INTRINSIC EXTENSIONS OF PRIME RINGS

K. C. O’Meara
A ring extension \(S \) of a ring \(R \) is right intrinsic over \(R \), in the sense of Faith and Utumi, if \(A \cap R \neq 0 \) for each nonzero right ideal \(A \) of \(S \). \(S \) is a right quotient ring of \(R \), in the sense of R. E. Johnson, if \(S_R \) is an essential extension of \(R \). Let \(\mathcal{P} \) be the class of prime rings which have zero right singular ideal and contain uniform right ideals. This paper deals with two questions:

1. If \(S \in \mathcal{P} \) and \(S \) is right intrinsic over a prime ring \(R \), is \(S \) a right quotient ring of \(R \)?
2. If \(R \notin \mathcal{P} \) and \(S \) is right intrinsic over \(R \), is \(S \) a right quotient ring of \(R \)?

The main result is that the answer to (1) is "yes" provided \(S \) is not an integral domain. As a consequence of this, a partial answer to (2) is "yes" provided \(R \) is not an integral domain and \(R \) contains a nonzero finite dimensional right annihilator ideal.

An extension of these results to semi-prime rings (which have an atomic lattice of closed right ideals) is also given. These extend results of J. J. Hutchinson (for semi-prime right Goldie rings) and sharpen results of Faith and Utumi for this particular class of rings. A corollary to the main result is that for \(R \in \mathcal{P} \), \(R \) not an integral domain, every right quotient ring of \(R \) is also a left quotient ring of \(R \) if and only if the closed right ideals of \(R \) are its right annihilator ideals.

The above corollary can be viewed as a one-sided version of a theorem of Utumi's [10, Theorem 3.3]. The main result, Theorem 2.1, yields another result of interest: A right order in a countably infinite dimensional full linear ring \(Q \) must have \(Q \) also as a left quotient ring (Theorem 3.4).

To assist the reader to put the results of this paper into perspective, we begin by briefly reviewing what is already known about intrinsic extensions of prime rings.

Let \(R \) be a subring of a ring \(S \). Following Faith and Utumi [4], we say that \(S \) is right (resp. left) intrinsic over \(R \) if \(A \cap R \neq 0 \) for each nonzero right (resp. left) ideal \(A \) of \(S \). It is clear that if \(S \) is a right quotient ring of \(R \), then \(S \) is right intrinsic over \(R \). An interesting question, and one which Faith and Utumi studied in [4], is: When does the converse hold? The main theorem of Faith and Utumi [4, Theorem 3.1], when interpreted for prime rings, can be read as follows: Let \(R \) be a prime ring with zero right singular
ideal but not an integral domain. Suppose that (*) the maximal right quotient ring of R is left intrinsic over R. Then any right intrinsic extension of R is a right quotient ring of R. (An intrinsic extension of an integral domain need not be a quotient ring extension; for example, a field is trivially intrinsic over any subfield.) Notice that no finiteness assumptions are required for this theorem. However, the hypothesis (*) is rather restrictive and is not satisfied, for example, even if R is the ring of all $\mathbb{N} \times \mathbb{N}$ column-finite matrices over the rational integers (in which case R contains uniform left ideals as well as uniform right ideals). For a prime right Goldie ring R, R not a right Ore domain, (*) means that R is also left Goldie (see Theorem 3.3). In Theorem 3.7 we replace (*) by the much weaker hypothesis (for the class of prime rings we consider) that R contain a nonzero finite dimensional right annihilator ideal. A theorem of Hutchinson's [6, Theorem 4.5], when specialized to prime rings, shows that any right intrinsic extension of a prime right Goldie ring R, R not a right Ore domain, is necessarily a right quotient ring of R. Theorem 3.7 also covers this result. This summarizes the situation for question (2) of the introductory paragraph. Our principal concern, however, is with question (1). Even in the case of a simple Artinian ring S, S not a division ring, [4] and [6] do not give us an answer to this question. Our answer is given in Theorem 2.1.

Section 1 is devoted to preliminaries. The main result appears in §2 and its consequences are given in §3. In §4 we outline the key steps in extending to semi-prime rings our results for prime rings.

1. Preliminaries. A ring is assumed to be associative but need not have an identity. The unqualified word ideal refers to a two-sided ideal.

We shall need a couple of well-known results concerning the closed right ideals and right quotient rings, in the sense of R. E. Johnson, of a ring with zero right singular ideal. These results, together with references of their original source, can be found in Johnson [7]. However, for the reader’s convenience, we record them here.

