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A ring extension S of a ring R is right intrinsic over
R, in the sense of Faith and Utumi, if A Π R Φ 0 for each
nonzero right ideal A of S. S is a right quotient ring of
R, in the sense of R. E. Johnson, if SR is an essential exten-
sion of RR, Let & be the class of prime rings which have
zero right singular ideal and contain uniform right ideals.
This paper deals with two questions:

(1) If S 6 ^ and S is right intrinsic over a prime ring
R, is S a right quotient ring of RΊ

(2) If R e if and S is right intrinsic over R, is S a right
quotient ring of R?
The main result is that the answer to (1) is "yes" provided
S is not an integral domain. As a consequence of this, a
partial answer to (2) is "yes" provided R is not an integral
domain and R contains a nonzero finite dimensional right
annihilator ideal.

An extension of these results to semi-prime rings (which have
an atomic lattice of closed right ideals) is also given. These extend
results of J. J. Hutchinson (for semi-prime right Goldie rings) and
sharpen results of Faith and Utumi for this particular class of rings.
A corollary to the main result is that for Re ^ R not an integral
domain, every right quotient ring of R is also a left quotient ring
of R if and only if the closed right ideals of R are its right annihi-
lator ideals.

The above corollary can be viewed as a one-sided version of a
theorem of Utumi's [10, Theorem 3.3]. The main result, Theorem
2.1, yields another result of interest: A right order in a countably
infinite dimensional full linear ring Q must have Q also as a left
quotient ring (Theorem 3.4).

To assist the reader to put the results of this paper into per-
spective, we begin by briefly reviewing what is already known about
intrinsic extensions of prime rings.

Let R be a subring of a ring S. Following Faith and Utumi
[4], we say that S is right (resp. left) intrinsic over R if A Π R Φ 0
for each nonzero right (resp. left) ideal A of S. It is clear that if
S is a right quotient ring of R, then S is right intrinsic over R.
An interesting question, and one which Faith and Utumi studied in
[4], is: When does the converse hold? The main theorem of Faith
and Utumi [4, Theorem 3.1], when interpreted for prime rings, can
be read as follows: Let R be a prime ring with zero right singular

257



258 K. C. O'MEARA

ideal but not an integral domain. Suppose that (*) the maximal right
quotient ring of R is left intrinsic over R. Then any right intrinsic
extension of R is a right quotient ring of R. (An intrinsic extension
of an integral domain need not be a quotient ring extension; for
example, a field is trivially intrinsic over any subfield.) Notice that
no finiteness assumptions are required for this theorem. However,
the hypothesis (*) is rather restrictive and is not satisfied, for example,
even if R is the ring of all ^ 0 x fc$o column-finite matrices over the
rational integers (in which case R contains uniform left ideals as well as
uniform right ideals). For a prime right Goldie ring R, R not a right
Ore domain, (*) means that R is also left Goldie (see Theorem 3.3). In
Theorem 3.7 we replace (*) by the much weaker hypothesis (for the class
of prime rings we consider) that R contain a nonzero finite dimensional
right annihilator ideal. A theorem of Hutchinson's [6, Theorem 4.5],
when specialized to prime rings, shows that any right intrinsic exten-
sion of a prime right Goldie ring R, R not a right Ore domain, is
necessarily a right quotient ring of R. Theorem 3.7 also covers this
result. This summarizes the situation for question (2) of the intro-
ductory paragraph. Our principal concern, however, is with question
(1). Even in the case of a simple Artinian ring S, S not a division
ring, [4] and [6] do not give us an answer to this question. Our
answer is given in Theorem 2.1.

Section 1 is devoted to preliminaries. The main result appears
in §2 and its consequences are given in § 3. In § 4 we outline the key
steps in extending to semi-prime rings our results for prime rings.

1* Preliminaries* A ring is assumed to be associative but need
not have an identity. The unqualified word ideal refers to a two-
sided ideal.

We shall need a couple of well-known results concerning the
closed right ideals and right quotient rings, in the sense of R. E.
Johnson, of a ring with zero right singular ideal. These results,
together with references of their original source, can be found in
Johnson [7]. However, for the reader's convenience, we record them
here.

