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This paper is concerned with a flow on a metric space, and
some topological properties of the set of orbits which are
asymptotic to a given invariant subset, with particular em-
phasis on the flow near an invariant Jordan curve (e.g., a
periodic orbit) in an orientable ^-manifold Mn. The inves-
tigation began with the asking of the simple question: Can
a periodic orbit J of a vector field in Rn be the ω-limit set
of precisely one orbit distinct from J? It is shown that if
the periodic orbit J is a maximal element in the class of
invariant continuua lying in a neighborhood of J, then the
answer is negative and in fact the set of orbits asymptotic
to J as t —> oo has some of the same topological properties
already known from the stable manifold theorems in the case
of an elementary periodic orbit of a flow generated by a
smooth ordinary differential equation.

The assumption of maximality of J is replaced by an even weaker
condition and the notions of a local quasi-section and its associated
mapping are introduced to handle the case in which J is an invariant
Jordan curve. For such a mapping a local prolongation is defined
which proves useful in studying properties of the orbits asymptotic
to J.

Let π: Mn x R —> Mn be a flow, i.e., π(x, 0) = x for all x e Mn,
π(7ϋ(x, s), t) = π(x, s + t) and π is continuous. Denote τc(x, t) by x t
and for E<zMn and AaR, E- A = \J [x t: xe E, te A}. Our initial
approach in the case / is a periodic orbit is to consider the induced
map T of a surface of section I at a point Jo in J, Jo thus being
fixed under T. In §3 we introduce the notion of local prolongation
of a mapping in metric space and as a special case it turns out that
if there is a I'-neighborhood U of Jo such that JQ is maximal in U
then there is a continuum Γ c Σ lying in U and extending from Jo

to the boundary of U such that for all x e Γ, Tnx —>J0 as n —> °o.
By maximal we mean that there is no continuum K with JQeKc.U
which is invariant under T, i.e., TK = K, except for the obvious
choice K = JQ. Thus in the maximal case the above question is an-
swered in the negative. With the condition of being maximal drop-
ped we construct an example (§ 3) of a map T: R2 —> R2 leaving the
origin fixed and such that if Δ is the closed unit disc, then the
subset F = {x 6 Δ - (0, 0): Tnx —> (0, 0) as n —> oo} is discrete, F = {x19

x2, •••} with Txn = xn+1. Thus, if we suspend this mapping to a
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continuous flow we obtain a periodic orbit J having precisely one
orbit (distinct from J) which is positively asymptotic to /.

Let X be a solid torus neighborhood of the periodic orbit J in
M* and define A+ = {xe X: x [0, o o ) c l and ω(x)c J}. We assume
that there is an xeX—J such that co(x) cz J, i.e., A+ — JΦ 0 .
If J is assumed to be a maximal element in the class of con-
tinua in X which are π-invariant, then there is a neighborhood U
in Σ such that Jo is maximal in U and it is easily seen that Γ will
then lie in A+. More can be said however about A+. In fact it will
be shown in § 5 that there is an open solid torus neighborhood V of
J in M* with 7 c int X and such that (X — V) Π A+ carries a Cech
1-cycle which is nonbounding in X and homologous over A+ to the
basic 1-cycle carried by J. This is a generalization of the classical
case in which one assumes that π is generated by a sufficiently smooth
vector field in a smooth Mn and J is a periodic orbit with n — 1 of
its Floquet exponents having nonzero real parts. In that case it
follows [8] that for appropriately chosen X, A+ is a smooth manifold
with boundary. For example taking n = 3, it is easy to show that
A+ is either equal to X, an annulus or a mobius band and therefore
(X — V) Π A+, for an appropriate open torus neighborhood V of J
satisfying 7 c int X, is either equal to X — V, a pair of disjoint annuli
or a single annulus. The existence of the continuum Γ and the
Cech 1-cycle then follow by inspection.

Returning to the general case, it turns out that the foregoing
conclusions depend on the behavior of the flow near J and not in J
itself. For this purpose we introduce the notion of a local quasi-
section for an invariant set and show that if J is an invariant Jordan
curve which admits a local quasi-section Σ then under certain addi-
tional conditions the existence of the continuum Γ<zΣ and the 1-
cycle in (X — V) Π A+ are guaranteed. In what follows we even drop
the condition that J be maximal and replace it with much weaker
conditions.

Announcement of some of these results appeared in [9]. See also
Conley [3], and Churchill [2] for related results concerning invariant
sets which carry cohomology, a concept introduced in [3].

2* Local quasi-sections* The following generalizes the notion
of a surface of section for a periodic orbit. Although the existence
of a local quasi-section is not explicitly assumed in the remainder of
the paper, its existence (together with the associated map) is sufficient
to verify the assumption called Condition A in §5 (see Remark 2
following Condition A).