We denote the right singular ideal of a ring R by $Z_r(R)$. If R is a subring of a ring S, then S is a right (resp. left) quotient ring of R if S_R (resp. R_S) is an essential extension of R_S (resp. S_R). If $Z_r(R) = 0$, then R has a unique (up to isomorphism over R) maximal right quotient ring (MRQ ring), which is a regular right self-injective ring. A right ideal I of R is called a closed right ideal if I_R has no proper essential extensions within R_R. We denote the lattice of closed right ideals of R by $L_r(R)$.
PROPOSITION 1.1. [7, Corollary 2.6]. Let R be a ring and let S be a right quotient ring of R. If $Z_r(S) = 0$, then $Z_r(R) = 0$ and $L_r(S)$ is isomorphic to $L_r(R)$ under the contraction map $A \rightarrow A \cap R$, $A \in L_r(S)$.

Let M_R be a right module over a ring R. For a subset X of M_R, we denote the annihilator of X in R by $r(X, R)$, that is, $r(X, R) = \{a \in R : Xa = 0\}$. Analogously, for a left module $_LM$ and a subset X of $_LM$, we set $l(X, R) = \{a \in R : aX = 0\}$.

A module M_R is called uniform if it is nonzero and each of its nonzero submodules is essential in M_R. For a module M_R which contains uniform submodules, the uniform dimension of M_R, denoted by $\dim M_R$, is defined to be the cardinal number of any maximal family of independent uniform submodules of M_R. See Miyashita [8] for an account of this notion.

A ring Q is called a (left) full linear ring if Q is isomorphic to the ring of all linear transformations of some right vector space over a division ring, with transformations written on the left of vectors (equivalently, Q is a prime right self-injective ring with nonzero socle).

PROPOSITION 1.2. [7, Theorem 3.1]. Let R be a prime ring with $Z_r(R) = 0$ and suppose R contains uniform right ideals. Then the MRQ ring of R is a (left) full linear ring.

The following proposition, due to Utumi [10, Theorem 2.2], shows the nature of condition (*) in the introduction.

PROPOSITION 1.3. Let R be a ring with $Z_r(R) = 0$. Then the MRQ ring of R is left intrinsic over R if and only if the closed right ideals of R are its right annihilator ideals.

REMARK. If R has $Z_r(R) = 0$, then right annihilator ideals of R are closed right ideals.

We conclude our preliminaries by recalling the definition of a right order. A regular element of a ring R is an element c with the property that $l(c, R) = r(c, R) = 0$. Let R be a subring of a ring S with identity. Then we say that R is a right order in S if

(i) regular elements of R have (two-sided) inverses in S, and

(ii) the elements of S can be expressed in the form bc^{-1}, where b and c are in R and c is a unit of S.

2. The main result.

THEOREM 2.1. Let S be a prime ring with zero right singular
ideal, but not an integral domain, and suppose \(S \) contains uniform right ideals. If \(S \) is right intrinsic over a prime ring \(R \), then \(S \) is a right quotient ring of \(R \).

The proof requires several lemmas.

Lemma 2.2. Suppose \(Q \) is a simple Artinian ring but not a division ring. Then \(Q \) is generated by its idempotents.

Proof. Let \(e \) be a primitive idempotent of \(Q \). Since \((1 - e)Q \neq 0 \), \((1 - e)Q \) contains a right ideal which is isomorphic to \(eQ \). Hence there exist \(\beta \in eQ(1 - e) \) and \(\delta \in (1 - e)Qe \) such that \(\beta \delta = e \). Let \(x \in eQ \). Then

\[
x = exe + x(1 - e) = \beta(\delta xe) + x(1 - e)
\]

with each bracketed term an idempotent. Since \(Q \) is equal to the sum of its minimal right ideals, it is clear that \(Q \), as a ring, is generated by its idempotents.

Lemma 2.3. Let \(S \) be a ring with identity, \(E \) a set of generators for \(S \) (as a ring), and \(R \) a subring of \(S \) containing units of \(S \). Let \(U = \{ c \in R : c \text{ a unit in } S \} \) and \(T = \{ x \in S : xc \in R \text{ for some } c \in U \} \). If \(E^T \) and \(c^{-1}E c \subseteq E \) for all \(c \in U \), then \(S = T \).