We denote the right singular ideal of a ring R by Zr(R). If R
is a subring of a ring S, then S is a right (resp. left) quotient ring
of R if SB (resp. BS) is an essential extension of i^resp. RR). If
Zr(R) = 0, then R has a unique (up to isomorphism over 2?) maximal
right quotient ring (MRQ ring), which is a regular right self-injective
ring. A right ideal I of R is called a closed right ideal if IB has no
proper essential extensions within RR. We denote the lattice of closed
right ideals of R by Lr(R).
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PROPOSITION 1.1. [7, Corollary 2.6]. Let R be a ring and let
S be a right quotient ring of R. If Zr(S) = 0, then Zr(R) = 0 and
Lr(S) is isomorphic to Lr(R) under the contraction map A —> A Π R,
AeLr(S).

Let MR be a right module over a ring R. For a subset X of
MB, we denote the annihilator of X in R by r(X, R), that is, r(X, lϋ) =
{aeR: Xa = 0}. Analogously, for a left module RM and a subset X
of EM, we set ί(X, R) = {ae R: aX = 0}.

A module ΛfΛ is called uniform if it is nonzero and each of its
nonzero submodules is essential in MB. For a module MB which con-
tains uniform submodules, the uniform dimension of MB, denoted by
dim MB> is defined to be the cardinal number of any maximal family
of independent uniform submodules of MB. See Miyashita [8] for an
account of this notion.

A ring Q is called a (left) full linear ring if Q is isomorphic to
the ring of all linear transformations of some right vector space over
a division ring, with transformations written on the left of vectors
(equivalently, Q is a prime right self-injective ring with nonzero
socle).

PROPOSITION 1.2. [7, Theorem 3.1]. Let R be a prime ring with
Zr(R) — 0 and suppose R contains uniform right ideals. Then the
MRQ ring of R is a {left) full linear ring.

The following proposition, due to Utumi [10, Theorem 2.2], shows
the nature of condition (*) in the introduction.

PROPOSITION 1.3. Let R be a ring with Zr(R) = 0. Then the
MRQ ring of R is left intrinsic over R if and only if the closed
right ideals of R are its right annihilator ideals.

REMARK. If R has Zr(R) = 0, then right annihilator ideals of R
are closed right ideals.

We conclude our preliminaries by recalling the definition of a
right order. A regular element of a ring R is an element c with
the property that l(c, R) = r(c, R) = 0. Let R be a subring of a
ring S with identity. Then we say that R is a right order in S if

( i ) regular elements of R have (two-sided) inverses in S, and
(ii) the elements of S can be expressed in the form bc~\ where

b and c are in R and c is a unit of S.

2* The main result*

THEOREM 2.1. Let S be a prime ring with zero right singular
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ideal, but not an integral domain, and suppose S contains uniform
right ideals. If S is right intrinsic over a prime ring R, then S is
a right quotient ring of R.

The proof requires several lemmas.

LEMMA 2.2. Suppose Q is a simple Artinian ring but not a
division ring. Then Q is generated by its idempotents.

Proof. Let e be a primitive idempotent of Q. Since (1 — e)Q Φ 0,
(1 — e)Q contains a right ideal which is isomorphic to eQ. Hence
there exist β e eQ(l - e) and δ e (1 - e)Qe such that βδ = e. Let
x e eQ. Then

x = exe + x(l — e) = β(dxe) + x(l — e)

= [e + /S][l - β][β + &eβ] + [e + α?(l - e)][l - β] ,

with each bracketed term an idempotent. Since Q is equal to the
sum of its minimal right ideals, it is clear that Q, as a ring, is
generated by its idempotents.

LEMMA 2.3. Let S be a ring with identity, E a set of generators
for S (as a ring), and R a subring of S containing units of S. Let
U = {ce R:c a unit in S} and T = {x e S: xc e R for some c e U).
If E^T and c~Έc £ E for all cell, then S = T.

Proof. Let xe T and ee E. Then there exists ce U such that
xc G R. Choose c1 e U such that (c^ec)^ e iϋ. Then (xe)(ccλ) =
(xc^c^ee)^ e R. Thus xe e T. Hence finite products of elements in
E belong to T. If el9 , en e E and deU, then

(ete2 en)d = did-'e.d) (d~ιend) e T .

