LOCAL IDEALS IN A TOPOLOGICAL ALGEBRA OF ENTIRE FUNCTIONS CHARACTERIZED BY A NON-RADIAL RATE OF GROWTH

JAMES JEROME METZGER
LOCAL IDEALS IN A TOPOLOGICAL ALGEBRA OF ENTIRE FUNCTIONS CHARACTERIZED BY A NON-RADIAL RATE OF GROWTH

JAMES J. METZGER

In this paper a class of locally convex algebras of entire functions is considered: For fixed $\rho > 0$, $\sigma > 0$, and n a positive integer, let $E[\rho, \sigma; n]$ denote the space of all entire functions f in n variables which satisfy $|f(x + iy)| = O\{\exp [A(|x|^\rho + |y|^\sigma)]\}$ for some $A > 0$. Sufficient conditions are given in order that the local ideal generated by a family in $E[\rho, \sigma; n]$ coincides with the closed ideal generated by the family.

For $z = x + iy = (x_1 + iy_1, x_2 + iy_2, \ldots, x_n + iy_n) \in C^n$, write $||z||^2 = ||x||^2 + ||y||^2 = \sum_{k=1}^n (x_k^2 + y_k^2)$. For $f: C^n \to C$ and $A > 0$, let $||f||_A = \sup \{|f(z)| \exp [-A(|x|^\rho + |y|^\sigma)]: z \in C^n\}$. The space $E = E[\rho, \sigma; n]$ is a locally convex algebra over C, with the natural inductive limit topology from the Banach spaces $\{f$ entire: $||f||_A < \infty\}$, $A > 0$.

For \mathcal{I} a family of functions in E, write $\mathcal{I}(\mathcal{I})$, $\mathcal{I}^{-}(\mathcal{I})$, and $\mathcal{I}_{\text{loc}}(\mathcal{I})$, respectively, for the ideal, closed ideal, and local ideal in E generated by \mathcal{I}. The local ideal $\mathcal{I}_{\text{loc}}(\mathcal{I})$ consists of all $H \in E$ such that in a neighborhood of each $z \in C^n$, H has the form $H = \sum_{j=1}^n h_j F_j$ for some $F_1, F_2, \ldots, F_r \in \mathcal{I}$ and h_1, h_2, \ldots, h_r analytic in a neighborhood of z. The ideal $\mathcal{I}_{\text{loc}}(\mathcal{I})$ is closed in E and contains \mathcal{I}; hence $\mathcal{I}(\mathcal{I}) \subseteq \mathcal{I}^{-}(\mathcal{I}) \subseteq \mathcal{I}_{\text{loc}}(\mathcal{I})$. The problem to be considered is: Under what conditions is $\mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in E?

Problems of this type have been studied in various algebras E by many authors, among them: L. Ehrenpreis [2, 3], L. Schwartz [14], H. Cartan [1], L. Hörmander [5, 6], B. A. Taylor [15], J. J. Kelleher and B. A. Taylor [7, 8, 9], J. Metzger [11], I. F. Krasičkov [10], P. K. Raševskiǐ [13], and K. V. Rajeswara Rao [12].

Let $\mathcal{I} \subseteq E = E[\rho, \sigma; n]$. It is known (see B. A. Taylor [15]) that for $n = 1$ and $\rho = \sigma \geq 1$, $\mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in E for any \mathcal{I}. If $\rho = \sigma$ and $\mathcal{I} = \{F\}$, but n is arbitrary, then $\mathcal{I}(F) = \mathcal{I}^{-}(F) = \mathcal{I}_{\text{loc}}(F)$ (see L. Ehrenpreis [2]). In [11] this author proved that if $n = 1$, and $\rho \geq 1$ or $\sigma \geq 1$, then $\mathcal{I}^{-}(F) = \mathcal{I}_{\text{loc}}(F)$ for any $F \in E$; if in addition $\rho \neq \sigma$, there exists an $F \in E$ for which $\mathcal{I}(F) \neq \mathcal{I}^{-}(F)$. Concerning the more general case where n is arbitrary, and ρ and σ do not necessarily agree: Ehrenpreis's Quotient Structure Theorem (see [3]) implies that if $\rho > 1$ and $\sigma > 1$, and if $\mathcal{I} = \{F_1, F_2, \ldots, F_r\}$ consists of polynomials, then $\mathcal{I}(\mathcal{I}) = \mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in E. Also, a result of Hörmander [5] implies that when $\rho \geq 1$ and $\sigma \geq 1$,
a family $\mathcal{F} = \{F_1, F_2, \ldots, F_r\}$ in E satisfies $\mathcal{F}(\mathcal{F}) = E$ if and only if there exist $\varepsilon > 0$ and $A > 0$ such that

$$\sum_{j=1}^{r} |F_j(z)| \geq \varepsilon \exp \left[-A(||x||^\sigma + ||y||^\sigma)\right]$$

for all $z \in \mathbb{C}^n$.