Proof. Let \(x \in T \) and \(e \in E \). Then there exists \(c \in U \) such that \(xc \in R \). Choose \(c_1 \in U \) such that \((c^{-1}ec)c_1 \in R \). Then \((xe)(cc_1) = (xc)(c^{-1}ec)c_1 \in R \). Thus \(xe \in T \). Hence finite products of elements in \(E \) belong to \(T \). If \(e_1, \ldots, e_n \in E \) and \(d \in U \), then

\[
(e, e_2, \ldots, e_n)d = d(d^{-1}e_2d) \cdots (d^{-1}e_nd) \in T.
\]

Now let \(e_1, \ldots, e_n \) and \(f_1, \ldots, f_m \in E \). Choose \(d \in U \) such that \((f_1f_2 \cdots f_m)d \in R \) and choose \(c \in U \) such that \((e_1 \cdots e_nd)c \in R \). Then \((e, e_2 \cdots e_n + f_1f_2 \cdots f_m)dc \in R \) and thus \(e, e_2 \cdots e_n + f_1f_2 \cdots f_m \in T \). Since \(E \) is a set of generators for \(S \), the result is now immediate.

Lemma 2.4. Let \(Q \) be a simple Artinian ring, but not a division ring, and let \(R \) be a subring of \(Q \). If \(R \) is a prime ring and \(Q \) is right intrinsic over \(R \), then \(R \) is a right order in \(Q \).

Proof. Let \(\dim Q = n \). Let \(e \) be a primitive idempotent of \(Q \) and let \(U = eQ \cap R \). Observe that for \(a \in U \), \(a \neq 0 \), \(Qa \) is a minimal left ideal of \(Q \) since \(aQ \) is a minimal right ideal of \(Q \). Suppose we
have found $a_1, \ldots, a_m \in U$, $m < n$, such that $Qa_1 + \cdots + Qa_m$ is a direct sum. Choose an idempotent f of Q such that $Qa_1 + \cdots + Qa_m = Qf$. Since Q is right intrinsic over R and R is a prime ring, we have $U[(1 - f)Q \cap R] \neq 0$. Choose $a_{m+1} \in U$ such that $a_{m+1}(1 - f) \neq 0$. Then $Qa_{m+1} \subseteq Qf$ and hence $Qa_{m+1} \cap Qf = 0$. Thus $Qa_1 + \cdots + Qa_m + Qa_{m+1}$ is a direct sum. Clearly then, there exist $a_1, \ldots, a_n \in U$ such that $Qa_1 + \cdots + Qa_n = Q$, where $+$ indicates a direct sum. Hence there exist orthogonal primitive idempotents f_1, \ldots, f_n of Q with $f_1 + \cdots + f_n = 1$ and $Qf_i \cap R \neq 0$ for $i = 1, \ldots, n$.

Now let g be an arbitrary nonzero idempotent of Q. Then there exists an integer k, $k \leq n$, and orthogonal primitive idempotents g_1, \ldots, g_k of Q such that $g = g_1 + \cdots + g_k$ and $1 = g_1 + \cdots + g_n$.

Since $g_i Q \cap R \neq 0$ and $Qf_i \cap R \neq 0$, primeness of R implies $g_i Qf_i \cap R \neq 0$ for $i = 1, \ldots, n$. Choose $c_i \in g_i Qf_i \cap R$, $c_i \neq 0$, for $i = 1, \ldots, n$ and let $c = c_1 + \cdots + c_n$. Then c is a unit of Q and $gc = c_1 + \cdots + c_n \in R$. It now follows from Lemmas 2.2 and 2.3 that R is a right order in Q.

Lemma 2.5. Suppose R is a prime ring and Q is a full linear ring which is a right quotient ring of R. If f is a primitive idempotent of Q such that $Qf \cap R \neq 0$, then $fQf \cap R$ is a right order in fQf.

Proof. Let $x \in fQf$, $x \neq 0$. Choose $r \in R$ such that $fr \in R$ and $0 \neq xr \in R$. Since R is a prime ring, $xr(Qf \cap R) \neq 0$. Hence there exists $y \in fQf \cap R$ such that $0 \neq xy \in fQf \cap R$. Since fQf is a division ring, it is clear that $fQf \cap R$ is a right order in fQf.

Lemma 2.6. Let R be a subring of a full linear ring Q and suppose Q is right intrinsic over R. Let e be a nonzero idempotent of Q and let $K = eQe \cap R$. If R is a prime ring and $Qe = Qa$ for some $a \in R$, then K is a prime ring and eQe is right intrinsic over K.

Proof. Let $x \in eQe$, $x \neq 0$. Since $xQ \cap R \neq 0$ and $Qe \cap R \neq 0$, primeness of R implies that $(xQ \cap R)(Qe \cap R) \neq 0$. Hence $x(eQe) \cap K \neq 0$. Thus eQe is right intrinsic over K. It follows that $Z_e(K) = 0$. Now suppose I and J are two-sided ideals of K with $IJ = 0$. Let $L = Qe \cap R$ and $B = eQ \cap R$. Then $(IB)(LJ) = 0$, which implies $IB = 0$ or $LJ = 0$ because R is a prime ring. $IB = 0$ implies $IK = 0$, which in turn implies $I = 0$ because $Z(K) = 0$. $LJ = 0$ implies $aJ = 0$, which implies $J = (1 - e)J = 0$. Thus K is a prime ring and the proof is complete.