Now let elf , en and flt , fme E. Choose de U such that
(/if* -' fm)de R and choose ce U such that (eγ e%d)ce JB. Then
(eA βH + /i/a /m)efcG Λ and thus e^2 - - - en + ff2 - - fme T.
Since E is a set of generators for S, the result is now immediate.

LEMMA 2.4. Let Q be a simple Artinian ring, but not a division
ring, and let R be a subring of Q. If R is a prime ring and Q is
right intrinsic over R, then R is a right order in Q.

Proof. Let dim QQ = n. Let e be a primitive idempotent of Q
and let U = eQ Π R- Observe that for a e U, a Φ 0, Qa is a minimal
left ideal of Q since aQ is a minimal right ideal of Q. Suppose we
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have found al9 , am e U, m < n, such that Qa1 + + Qam is a
direct sum. Choose an idempotent / of Q such that Qax + . . . + Qam =
Qf. Since Q is right intrinsic over R and R is a prime ring, we
have Z7[(l - f)Q n R] Φ 0. Choose am+L e U such that αm + 1(l - /) Φ 0.
Then Qαm+1 g Q/ and hence Qam+1 n Q/ = 0. Thus Q^ + + Qαw +
Qαw+1 is a direct sum. Clearly then, there exist au — ,ane U such
that Qtti + + Qα% = Q, where + indicates a direct sum. Hence
there exist orthogonal primitive idempotents flf , fn of Q with
Λ + + fn = 1 and Qf, n Λ ^ 0 for i = 1, . ., n.

Now let g be an arbitrary nonzero idempotent of Q. Then there
exists an integer k, k ^ n, and orthogonal primitive idempotents
0i, •••,£* of Q such that g = g, + . . . + ^ and 1 = gι + - + gn.
Since giQ C\ R Φ 0 and Q/< Π R Φ 0, primeness of R implies &<?/* Π
J? ^ 0 for i = 1, ., n. Choose c{ e &<?/< Π -R, c< ̂  0, f or i = 1, • , w,
and let c = Ci + + cn. Then c is a unit of Q and β'c = c: + +
ck e R. It now follows from Lemmas 2.2 and 2.3 that R is a right
order in Q.

LEMMA 2.5. Suppose R is a prime ring and Q is a full linear
ring which is a right quotient ring of R. If f is a primitive
idempotent of Q such that Qf Π R Φ 0, then fQf f] R is a right order
in fQf

Proof. Let xefQf, x Φ 0. Choose reR such that freR and
0 z£ xre R. Since R is a prime ring, $r(Q/Π R) Φ 0. Hence there
exists ye fQf Π -R such that 0 Φ xyefQf Π R. Since /Q/ is a division
ring, it is clear that fQf Π R is a right order in

LEMMA 2.6. Leέ R be a subring of a full linear ring Q and
suppose Q is right intrinsic over R. Let e be a nonzero idempotent of
Q and let K = eQe Π R. If R is a prime ring and Qe — Qa for
some ae R, then K is a prime ring and eQe is right intrinsic over K.

Proof Let x e eQe, x Φ 0. Since xQ f] R Φ 0 and Qe f] R Φ 0,
primeness of R implies that (xQ Π R)(Qe Π R) Φ 0. Hence x(eQe) Π
K Φ 0. Thus eQe is right intrinsic over K. It follows that Zr(K) — 0.
Now suppose I and J are two-sided ideals of K with IJ — 0. Let
L = Qe Π R and J5 = eQ f] R. Then (IB)(LJ) = 0, which implies IB = 0
or L J = 0 because R is a prime ring. IB = 0 implies IEΓ = 0, which
in turn implies / — 0 because Zr{K) = 0. LJ = 0 implies αJ = 0,
which implies J = (1 — <?)/ = 0. Thus K is a prime ring and the
proof is complete.

LEMMA 2.7. Let Q be a full linear ring but not a division ring.
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If Q is right intrinsic over a subring R and R is a prime ring,
then Q is a right quotient ring of R,

Proof. Let V be a minimal right ideal of Q and let U — Vf] R.
Choose ue U, u Φ 0. By the argument used in the proof of Lemma
2.4, we can find v e U, v Φ 0, such that Qu Π Qv = 0. Choose orthogo-
nal idempotents / and g of Q such that Qu = Qf and Qv - Qg. Then
Q/Π R Φ 0 and Qg Π R Φ 0. Hence, since Q is right intrinsic over
R and R is a prime ring, we have fQff] R Φ 0 and #Q# Π R Φ 0.
Let e = f + g. Then it is clear that there exists α e R such that
ζ)α =r Qe. Let if = eQe Π R. By Lemma 2.6, K is a prime ring and
eQe is right intrinsic over K. Hence, since eQe is a simple Artinian
ring but not a division ring, K is a right order in eQe by Lemma
2.4. By Lemma 2.5, /K/Π ^ is a right order in f(eQe)f = fQf. In
particular, fQff] R is a right order in /Q/.