In this paper the following result is proved:

Theorem 1. Let n be a positive integer, $\rho > 0$, $\sigma > 0$, and $\tau = \max(\rho, \sigma) \geq 1$; and let $\mathcal{F} \subseteq E[\rho, \sigma; n]$. If $\mathcal{F}(\mathcal{F}) = \mathcal{F}_{\text{iso}}(\mathcal{F})$ in $E[\tau, \tau; n]$, then $\mathcal{F}^-(\mathcal{F}) = \mathcal{F}_{\text{iso}}(\mathcal{F})$ in $E[\rho, \sigma; n]$.

Since $\mathcal{F}(F) = \mathcal{F}_{\text{iso}}(F)$ in $E[\tau, \tau; n]$, a consequence of Theorem 1 is:

Corollary. Let n be a positive integer, $\rho > 0$, $\sigma > 0$, with $\max(\rho, \sigma) \geq 1$. Then $\mathcal{F}^-(F) = \mathcal{F}_{\text{iso}}(F)$ in $E = E[\rho, \sigma; n]$ for any $F \in E$.

This corollary generalizes to several variables the result proved by this author in [11] for the case of one variable.

Theorem 1 follows immediately from an approximation theorem which is proved in the next section. In the third section Theorem 1 is applied to several examples.

2. The main theorem. The approximation theorem stated below, Theorem 2, yields Theorem 1 as an immediate corollary. The proof of Theorem 2 is based on a technique of L. Hörmander given in [6], which in turn involves the solution of the $\overline{\partial}$ equation (see [4, Chapter IV]).

Theorem 2. Let $\sigma \geq 1$, and $H, F_1, F_2, \ldots, F_r, G_1, G_2, \ldots, G_r$ be entire functions in n variables, with $H = \sum_{j=1}^{r} G_j F_j$ and

$$|G_j(z)| \leq C \exp(A \cdot ||z||^\sigma)$$

for all $z \in \mathbb{C}^n$, $j = 1, 2, \ldots, r$, where A, C denote positive constants. Then there exist positive constants $B, K, M,$ and entire functions $g_{j, t}$, $0 < t < 1$, $j = 1, 2, \ldots, r$, such that:

$$\left|H(z) - \sum_{j=1}^{r} g_{j, t}(z) F_j(z)\right| \leq tK(1 + ||z||^\sigma)^\nu \left\{ ||H(z)|| + \left[\sum_{j=1}^{r} |F_j(z)| \exp(B \cdot ||y||^\sigma) \right] \right\}$$

for all $z \in \mathbb{C}^n$, $0 < t < 1$, and
for all \(z \in C^n \), \(0 < t < 1 \), \(j = 1, 2, \ldots, r \), where \(L(t) > 0 \) may depend on \(t \) but not on \(z \).

The proof of Theorem 2 is facilitated by the following:

Lemma. Let \(n \) and \(N \) be positive integers, with \(N \) even. There exist \(\alpha > 0 \) and \(\varepsilon > 0 \) such that: If \(z \in C^n \) with \(\alpha \| x \| \geq \| y \| \), then \(\operatorname{Re}(z^n) \geq \varepsilon \| z \|^N \).

Here \(z^n = \sum_{k=1}^{n} (x_k + i y_k)^n \).

Proof. Write \(q = N/2 \); then

\[
\operatorname{Re}(x_k^n + iy_k^n) = a_k^{2q} + \sum_{m=1}^{q} a_m a_k^{2q-m} y_k^m
\]

for all \(x_k + iy_k \in C \), where \(a_1, a_2, \ldots, a_q \) are integers depending only on \(N \). Hence for \(z \in C^n \),

\[
\operatorname{Re}(z^n) \geq \sum_{k=1}^{n} a_k^{2q} - \sum_{m=1}^{q} |a_m| \left(\sum_{k=1}^{n} a_k^{2(q-m)} y_k^m \right)
\]

\[
\geq 2^{(-n+1)(q-1)} \| x \|^{2q} - \sum_{m=1}^{q} |a_m| \| x \|^{2(q-m)} \| y \|^{2m}.
\]

The required condition is then satisfied with \(\varepsilon = 2^{-(n-1)(q-1)-(q-2)} \), and \(0 < \alpha < 1 \) sufficiently small that \(\sum_{m=1}^{q} |a_m| \alpha^{2m} < 2^{-(n-1)(q-1)-1} \).