Lemma 2.7. Let Q be a full linear ring but not a division ring.
If Q is right intrinsic over a subring R and R is a prime ring, then Q is a right quotient ring of R.

Proof. Let V be a minimal right ideal of Q and let $U = V \cap R$. Choose $u \in U$, $u \neq 0$. By the argument used in the proof of Lemma 2.4, we can find $v \in U$, $v \neq 0$, such that $Qu \cap Qv = 0$. Choose orthogonal idempotents f and g of Q such that $Qu = Qf$ and $Qv = Qg$. Then $Qf \cap R \neq 0$ and $Qg \cap R \neq 0$. Hence, since Q is right intrinsic over R and R is a prime ring, we have $fQf \cap R \neq 0$ and $gQg \cap R \neq 0$. Let $e = f + g$. Then it is clear that there exists $a \in R$ such that $Qa = Qe$. Let $K = eQe \cap R$. By Lemma 2.6, K is a prime ring and eQe is right intrinsic over K. Hence, since eQe is a simple Artinian ring but not a division ring, K is a right order in eQe by Lemma 2.4. By Lemma 2.5, $fKf \cap K$ is a right order in $f(eQe)f = fQf$. In particular, $fQf \cap R$ is a right order in fQf.

Now let $x \in Qf$, $x \neq 0$. Since $(xQ \cap R)(Qf \cap R) \neq 0$, there exists $b \in fQf$ such that $0 \neq xb \in Qf \cap R$. $fQf \cap R$ being a right order in fQf, we can choose $y \in fQf \cap R$ such that $0 \neq by \in fQf \cap R$. Since Qf is a right vector space over fQf, we have $x(by) \neq 0$ and thus

$$0 \neq x(by) \in x(Qf \cap R) \cap (Qf \cap R).$$

Hence Qf is a right quotient ring of $Qf \cap R$. Since Q is a prime ring, Q is a right quotient ring of Qf and it follows that Q is therefore a right quotient ring of R. This completes the proof of 2.7.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose S is right intrinsic over a prime ring R. Let Q be the MRQ ring of S. Then Q is a left full linear ring by Proposition 1.2, but not a division ring since S is not an integral domain. Clearly Q is also right intrinsic over R. Hence Q is a right quotient ring of R by Lemma 2.7, and therefore S is a right quotient ring of R. This completes the proof.

3. Consequences of main result.

Theorem 3.1. Let R be a prime ring with $Z(R) = 0$, but not an integral domain, and suppose R contains uniform right ideals. Let S be the MRQ ring of R. Then S is a left quotient ring of R if and only if S is left intrinsic over R.

Proof. By Proposition 1.2, S is a full linear ring. Hence S has zero left singular ideal and contains uniform left ideals (namely, its minimal left ideals). Clearly S is not an integral domain. Thus, by
the left-sided version of Theorem 2.1, if S is left intrinsic over R then S is a left quotient ring of R. The converse is obvious.

Remark. For other conditions under which the MRQ ring is also a left quotient ring, see Faith [3, p. 103], Cateforis [1, Theorem 2.3], Cateforis and Sandomierski [2, Theorem 1.1].

We restate Theorem 3.1, using Proposition 1.3, in order to view it as a one-sided version of Utumi's result [10, Theorem 3.3].

Theorem 3.2. Let R be as in Theorem 3.1. Then every right quotient ring of R is also a left quotient ring of R if and only if the closed right ideals of R are its right annihilator ideals.

A right Goldie ring is a ring which satisfies the maximum condition on closed right ideals and right annihilator ideals. A left Goldie ring is defined analogously. Theorem 3.2 yields the following (probably well-known) criterion of when a prime right Goldie ring is also a left Goldie ring (c.f. [5, Theorems 3.12 and 5.6]).

Theorem 3.3. Let R be a prime right Goldie ring but not a right Ore domain. Then R is a left Goldie ring if and only if the closed right ideals of R are the right annihilator ideals.

An obvious example of where the one-sided version of Utumi's result [10, Theorem 3.3] fails is obtained by choosing R to be a right Ore domain but not a left Ore domain. In view of the proof of Theorem 2.1, one could possibly attribute the failure in this case to the fact that the MRQ ring of R is not generated by its idempotents. The following is an example of a ring R, with $Z(R) = 0$ and $\dim R = 2$, whose MRQ ring is generated by its idempotents but for which the one-sided version of [10, Theorem 3.3] breaks down.