Now let xeQf, x Φ 0. Since (αQ Π R)(QfΠ R) Φ 0, there exists
&e/Q/ such that 0 ΦxbeQfΓ) R. fQfnR being a right order in
fQf we can choose yefQff] R such that 0 Φ byefQff] R. Since Q/
is a right vector space over fQf we have α?(&2/) Φ 0 and thus

0 Φ x(by) G α(Q/n Λ) Π (QfΠ R) .

Hence Q/ is a right quotient ring of Qff)R* Since Q is a prime
ring, Q is a right quotient ring of Qf and it follows that Q is there-
fore a right quotient ring of R. This completes the proof of 2.7.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose S is right intrinsic over a prime
ring i2. Let Q be the ikffiζ) ring of S. Then Q is a left full linear
ring by Proposition 1.2, but not a division ring since S is not an
integral domain. Clearly Q is also right intrinsic over R. Hence Q
is a right quotient ring of R by Lemma 2.7, and therefore S is a
right quotient ring of R. This completes the proof.

3* Consequences of main result*

THEOREM 3.1. Let R be a prime ring with Zr{R) = 0, but not
an integral domain, and suppose R contains uniform right ideals.
Let S be the MRQ ring of R. Then S is a left quotient ring of R
if and only if S is left intrinsic over R.

Proof. By Proposition 1.2, S is a full linear ring. Hence S has
zero left singular ideal and contains uniform left ideals (namely, its
minimal left ideals). Clearly S is not an integral domain. Thus, by



INTRINSIC EXTENTIONS OF PRIME RINGS 263

the left-sided version of Theorem 2.1, if S is left intrinsic over R
then S is a left quotient ring of R. The converse is obvious.

REMARK. For other conditions under which the MRQ ring is
also a left quotient ring, see Faith [3, p. 103], Cateforis [1, Theorem
2.3], Cateforis and Sandomierski [2, Theorem 1.1].

We restate Theorem 3.1, using Proposition 1.3, in order to view
it as a one-sided version of Utumi's result [10, Theorem 3.3].

THEOREM 3.2. Let R be as in Theorem 3.1. Then every right
quotient ring of R is also a left quotient ring of R if and only if
the closed right ideals of R are its right annihilator ideals.

A right Goldie ring is a ring which satisfies the maximum con-
dition on closed right ideals and right annihilator ideals. A left
Goldie ring is defined analogously. Theorem 3.2 yields the following
(probably well-known) criterion of when a prime right Goldie ring is
also a left Goldie ring (c.f. [5, Theorems 3.12 and 5.6]).

THEOREM 3.3. Let R be a prime right Goldie ring but not a
right Ore domain. Then R is a left Goldie ring if and only if the
closed right ideals of R are the right annihilator ideals.

An obvious example of where the one-sided version of Utumi's
result [10, Theorem 3.3] fails is obtained by choosing R to be a right
Ore domain but not a left Ore domain. In view of the proof of
Theorem 2.1, one could possibly attribute the failure in this case to
the fact that the MRQ ring of R is not generated by its idempotents.
The following is an example of a ring R, with Zr(R) = 0 and
dim RR — 2, whose MRQ ring is generated by its idempotents but
for which the one-sided version of [10, Theorem 3.3] breaks down.

EXAMPLE. Let K be a right Ore domain but not a left Ore
domain, and let D be the right quotient division ring of K. Let S
be the ring of all 2 x 2 matrices over D and let R be the subring of
S which consists of all matrices of the form

k a

0 b

where keK and α, beD. Then S is the MRQ ring of R and S is
left intrinsic over R, but S is not a left quotient ring of R.