Proof of Theorem 2. Let \(N \) be an even integer, \(N > \sigma \). By the lemma there exist \(\alpha = \alpha(n, N) > 0 \) and \(\varepsilon = \varepsilon(n, N) > 0 \) such that \(\alpha \| x \| \geq \| y \| \) implies \(\operatorname{Re}(z^n) \geq \varepsilon \| z \|^N \). Set \(S = \{ z \in C^n : \alpha \| x \| \geq \| y \| \) and \(\operatorname{Re}(z^n) \geq 1 \} \). The bounds (1) imply that for some \(B > 0 \) and \(K_i > 0 \),

\[
|G_j(z)| \leq K_i \exp(B \| y \|^r)
\]

for all \(z \in C^n \setminus S, j = 1, 2, \ldots, r \).

Let \(\varphi : R \to R \) be a \(C^\infty \) function such that

\[
\varphi(u) = 0 \quad \text{if} \quad u \leq 0,
\]

\[
= 1 \quad \text{if} \quad u \geq 1,
\]

and \(0 \leq \varphi(u) \leq 1 \) if \(0 \leq u \leq 1 \). For \(0 < t < 1 \) and \(z \in C^n \), set

\[
\omega_t(z) = \frac{\varphi(\operatorname{Re}(z^n))}{\exp(-t(z^n))} + [1 - \varphi(\operatorname{Re}(z^n))].
\]

Each \(\omega_t \) is a \(C^\infty \) function on \(C^n \); and \(|\omega_t(z)| \leq 1 \) for all \(z \in C^n \), while
$|\omega_t(z)| \leq \exp (-\varepsilon \|z\|^\nu)$ for all $z \in S$. Together with (1) and (4), this implies that for some $K_2 > 0$,

$$\omega_t(z)G_j(z) \leq K_2 \exp (B \|y\|^\sigma)$$

for all $z \in C^s$, $0 < t < 1$, $j = 1, 2, \cdots, r$. Since $|1 - e^{i\zeta}| \leq |\zeta|$ if $\Re \zeta \leq 0$, and since $|z^n| \leq \|z\|^n$, it follows that $|1 - \omega_t(z)| \leq tn \|z\|^n$ for all $z \in C^s$, $0 < t < 1$. Consequently,

$$H(z) - \sum_{j=1}^{r} (\omega_t(z)G_j(z))F_j(z) \leq tn \|z\|^\nu \|H(z)\|$$

for all $z \in C^s$, $0 < t < 1$. Thus the functions ω_tG_j satisfy conditions of the form (2) and (3).

As is done by Hörmander, the functions ω_tG_j will now be altered to obtain the desired analytic functions $\nu_{j,t}$. First of all, $\bar{\omega}_t = 0$ if $\Re (x^n) \leq 0$, and $\|\bar{d}(\varphi(\Re (x^n)))\| \leq K_3 \|x\|^\nu$ everywhere on C^s; therefore, $\|\bar{\omega}_t(z)\| \leq tnK_3 \|z\|^\nu$ for all $z \in C^s$, $0 < t < 1$. Also, $\bar{d}(\omega_tG_j) = (\bar{\omega}_t)G_j$; and $\bar{\omega}_t = 0$ on S. By (4) then, for $0 < t < 1$ and $j = 1, 2, \cdots, r$,

$$\|\bar{d}(\omega_t(z)G_j(z))\| \leq tK_4 \|z\|^{2\nu-1} \exp (B \|y\|^\sigma)$$

for all $z \in C^s$, and thus

$$\int_{C^s} \|\bar{d}(\omega_t(z)G_j(z))\|^2 \exp (-\psi(z) - 2 \log (1 + \|z\|^\nu))d\lambda(z) \leq t^2K_5$$

where $\psi(z) = 2B \|y\|^\sigma + (2N + n) \log (1 + \|z\|^\nu)$, and λ denotes Lebesgue measure.

By applying Theorem 4.4.2 of Hörmander [4], functions $\nu_{j,t}$ of class C^m on C^s may be chosen such that $\bar{d}\nu_{j,t} = \bar{d}(\omega_tG_j)$ and

$$\int_{C^s} |\nu_{j,t}(z)|^2 \exp [-\psi(z) - 2 \log (1 + \|z\|^\nu)]d\lambda(z) \leq t^2K_5$$

for $0 < t < 1$, $j = 1, 2, \cdots, r$. Together with (7), this implies (see Hörmander [6, p. 314]) that

$$|\nu_{j,t}(z)| \leq tK_6 (1 + \|z\|^\nu)^M \exp (B \|y\|^\sigma)$$

for all $z \in C^s$, $0 < t < 1$, $j = 1, 2, \cdots, r$, where $M = N + 1 + (1/2)n$.