Example. Let K be a right Ore domain but not a left Ore domain, and let D be the right quotient division ring of K. Let S be the ring of all 2×2 matrices over D and let R be the subring of S which consists of all matrices of the form

\[
\begin{pmatrix}
 k & a \\
 0 & b
\end{pmatrix},
\]

where $k \in K$ and $a, b \in D$. Then S is the MRQ ring of R and S is left intrinsic over R, but S is not a left quotient ring of R.

Let Q be a left full linear ring. We abbreviate $\dim Q$ to $\dim Q$. When $\dim Q$ is finite, our requirement that regular elements of a
right order \(R \) in \(Q \) be units of \(Q \) is redundant. However, when \(\dim Q \) is infinite it implies \(Q \) is left intrinsic over \(R \). This is shown in [9]. Furthermore, it is shown in [9] that when \(\dim Q \) is countable, right orders in \(Q \) are prime rings (this being no longer true, in general, when \(\dim Q \) is uncountable). Thus by Theorem 3.1 we have:

Theorem 3.4. Let \(R \) be a right order in a left full linear ring \(Q \). If \(\dim Q \) is countably infinite, then \(Q \) is a left quotient ring of \(R \). In general, if \(\dim Q \) is infinite and \(R \) is a prime ring, then \(Q \) is a left quotient ring of \(R \).

Remark. If \(R \) is a right order in a finite dimensional full linear ring \(Q \), then \(Q \) is a left quotient ring of \(R \) only when \(R \) is also a left order in \(Q \). This is not necessarily the case for a right order \(R \) in an infinite dimensional full linear ring \(Q \). For example, let \(K_\infty \) (resp. \(D_\infty \)) be the ring of all \(\mathbb{R}_0 \times \mathbb{R}_0 \) column-finite matrices over a right Ore domain \(K \) (resp. the right quotient division ring \(D \) of \(K \)). Let \(Q = D_\infty \) and \(R = K_\infty + \text{socle } Q \). Then \(R \) is a right order in \(Q \) but not a left order unless each countable collection of nonzero left ideals of \(K \) has nonzero intersection.

So far our approach to intrinsic extensions has been to show that certain properties of a prime ring \(S \) are inherited by the prime subrings of \(S \) over which \(S \) is right intrinsic. Our principal applications have called for this approach. The earlier studies by Faith and Utumi [4] and Hutchinson [6] were more concerned with showing that, under suitable conditions on a ring \(R \), any ring \(S \) which is right intrinsic over \(R \) is necessarily a right quotient ring of \(R \), thereby showing that certain properties of \(R \) are inherited by \(S \). We now take a look at intrinsic extensions of prime rings from this point of view.

Lemma 3.5. Let \(S \) be a ring with \(Z_r(S) = 0 \) and suppose \(S \) is right intrinsic over a subring \(R \). Then:

(i) For \(x, y \in S \), \(xyS \neq 0 \) implies \(x(yS \cap R) \neq 0 \).

(ii) If \(R \) contains uniform right ideals, then so does \(S \).

Proof. (i) Suppose \(xyS \neq 0 \). Let \(K = \{ a \in S : xa = 0 \} \). If \(yS \cap K \) is essential in \(yS \), as a right \(S \)-module, then \(Z_r(S) = 0 \) and \(xy(yS \cap K) = 0 \) imply \(xyS = 0 \), a contradiction. Thus \(yS \cap K \) is not essential in \(yS \) and therefore there exists a nonzero right ideal \(A \) of \(S \) such that \(A \subseteq yS \) and \(A \cap K = 0 \). Since \(S \) is right intrinsic over \(R \) we have \(A \cap R \neq 0 \). Hence \(x(A \cap R) \neq 0 \), since \(A \cap K = 0 \). Thus \(x(yS \cap R) \neq 0 \).

(ii) Suppose \(U \) is a uniform right ideal of \(R \). Choose \(x \in U \), \(x \neq 0 \). Then \(xS \) is a uniform right ideal of \(S \). For if not, then
xyS \cap xzS = 0 \text{ for some } y, z \in S \text{ with } xy \neq 0 \text{ and } xz \neq 0. \text{ By (i), } x(yS \cap R) \neq 0 \text{ and } x(zS \cap R) \neq 0. \text{ But now }
\[[x(yS \cap R)] \cap [x(zS \cap R)] = 0, \]
which contradicts the fact that U is a uniform right ideal of R. This completes the proof of the lemma.