Let Q be a left full linear ring. We abbreviate dim QQ to dim Q.
When dimQ is finite, our requirement that regular elements of a
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right order R in Q be units of Q is redundant. However, when dim Q
is infinite it implies Q is left intrinsic over R. This is shown in [9].
Furthermore, it is shown in [9] that when dimQ is countable, right
orders in Q are prime rings (this being no longer true, in general,
when dimQ is uncountable). Thus by Theorem 3.1 we have:

THEOREM 3.4. Let R be a right order in a left full linear ring Q.
If dim Q is countably infinite, then Q is a left quotient ring of R.
In general, if dimQ is infinite and R is a prime ring, then Q is
a left quotient ring of R.

REMARK. If R is a right order in a finite dimensional full linear
ring Q, then Q is a left quotient ring of R only when R is also a
left order in Q. This is not necessarily the case for a right order
R in an infinite dimensional full linear ring Q. For example, let
K^ (resp. flM) be the ring of all fc$0 x ^ 0 column-finite matrices over
a right Ore domain K (resp. the right quotient division ring D of K).
Let Q = XL and R = K^ + socle Q. Then R is a right order in Q
but not a left order unless each countable collection of nonzero left
ideals of K has nonzero intersection.

So far our approach to intrinsic extensions has been to show that
certain properties of a prime ring S are inherited by the prime sub-
rings of S over which S is right intrinsic. Our principal applications
have called for this approach. The earlier studies by Faith and
Utumi [4] and Hutchinson [6] were more concerned with showing
that, under suitable conditions on a ring R, any ring S which is right
intrinsic over R is necessarily a right quotient ring of R, thereby
showing that certain properties of R are inherited by S. We now
take a look at intrinsic extensions of prime rings from this point of
view.

LEMMA 3.5. Let S be a ring with Zr(S) = 0 and suppose S is
right intrinsic over a subring R. Then:

( i ) For x, yeS, xyS Φ 0 implies x(yS Π R) Φ 0.
(ii) If R contains uniform right ideals, then so does S.

Proof. ( i ) Suppose xySΦ 0. Let K={aeS:xa = 0}. If yS Π K
is essential in yS, as a right S-module, then Zr(S) = 0 and x(ySf] K) = 0
imply xyS = 0, a contradiction. Thus yS Π K is not essential in yS
and therefore there exists a nonzero right ideal A of S such that
AQyS and A f] K = 0. Since S is right intrinsic over R we have
A Π R Φ 0. Hence x(A Γ\R)φ0, since A Π K = 0. Thus x(yS f)R)Φθ.

(ii) Suppose U is a uniform right ideal of R. Choose xe U,
x Φ 0. Then xS is a uniform right ideal of S. For if not, then



INTRINSIC EXTENTIONS OF PRIME RINGS 265

xyS Π %zS = 0 for some y, ze S with xy Φ 0 and xz Φ 0. By (i),
x(yS n R) Φ 0 and α?(«S n # ) ̂  0. But now

[x(yS Π Λ)] Π [α?(sS Π Λ)l = 0 ,

which contradicts the fact that U is a uniform right ideal of R.
This completes the proof of the lemma.

LEMMA 3.6. Let R be a prime ring with Zr(R) — 0 and suppose
R contains a uniform right ideal and a nonzero right annihilator
ideal B with dim BR < oo. Then there exists an element yeR such
that r(y, R)f]B = 0.

REMARK. R need not contain an element y with r(y, R) — 0.

Proof. Let Q be the MRQ ring of R. Then Q is a full linear
ring by Proposition 1.2. Choose an idempotent e of Q such that B =
eQ Π R By Proposition 1.1, we have dim BR = dim (eQ)Q and hence
dim (eQ)ρ < °°. Let dim (eQ)Q = n. By an argument similar to that
used in the proof of Lemma 2.4, we can find nonzero elements
aίy , an of R such that each Qα* is a minimal left ideal of Q and

Q = Q(l _ e ) + Qox + + Qan ,

where + indicates a direct sum. Choose orthogonal primitive idem-
potents glf •••, gn of Q such that Qg{ = Qα̂  for i = 1, , w. Since
^Q π β ^ 0, we have (^Q n ^R)^ ̂  0 by primeness of R. Thus ^ Q ^ π
i? Φ 0 for ΐ = 1, ., n. Choose yi e g{Qgi Π R,yιΦ 0, for i = 1, , n
and let ?/ = y, + + yn. Then Q = Q(l — e) + Qy and hence r(y, Q) Π
eQ = 0. In particular, r(y, R) Π B — 0.