Each of the functions $\nu_{j,t} = \omega_tG_j - \nu_{j,t}$ is then entire. Further, (3) is satisfied because of (5) and (8). Lastly $H - \sum_{j=1}^{r} \nu_{j,t}F_j = [H - \sum_{j=1}^{r} (\omega_tG_j)F_j] + \sum_{j=1}^{r} \nu_{j,t}F_j$, and thus (2) follows from (6) and (8).

3. Examples and applications. In this section several examples are given where $\mathcal{F}^{-}(\mathcal{I}) = \mathcal{K}_{10}(\mathcal{I})$ in spaces of the form $E[\rho, \sigma; n]$.

Example 1. Let $E = E[\rho, \sigma; n]$, with $\tau = \max (\rho, \sigma) \geq 1$, and let $F \in E$. The corollary to Theorem 1 implies that $\mathcal{F}^{-}(F) = \mathcal{K}_{10}(F)$.
in E. Also, $\mathcal{I}(F) = \mathcal{I}^{-}(F) = \mathcal{I}_{\text{loc}}(F)$ in $E[\tau, \tau; n]$. However, it need not be the case that $\mathcal{I}(F) = \mathcal{I}^{-}(F)$ in E; indeed, if $\rho \neq \sigma$ then (see [11]) there exists an $F \in E$ for which $\mathcal{I}(F) \neq \mathcal{I}^{-}(F)$.

EXAMPLE 2. Let $n = 1$, and $E = E[\rho, \sigma; 1]$, with $\tau = \max(\rho, \sigma) \geq 1$. Let $\mathcal{I} \subseteq E$ and suppose some $F_0 \in E$ has only finitely many zeros. Then $\mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in E. To prove this, write $F_0 = PH$ where P is a polynomial and $H \in E$ has no zeros. There exists a polynomial Q such that $\mathcal{I}_{\text{loc}}(\mathcal{I})$ in E is $(G \in E; G/Q$ is analytic). Set $P = P_0Q$, so that $F_0 = P_0QH \in \mathcal{I} \subseteq \mathcal{I}^{-}(\mathcal{I})$. The factors of P_0 can be divided out (see Taylor [15]) to yield $QH \in \mathcal{I}^{-}(\mathcal{I})$ in E. Since $1/H \in E[\tau, \tau; 1]$, it follows that $Q \in \mathcal{I}^{-}(\mathcal{I})$ in $E[\tau, \tau; 1]$, which implies that $\mathcal{I}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in $E[\tau, \tau; 1]$. Then by Theorem 1, $\mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ in $E = E[\rho, \sigma; 1]$. Note that if $1/H \in E$--e.g., if $\rho \geq 1$, $\sigma \geq 1$, and F_0 is an exponential polynomial $F_0(z) \equiv P(z)e^{\alpha z}$--then $Q \in \mathcal{I}_{\text{loc}}(\mathcal{I})$ in E and thus $\mathcal{I}(\mathcal{I}) = \mathcal{I}^{-}(\mathcal{I}) = \mathcal{I}_{\text{loc}}(\mathcal{I})$ trivially. On the other hand, if $1/H \not\in E$ then $\mathcal{I}(\mathcal{I})$ need not coincide with $\mathcal{I}^{-}(\mathcal{I})$ in E--for instance, if $\rho = 1$, $\sigma = 2$, and $\mathcal{I} = \{e^{-iz}, e^{iz} - 1\}$.

EXAMPLE 3. Let $1 \leq \rho < \sigma$ and $E = E[\rho, \sigma; 1]$. Choose $\gamma, \rho < \gamma < \sigma$; let $\varepsilon_m = \exp(-(2^m\gamma))$, $a_m = 2^m$, $b_m = 2^m + \varepsilon_m$, $m = 1, 2, \cdots$; and let

$$F_1(z) = \prod_{m=1}^{\infty} \left(1 - \frac{z}{a_m}\right)$$

$$F_2(z) = \prod_{m=1}^{\infty} \left(1 - \frac{z}{b_m}\right)$$

for all $z \in C$. Each F_j is an entire function of order 0 and thus is in E. Clearly $\mathcal{I}_{\text{loc}}(F_1, F_2) = E$. It is easily argued that for $\rho < \rho' < \gamma$, $|F_j(2^m)| = O[\exp(-(2^m\gamma))]$ as $m \to \infty$. Consequently $1 \in \mathcal{I}(F_j, F_j)$ in E. On the other hand, letting $\gamma < \sigma' < \sigma$ and using standard estimates on infinite products yields:

$$|F_1(z)| \geq \delta \exp(-|z|^{\sigma'}) \quad \text{if} \quad z \in \bigcup_m \left\{z: \left|z - a_m\right| < \frac{1}{2}\varepsilon_m\right\},$$

$$|F_2(z)| \geq \delta \exp(-|z|^{\sigma'}) \quad \text{if} \quad z \in \bigcup_m \left\{z: \left|z - b_m\right| < \frac{1}{2}\varepsilon_m\right\},$$

where $\delta > 0$. Thus $|F_1(z)| + |F_2(z)| \geq \delta \exp(-|z|^{\sigma'})$ for all $z \in C$. It then follows (Hörmander [5]) that $1 \in \mathcal{I}(F_1, F_2)$ in $E[\sigma, \sigma; 1]$. Hence $\mathcal{I}(F_1, F_2) = \mathcal{I}^{-}(F_1, F_2) = \mathcal{I}_{\text{loc}}(F_1, F_2)$ in $E[\sigma, \sigma; 1]$, while $\mathcal{I}(F_1, F_1) \not\subseteq \mathcal{I}^{-}(F_1, F_1) = \mathcal{I}_{\text{loc}}(F_1, F_1)$ in $E = F[\rho, \sigma; 1]$.
REFERENCES

Received November 14, 1972 and in revised form July 20, 1973.

UNIVERSITY OF GEORGIA
Zvi Arad, \(\pi \)-homogeneity and \(\pi' \)-closure of finite groups ... 1
Ivan Baggs, A connected Hausdorff space which is not contained in a maximal connected space .. 11
Eric Bedford, The Dirichlet problem for some overdetermined systems on the unit ball in \(C^n \) .. 19
R. H. Bing, Woodrow Wilson Bledsoe and R. Daniel Mauldin, Sets generated by rectangles .. 27
Carlo Cecchini and Alessandro Figà-Talamanca, Projections of uniqueness for \(L^p(G) \) .. 37
Gokulananda Das and Ram N. Mohapatra, The non absolute Nörlund summability of Fourier series .. 49
Frank Rimi DeMeyer, On separable polynomials over a commutative ring .. 57
Richard Detmer, Sets which are tame in arcs in \(E^3 \) .. 67
William Erb Dietrich, Ideals in convolution algebras on Abelian groups .. 75
Bryce L. Elkins, A Galois theory for linear topological rings .. 89
William Alan Feldman, A characterization of the topology of compact convergence on \(C(X) \) .. 109
Hillel Halkin Gershenson, A problem in compact Lie groups and framed cobordism .. 121
Samuel R. Gordon, Associators in simple algebras .. 131
Marvin J. Greenberg, Strictly local solutions of Diophantine equations .. 143
Jon Craig Helton, Product integrals and inverses in normed rings .. 155
Domingo Antonio Herrero, Inner functions under uniform topology .. 167
Jerry Alan Johnson, Lipschitz spaces .. 177
Marvin Stanford Keener, Oscillatory solutions and multi-point boundary value functions for certain \(n \)th-order linear ordinary differential equations .. 187
John Cronan Kieffer, A simple proof of the Moy-Perez generalization of the Shannon-McMillan theorem .. 203
Joong Ho Kim, Power invariant rings .. 207
Gangaram S. Ladde and V. Lakshmikantham, On flow-invariant sets .. 215
Roger T. Lewis, Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators .. 221
Jürg Thomas Marti, On the existence of support points of solid convex sets .. 235
John Rowlay Martin, Determining knot types from diagrams of knots .. 241
James Jerome Metzger, Local ideals in a topological algebra of entire functions characterized by a non-radial rate of growth .. 251
K. C. O’Meara, Intrinsic extensions of prime rings .. 257
Stanley Poreda, A note on the continuity of best polynomial approximations .. 271
Robert John Sacker, Asymptotic approach to periodic orbits and local prolongations of maps .. 273
Eric Peter Smith, The Garabedian function of an arbitrary compact set .. 289
Arne Stray, Pointwise bounded approximation by functions satisfying a side condition .. 301
John St. Clair Werth, Jr., Maximal pure subgroups of torsion complete abelian \(p \)-groups .. 307
Robert S. Wilson, On the structure of finite rings. II .. 317
Kari Ylinen, The multiplier algebra of a convolution measure algebra .. 327