Lemma 3.6. Let R be a prime ring with $Z_r(R) = 0$ and suppose R contains a uniform right ideal and a nonzero right annihilator ideal B with $\dim B_R < \infty$. Then there exists an element $y \in R$ such that $r(y, R) \cap B = 0$.

Remark. R need not contain an element y with $r(y, R) = 0$.

Proof. Let Q be the MRQ ring of R. Then Q is a full linear ring by Proposition 1.2. Choose an idempotent e of Q such that $B = eQ \cap R$. By Proposition 1.1, we have $\dim B_R = \dim (eQ)_Q$ and hence $\dim (eQ)_Q < \infty$. Let $\dim (eQ)_Q = n$. By an argument similar to that used in the proof of Lemma 2.4, we can find nonzero elements a_1, \ldots, a_n of R such that each Qa_i is a minimal left ideal of Q and
\[Q = Q(1 - e) + Qa_1 + \cdots + Qa_n, \]
where $+$ indicates a direct sum. Choose orthogonal primitive idempotents g_1, \ldots, g_n of Q such that $Qg_i = Qa_i$ for $i = 1, \ldots, n$. Since $g_iQ \cap R \neq 0$, we have $(g_iQ \cap R)a_i \neq 0$ by primeness of R. Thus $g_iQa_i \cap R \neq 0$ for $i = 1, \ldots, n$. Choose $y_i \in g_iQa_i \cap R$, $y_i \neq 0$, for $i = 1, \ldots, n$ and let $y = y_1 + \cdots + y_n$. Then $Q = Q(1 - e) + Qy$ and hence $r(y, Q) \cap eQ = 0$. In particular, $r(y, R) \cap B = 0$.

It is not known to the author whether a prime ring which has zero right singular ideal and contains uniform right ideals must contain a nonzero finite dimensional right annihilator ideal. (Conjecture: yes.) The answer is “yes” if the ring also contains uniform left ideals because then every finite dimensional closed right ideal is a right annihilator ideal (see Utumi [11, Proposition 7.3]).

Theorem 3.7. Let R be a prime ring with $Z_r(R) = 0$, but not an integral domain, and suppose R contains a uniform right ideal and a nonzero right annihilator ideal B with $\dim B_R < \infty$. Then any ring S which is right intrinsic over R is necessarily a right quotient ring of R (and therefore lies between R and the MRQ ring of R, which is a full linear ring).

Proof. It is clear that S is a prime ring but not an integral domain. If we can show that $Z_r(S) = 0$ then it will follow from
Lemma 3.5 that S contains uniform right ideals and hence, by Theorem 2.1, that S is a right quotient ring of R. Let us suppose that $Z_r(S) \neq 0$. Let $I = Z_r(S) \cap R$. Then I is a nonzero ideal of R. As such, I is also a prime ring with $Z_r(I) = 0$ and I contains uniform right ideals. Let B be a nonzero finite dimensional right annihilator ideal of R. Then $I \cap B$ is a nonzero finite dimensional right annihilator ideal of I. Applying Lemma 3.6 to I, we can find an element $y \in I$ and a left ideal L of I such that $r(L, I) \neq 0$ and $r(y, I) \cap r(L, I) = 0$. Let $A = r(L, S)$. Then A is a nonzero right ideal of S and since $y \in Z_r(S)$ we have $A \cap r(y, S) = 0$. Moreover, since S is right intrinsic over R, and hence over I, we have $A \cap r(y, S) \cap I = 0$, that is, $r(y, I) \cap r(L, I) = 0$. With this contradiction, we deduce that $Z_r(S) = 0$. We are finished.

Hutchinson [6, Theorem 4.5] characterized intrinsic extensions of semi-prime right Goldie rings. As a corollary to Theorem 3.7 we obtain Hutchinson’s result when specialized to prime right Goldie rings.

Corollary 3.8. Let R be a prime right Goldie ring, but not a right Ore domain. Then any ring which is right intrinsic over R is necessarily a right quotient ring of R (and therefore lies between R and the classical right quotient ring of R, which is a simple Artinian ring).

Remark. Faith and Utumi [4, Theorem 3.2] proved this under the assumption that R is also a left Goldie ring.