It is not known to the author whether a prime ring which has
zero right singular ideal and contains uniform right ideals must con-
tain a nonzero finite dimensional right annihilator ideal. (Conjecture:
yes.) The answer is "yes" if the ring also contains uniform left
ideals because then every finite dimensional closed right ideal is a
right annihilator ideal (see Utumi [11, Proposition 7.3]).

THEOREM 3.7. Let R be a prime ring with Zr(R) = 0, but not
an integral domain, and suppose R contains a uniform right ideal
and a nonzero right annihilator ideal B with dim BR < oo. Then
any ring S which is right intrinsic over R is necessarily a right
quotient ring of R (and therefore lies between R and the MRQ ring
of R, which is a full linear ring).

Proof. It is clear that S is a prime ring but not an integral
domain. If we can show that Zr(S) = 0 then it will follow from
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Lemma 3.5 that S contains uniform right ideals and hence, by
Theorem 2.1, that S is a right quotient ring of R. Let us suppose
that Zr(S) Φ 0. Let I = Zr{S) Π R. Then J is a nonzero ideal of R.
As such, I is also a prime ring with Zr{I) = 0 and I contains uniform
right ideals. Let B be a nonzero finite dimensional right annihilator
ideal of R. Then If) B is a nonzero finite dimensional right annihi-
lator ideal of I. Applying Lemma 3.6 to /, we can find an element
ye I and a left ideal L of I such that r(L, I) Φ 0 and r(y, I) Π
r{L, I) = 0. Let A = r(L, S). Then A is a nonzero right ideal of S
and since yeZr(S) we have Aft r(y, S) Φ 0. Moreover, since S is
right intrinsic over R, and hence over I, we have A n Ki/, S ) n i ^ 0 ,
that is, r(y, I) Π r(L, I) Φ 0. With this contradiction, we deduce that
Zr(S) = 0. We are finished.

Hutchinson [6, Theorem 4.5] characterized intrinsic extensions of
semi-prime right Goldie rings. As a corollary to Theorem 3.7 we
obtain Hutchinson's result when specialized to prime right Goldie
rings.

COROLLARY 3.8. Let R be a prime right Goldie ring, but not
a right Ore domain. Then any ring which is right intrinsic over
R is necessarily a right quotient ring of R (and therefore lies between
R and the classical right quotient ring of R, which is a simple
Artinian ring).

REMARK. Faith and Utumi [4, Theorem 3.2] proved this under
the assumption that R is also a left Goldie ring.

4* Intrinsic extensions of semi-prime rings* Let R be a ring
with Zr(R) = 0. The lattice Lr(R) of closed right ideals of R is said to
be atomic if each nonzero element of Lr(R) contains a minimal non-
zero element (an atom) of Lr(R). If R is a prime ring containing
a uniform right ideal, then Lr(R) is atomic. Our results on intrinsic
extensions for such rings can be extended to semi-prime rings S
which have Zr(S) — 0 and for which Lr(S) is atomic by using the
fact that the MRQ ring of S is a (complete) direct product of left full
linear rings (see Johnson [7, Theorem 3.1]). Thus, if T is the MRQ
ring of S, there exists a set {e^iBl of central orthogonal idempotents
of T such that each ejΐ is a left full linear ring and T is isomorphic
to ILez e*T under the map x —> (e^). Now suppose S is right intrinsic
over a semi-prime ring R. For each i e I, let T€ = e{Tand R% — Tt Π R.
We make the following

Claim. (1) Tt is right intrinsic over R, for each i e I.
(2) Each Ri is a prime ring.
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(3) If Ti is a right quotient ring of R{ for each i e I, then T
(and hence S) is a right quotient ring of R.

(1) and (3) are easily verified. We shall now verify (2). It is
clear that each Rt is at least semi-prime because it is a nonzero ideal
of a semi-prime ring. That each R{ is in fact a prime ring is the
content of the following lemma.

LEMMA 4.1. Suppose Q is a full linear ring which is right
intrinsic over a semi-prime ring A. Then A is a prime ring.

