillatory on (0, o).

Proof. We will use the fact that for a > 0
b
1) = | ") + 20'P)

for y given below. Let &(x) = —(82® — 527)/2, a(x) = V' @, and B(x) =
2. For0<pn<1,0<0=10>0,and 0 < v =< 1 define y as follows:
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0 x < ppo
g( X HO_ <z<
(o =77) po=m<p
& — pp
ol §x<R
(o) ?
R — pp
—Bx—(R+0)+pB0)+al —L-) R<x<R-+o
y(x) = Bl =t ) ( <P[1—#]>
R — o
o) + al ———— R+osa2<N
60+ ol i)
—B(® — N) + y(R + o) Nz <N+~
—2¥(@ — N —7) + y(R + o) — B(7) N+v=sx<b—v
Bz — b) b—v=2<b
0 bsx.
Calculations show that
|y
re
<P — P T ML — ) + 4o MO — ) + SYMOL — )]
Since
.. ° 1
liminfa?| P, < —T—M,
im in xL < 732M

there is a 6 > 0 and a sequence {p,> — - for which

. * 1
2 < (71
lim ‘okSkal < (7 =M+ 25) .
Pick 2 so close to zero that T(1/32)M(1 — p)~* = T(1/32)M + 76/8.
There is a positive integer N so large that o, > a, C(1® — 1)/p0, <
0/8, and
= 1
2 < (71—
o\, Pox — (1M + Tou)
for all k = N. Let p = p,.

Given R, we will pick ¢ so that '(x) is continuous at x = B. There-
fore,

o=1/4V' o[l — (B — £0)) .

Since ¢ — 0 as R — < and P, is bounded on [a, <) pick R so large that

p2§:P1 < —(7%1‘4 +139/8) ,
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o < (9/8)/[4MpP*(1 — )],
and o| P,| < 46/(80% for all x = R. On [R, R + o],
0 <y@) = al(® — pe)/(o[1 — 1))
and
0= y'(x) = a((x — 1o)/(ell — ))-1/(0[1 — 1)
which implies that 0 < 2yy’ < 1/(p[1 — #¢]) on [R, R + o].
On [¢p, 0] 0 < 2yy’ < 3/(0[1 — ¢]). Hence,
2 uwP < 30lL — | P+ (ol - | P,
ol = | P+ 2] e P

<3000t — (" amdw + (ot — i) P,
+ @Bl — 7+ 2wy | 2]
where P7(x) = P(x) when P,(x) = 0 and zero otherwise.

On [N, 5] 0 < y(x) < y(R + o)and |y | < 2v. Since y is linear on
[N+ 7, b — 7] we have that

[W(R + o) — 2v]/[b — N — 27] = 2v
or
b— N=[yR + o)]/@27) + 7.

Since P(x) — 0 as © — « we can pick N so large that

[P | = (6/8)/2ly(B + o)*0’[1 — )
for all x = N. Pick v so small that 2} [y(R + 0)]™ < 1 and
SMvo'[L — p] < /8.
Pick b so that
lim y(z) = .

T (b—7)"

We now have that

2 1w 121 = ow® + )] 1 2

= 2v(b — N)-(9/8)/(y(E + 0)0*[1 — ¢])

= 27([y(E + 0)/27)] + 7)-(0/8)/(y(E + 0)0’[1 — )
= (9/8)/(0°[1 — 1) + 27(9/8)/(y(R + 0)0°[1 — 4]
< (@/HN(O°[L — A]) .
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Consequently,

b , R

2{ P < (@1 — (0 = Do~ + o P+ 3078)
<@ - my{oz + 0| P).
I

Hence,

b

I(y) = SG?‘(y")2 + 2yy'P,

< (o[ — ) (T M+ TO/8 + 38 + 058 + 0j2 + 0| P) = 0

which completes the proof.
3. The oscillation of L,y = (—1)"(ry™)™ + py.
THEOREM 3.1. If p(x) =0, 0 < r(x) < Mx* for a« < 2n — 1, and

lim sup xzn-wg"l () |dt > MA2

L—»00

where
- Y =z —if N — 1 -1
A7 = VB =1 /[0 — DI 3 (— 1 (k ~1)en -k
then L.,y = (—1)"(ry™)™ + p(x)y is oscillatory on (0, «).
Proof. Let &(x) be the polynomial of degree 2w — 1 such that

£(0) = &%) =&¥A) =0 for k=1,2, ---,n — 1 and (1) = 1. Given
a > 0, define y(x) as follows:

0 @ < po

([ — pol/lo — p)]) posx<p
yx) =41 p=x<R

§([vR — o]/[R(v — 1)) Rz <VR

0 VR< o,

It can be shown that Sl(é‘”’(x))zdx = A3.
0

A result due to Glazman [2, p. 100] considers the case when a <
0. Consequently, we will consider here only the case in which a > 0.
Since

SuRr(y(n))z < MpaS” (y(n))z + M(”R)“SVR(?/(%)V
re re R
= MA/[o"=(1 — py*]
+ MA?’L/[Rzn-—l-—a(”l—alwn—l) —_ u—a/(Zn-—l))Zn—l]
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and p(x) £ 0, then

L) = | @™ + pyi

1 (M4 MAL 0" —om="1p))
= pm—x~a \(1 . ﬂ)m—x Rzn—x—a(v1—a/(2n—1) _ v—tx/(Zn—l))Zn—L o *

There is a sequence {p,> — c and a number ¢ > 0 such that
lim pi”"‘”“r Ip|= MA: + 6.
k—oo O

Choose x> 0 so small that

MA[(1 — 7] < MAS, + d/4.
There is a number K so that ¢p, > a and

pi”*l‘“g:k| p| > MA: + 35/4
for all k= K. Set p = pox. Choose R so large that
=il > Ay + o2
Choose v > 1 so large that

MAipZn——l—-a/[Rﬁn—l—a(pl—a/mn—-l) i v—-a/(Zn—l))ML—l] < 3/4 .

We now have that I,.(y) < 0 which implies that L,, is oscillatory
on (0, «). ‘

THEOREM 3.2. If there are numbers M and a such that 0 < r(x) <
Mx* and if for some v > 1 and A, as in Theorem 3.1

lim (Kac“*”“ + Szp> = — oo
where K = MA2y* /(v — 1) then L,y = (—1)*(ry™) + py 1is oscillatory
on (0, o).

Proof. For p, o, R, and v below, let y(x) be as in the proof of
Theorem 3.1. Pick ¢ and v so that 0 < # <1 and v > 1. Pick p so
large that 0 = a. As in the proof of Theorem 3.1

SyRT(y(n))2 é MAi( pa~2n+1 Ra—2n+1”a )
ladd

1 — pyt + (v — 1)

There is a number ¢ such that
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pa—-2n+l xa—zn-‘-lva

(1 _ #)zn—1 + v — l)zn—-x

aas )+ o+ (<o

for all * = ¢. Let T(x) = Sxp. Since T(x) — — > as & — oo, there

is a last zero of T(x). Let R be the last zero of T(x). This implies
that

vR vR
S py: = ~2§R yy' T(x) <0 .

R

Since
vR 14 R
S py2<§ py2+§ P
~o #o o
then I (y) <O.
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