4. Intrinsic extensions of semi-prime rings. Let R be a ring with $Z_r(R) = 0$. The lattice $L_r(R)$ of closed right ideals of R is said to be atomic if each nonzero element of $L_r(R)$ contains a minimal nonzero element (an atom) of $L_r(R)$. If R is a prime ring containing a uniform right ideal, then $L_r(R)$ is atomic. Our results on intrinsic extensions for such rings can be extended to semi-prime rings S which have $Z_r(S) = 0$ and for which $L_r(S)$ is atomic by using the fact that the MRQ ring of S is a (complete) direct product of left full linear rings (see Johnson [7, Theorem 3.1]). Thus, if T is the MRQ ring of S, there exists a set $\{e_i\}_{i \in I}$ of central orthogonal idempotents of T such that each e_iT is a left full linear ring and T is isomorphic to $\prod_{i \in I} e_iT$ under the map $x \rightarrow (e_i x)$. Now suppose S is right intrinsic over a semi-prime ring R. For each $i \in I$, let $T_i = e_iT$ and $R_i = T_i \cap R$. We make the following

Claim. (1) T_i is right intrinsic over R_i for each $i \in I$. (2) Each R_i is a prime ring.
(3) If T_i is a right quotient ring of R_i for each $i \in I$, then T (and hence S) is a right quotient ring of R.

(1) and (3) are easily verified. We shall now verify (2). It is clear that each R_i is at least semi-prime because it is a nonzero ideal of a semi-prime ring. That each R_i is in fact a prime ring is the content of the following lemma.

Lemma 4.1. Suppose Q is a full linear ring which is right intrinsic over a semi-prime ring A. Then A is a prime ring.

Proof. Let us suppose A is not a prime ring. Then there exist nonzero ideals I and J of A with $IJ = 0$. We can suppose $J = r(I, A)$ and $I = l(J, A)$. Since A is semi-prime, we have $I = r(J, A)$ and $I \cap J = 0$. Let $I_i = r(J, Q)$ and $J_i = r(I, Q)$. Then $I = I_i \cap A$ and $J = J_i \cap A$. Hence, since Q is right intrinsic over A and $I \cap J = 0$, we have $I_i \cap J_i = 0$. Since Q is a full linear ring, we can choose a nonzero right ideal K_i of Q such that $I_i \cap K_i = 0$ and $J_i \cap K_i = 0$. Let $K = K_i \cap A$. Then $K \neq 0$ since Q is right intrinsic over A. But $J \cap K = 0$ implies $KJ = 0$ and therefore $K \subseteq I \cap K = 0$, that is, $K = 0$. We have the desired contradiction. Hence A is a prime ring.

Providing none of the T_i are division rings, we can apply Theorem 2.1 to obtain that T_i is a right quotient ring of R_i for each $i \in I$. It then follows from (3) that S is a right quotient ring of R. To eliminate the possibility of a division ring appearing among the T_i, we shall require that S contains no ideals which, as rings, are integral domains. Summarizing, we have the following extension of Theorem 2.1.

Theorem 4.2. Let S be a semi-prime ring with $Z_r(S) = 0$, but containing no ideals which are integral domains, and suppose $L_r(S)$ is atomic. Then S is a right quotient ring of each semi-prime ring over which it is right intrinsic.

As a corollary to Theorem 4.2 we have the following partial extension of Theorem 3.7.

Corollary 4.3. Let R be a semi-prime ring with $Z_r(R) = 0$, but containing no ideals which are integral domains, and suppose $L_r(R)$ is atomic. If S is a ring which is right intrinsic over R and $Z_r(S) = 0$, then S is a right quotient ring of R.

Proof. All we need show is that $L_r(S)$ is atomic, equivalently, that each nonzero right ideal of S contains a uniform right ideal. Let I be a nonzero right ideal of S. Then $I \cap R$ is a nonzero right ideal of R and hence contains a uniform right ideal U of R. The
proof of Lemma 3.5 shows that for \(x \in U, x \neq 0, xS \) is a uniform right ideal of \(S \). Since \(xS \subseteq I \), this establishes the corollary.

REMARKS. (1) If \(R \) is a semi-prime right Goldie ring and \(S \) is a ring which is right intrinsic over \(R \), then \(Z_r(S) = 0 \) (c.f. [6, Theorem 4.6]). To see this, we argue as follows. \(R \) contains nonzero ideals \(R_1, \ldots, R_n \) such that each \(R_i \) is a prime right Goldie ring and the sum \(R_1 + \cdots + R_n \) is direct and an essential right ideal of \(R \). (By Corollary 3.8 we can assume \(n \geq 2 \).) Hence \(S \) is also right intrinsic over \(R_1 + \cdots + R_n \). Now suppose \(Z_r(S) \neq 0 \). Let \(I = Z_r(S) \cap R \). Then \(I \) is a nonzero ideal of \(R \) and \(IR_i \neq 0 \) for some \(i \). Without loss of generality we can suppose \(IR_1 \neq 0 \). Let \(J = IR_1 \). Then \(J \) is a nonzero ideal of \(R_1 \) and therefore there exists \(y \in J \) such that \(r(y, R_1) = 0 \). Since \(y \in Z_r(S) \) we must have \(r(y, S) \cap r(R_1 + \cdots + R_n, S) \neq 0 \) and therefore

\[
r(y, S) \cap r(R_1 + \cdots + R_n, S) \cap (R_1 + \cdots + R_n) \neq 0 ,
\]

that is, \(r(y, R_1) \neq 0 \). We have reached a contradiction. Hence \(Z_r(S) = 0 \).