Proof. Let us suppose A is not a prime ring. Then there exist
nonzero ideals I and J of A with IJ = 0. We can suppose J = r(I, A)
and I — l(J, A). Since A is semi-prime, we have I = r(J, A) and
If! J = 0. Let Λ = r(J, Q) and ^ = r(I, Q). Then / = I 1 n A and
J = Jj π A. Hence, since Q is right intrinsic over A and IΠ J" = 0,
we have 1^/1 = 0. Since Q is a full linear ring, we can choose
a nonzero right ideal Kx of Q such that ii Π Kλ = 0 and «7i n 2£i = 0.
Let if = JEi Π A. Then if ^ 0 since ζ) is right intrinsic over A.
But / n K = 0 implies KJ=0 and therefore if £ / Π # = 0, that is,
if — 0. We have the desired contradiction. Hence A is a prime ring.

Providing none of the T, are division rings, we can apply
Theorem 2.1 to obtain that T{ is a right quotient ring of R{ for
each ie I. It then follows from (3) that S is a right quotient
ring of R. To eliminate the possibility of a division ring appearing
among the Ti7 we shall require that S contains no ideals which, as
rings, are integral domains. Summarizing, we have the following
extension of Theorem 2.1.

THEOREM 4.2. Let S be a semi-prime ring with Zr(S) = 0, but
containing no ideals which are integral domains, and suppose Lr(S)
is atomic. Then S is a right quotient ring of each semi-prime ring
over which it is right intrinsic.

As a corollary to Theorem 4.2 we have the following partial
extension of Theorem 3.7.

COROLLARY 4.3. Let R be a semi-prime ring with Zr{R) = 0,
but containing no ideals which are integral domains, and suppose
Lr(R) is atomic. If S is a ring which is right intrinsic over R
and Zr(S) = 0, then S is a right quotient ring of R.

Proof. All we need show is that Lr(S) is atomic, equivalently,
that each nonzero right ideal of S contains a uniform right ideal.
Let I be a nonzero right ideal of S. Then IΠ R is a nonzero right
ideal of R and hence contains a uniform right ideal U of R. The



268 K. C. O'MEARA

proof of Lemma 3.5 shows that for xe U, x Φ 0, xS is a uniform
right ideal of S. Since xS gΞ I, this establishes the corollary.

REMARKS. (1) If R is a semi-prime right Goldie ring and S is
a ring which is right intrinsic over R, then Zr(S) = 0 (c.f. [6,
Theorem 4.6]). To see this, we argue as follows. R contains nonzero
ideals Rlf , Rn such that each Rt is a prime right Goldie ring and
the sum Rι + + Rn is direct and an essential right ideal of R.
(By Corollary 3.8 we can assume n ^ 2.) Hence S is also right intrin-
sic over R, + . . + Rn. Now suppose Zr(S) Φ 0. Let I = Zr(S) Π # .
Then I is a nonzero ideal of R and IBi Φ 0 for some i. Without
loss of generality we can suppose IRt Φ 0. Let J — IR^ Then J is
a nonzero ideal of Rx and therefore there exists yeJ such that
r(yf R,) = 0. Since # e 2Γr(S) we must have r(y, S) Π r(R2 + h i?w, S) Φ 0
and therefore

r(y, S) n r(i?2 + . . . + Rn, S) Π (B, + + Rn) Φ 0 ,

that is, r(y, Rλ) Φ 0. We have reached a contradiction. Hence
Zr(S) = 0.

(2) Corollary 4.3 can be obtained in the special case of a semi-
prime right Goldie ring R from Theorems 3.4 and 4.5 of Hutchinson
[6].

(3) For a ring R which has Zr(R) = 0 and Lr(R) atomic, the
condition that R contain no ideals which are integral domains is
equivalent to the condition that the MRQ ring of R contain no
nonzero strongly regular ideals. Thus Corollary 4.3 represents a
considerable strengthening of [4, Theorem 3.1] in the case where R
is semi-prime. Simple examples, such as the ring R of all 2 x 2
matrices of the form

la b\

where a and b belong to a field D and c belongs to a proper subfield
F of D, show that without semi-primeness of R Corollary 4.3 is, in
general, false. (In the example cited, dim RR — dim DF + 1.)

(4) It is clear that theorems corresponding to Theorems 3.1,
3.2, and 3.3 can be formulated for semi-prime rings. The details
may safely be left to the reader.
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