(2) Corollary 4.3 can be obtained in the special case of a semi-prime right Goldie ring \(R \) from Theorems 3.4 and 4.5 of Hutchinson [6].

(3) For a ring \(R \) which has \(Z_r(R) = 0 \) and \(L_r(R) \) atomic, the condition that \(R \) contain no ideals which are integral domains is equivalent to the condition that the MRQ ring of \(R \) contain no nonzero strongly regular ideals. Thus Corollary 4.3 represents a considerable strengthening of [4, Theorem 3.1] in the case where \(R \) is semi-prime. Simple examples, such as the ring \(R \) of all \(2 \times 2 \) matrices of the form

\[
\begin{pmatrix}
a & b \\
0 & c
\end{pmatrix},
\]

where \(a \) and \(b \) belong to a field \(D \) and \(c \) belongs to a proper subfield \(F \) of \(D \), show that without semi-primeness of \(R \) Corollary 4.3 is, in general, false. (In the example cited, \(\dim R_S = \dim D_F + 1 \).)

(4) It is clear that theorems corresponding to Theorems 3.1, 3.2, and 3.3 can be formulated for semi-prime rings. The details may safely be left to the reader.

REFERENCES

Received December 18, 1972 and in revised form April 13, 1973. This paper is based on a portion of the author's Ph.D. dissertation written under the supervision of Dr. Robert L. Kruse at the University of Canterbury. The author wishes to express his gratitude to Dr. Kruse for his valuable help and encouragement.
Zvi Arad, π-homogeneity and π'-closure of finite groups .. 1
Ivan Baggs, A connected Hausdorff space which is not contained in a maximal connected space ... 11
Eric Bedford, The Dirichlet problem for some overdetermined systems on the unit ball in C^n .. 19
R. H. Bing, Woodrow Wilson Bledsoe and R. Daniel Mauldin, Sets generated by rectangles .. 27
Carlo Cecchini and Alessandro Figà-Talamanca, Projections of uniqueness for $L^p(G)$.. 37
Gokulananda Das and Ram N. Mohapatra, The non absolute Nörlund summability of Fourier series ... 49
Frank Rimi DeMeyer, On separable polynomials over a commutative ring 57
Richard Detmer, Sets which are tame in arcs in E^3 67
William Erb Dietrich, Ideals in convolution algebras on Abelian groups 75
Bryce L. Elkins, A Galois theory for linear topological rings 89
William Alan Feldman, A characterization of the topology of compact convergence on $C(X)$.. 109
Hillel Halkin Gershenson, A problem in compact Lie groups and framed cobordism ... 121
Samuel R. Gordon, Associators in simple algebras ... 131
Marvin J. Greenberg, Strictly local solutions of Diophantine equations 143
Jon Craig Helton, Product integrals and inverses in normed rings 155
Domingo Antonio Herrero, Inner functions under uniform topology 167
Jerry Alan Johnson, Lipschitz spaces .. 177
Marvin Stanford Keener, Oscillatory solutions and multi-point boundary value functions for certain nth-order linear ordinary differential equations 187
John Cronan Kieffer, A simple proof of the Moy-Perez generalization of the Shannon-McMillan theorem .. 203
Joong Ho Kim, Power invariant rings .. 207
Gangaram S. Ladde and V. Lakshmikantham, On flow-invariant sets 215
Roger T. Lewis, Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators 221
Jürg Thomas Marti, On the existence of support points of solid convex sets 235
John Rowlay Martin, Determining knot types from diagrams of knots 241
James Jerome Metzger, Local ideals in a topological algebra of entire functions characterized by a non-radial rate of growth 251
K. C. O’Meara, Intrinsic extensions of prime rings ... 257
Stanley Poreda, A note on the continuity of best polynomial approximations 271
Robert John Sacker, Asymptotic approach to periodic orbits and local prolongations of maps .. 273
Eric Peter Smith, The Garabedian function of an arbitrary compact set 289
Arne Stray, Pointwise bounded approximation by functions satisfying a side condition ... 301
John St. Clair Werth, Jr., Maximal pure subgroups of torsion complete abelian p-groups ... 307
Robert S. Wilson, On the structure of finite rings. II 317
Kari Ylinen, The multiplier algebra of a convolution measure algebra 327