DEFINITION. Let W be a metric space, π: W x R-+W a flow and
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IdW a compact π-invariant subset. Then I is said to admit local
quasi-section Σ if there exists a compact subset Σ c W satisfying
the following: (1) There exists an open neighborhood N of I such
that if N' c N is any open neighborhood of I then there exists an
open neighborhood N" a N' of / and functions τ+:N" — /•—•((), °°)
and τ~\ N" - J-> ( - oo, 0) such that for all x e N" - I, x (0, τ+{x)) c
Nf - Σ and x (r"(a;), 0) c N' - Σ while a τ+(x) and a? r"(a;) e Σ Π JNP.
(2) For each xe(N ~ I) f) Σ and ε > 0 there exists δ, 0 < δ < s and
an open PF-neighborhood B of x such that

(a) for all x' e B there exists a te{~δ, δ) such that a?' £ e Σ and

(b) if ί = x' ί then {£ [-3, 0) U £ (0, d]}ΠΣ = 0.

REMARKS. (1) In the definition let Nf = N initially and let N"
be the neighborhood guaranteed by (1) and τ0

+: JVJ' — /—> (0, oo) the
corresponding function. Then it is easy to see that for any other
Nf the corresponding- N" and τ+ satisfy τ+ = τ+\N" ~ /. Similarly
for τ~.

(2) τ0

+ and τ^ restricted to N" Π Σ are continuous.

DEFINITION. If Σ is a local quasi-section for I we define the as-
sociated mapping T as follows: Let A = Σ Π I and U= Nόf Π ̂ . Then
define T and Γ " 1 : J 7 - A - > 2 ' by T(x) = x ro

+(x), Γ" 1 ^) = x - τ^(x).
Clearly T'1 is the inverse of T, each is continuous and T±ι{x)—>A
as x —»A. Γ represents the map which carries a point sc to the point
T(x) at which the positive semiorbit through x next strikes Σ.

If / is a periodic orbit and W locally compact then there exists
a compact local section at any point pel, [1, p. 50], [7] and Σ is a-
fortiori a local quasi-section with A = p. In this case T is even
defined as a continuous function at A leaving A fixed. Even if we
modify the flow by placing stationary points on /, leaving orbits in
W — I intact, Σ is still a local quasi-section and T is still extendible
to A leaving A fixed. However, in general, for a local quasi-section,
T need not even be defined on A nor extendible to A as a continuous
mapping, e.g., let / be a 2-torus in R3 with periodic coordinates 0 <g
xlf x2 ^ 2π and y the normal coordinate, \y\ <ί δ. Let I7 = {(X, x2, y):
x1 = 0, 0 ^ x2 S 2π, \y\ ^ δj and A the circle on I defined by xι = 0.
For the differential system

* 1 = s i n ^ +\y\

2/ = -
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it is easily seen that for pe Σ — A and p0 e A, limp-Po T(p) = A.

3* Local prolongation of a mapping* In this section we in-
troduce the notion of a local prolongation which, roughly speaking,
accomplishes the following: Taking a simple situation, let A be a
fixed-point of a homeomorphism T defined in a neighborhood Y of
A. We wish to associate with A a closed subset P+aY—A which abuts
on A and is positively invariant, TP+ c P + . Under certain conditions
the set P+ [j A will then generalize the classical local stable manifold
of A. Only the most basic properties of local prolongations suitable
to the problem at hand will be established here. The local prolonga-
tion introduced here is similar to the first prolongation for a continuous
flow introduced by T. Ura and discussed in [1].

Let Σ be a compact metric space and A(zΣ, AΦ 0, a closed
subset. Let Γ c ί b e the closure of an open neighborhood of A and
define Y' = Y — A and Σ' = Σ — A. Suppose T is a mapping such
that Y' c Domain Tf] Domain Γ"1 and T:Y'-» T{Y') and Γ " 1 : ^ - *
T'1(Yt) are homeomorphisms. Further assume that T (and Γ"1)
satisfies the condition: For every J-open neighborhood ?7of A there
exists a J-open neighborhood V of A such that T(VΠ Y')a UΓi Γ\
Note that T need not even be defined on A. However, if T is a
homeomorphism defined on a J-neighborhood of A with TA = A then
the above conditions are automatically satisfied.

Of particular interest is the case in which Σ is a local quasi-section
for an invariant set I, A = Σ Π / and T is the associated mapping.

For PcQ we denote the relative boundary of P in Q by dQP =
Pf]Q — P and the relative interior intQP = P — dQP. Let Comp F
denote-the collection of components of F.

DEFINITION. A set E is said to dominate the set A, written E >
A if E Z) A and for each Eo e Comp E there exists Ao e Comp A such
that JSΌDAO.

We mention some elementary properties for arbitrary subsets
Ef F, Gf Aa of the space Y:

(3.1) E > E; if E > JF7 and F > # then # = F; if # > F and
F > G then # > G.

(3.2) If Aay A for all a e jy, an arbitrary index set, then

(3.3) If # > A then i? > A.
(3.4) Let {Aαc Y, α e Szf) be a collection of closed subsets of a

a compact Y where J ^ is totally ordered and a < β implies Aa c A .̂
If for some closed subset A c Y, Aa > A for all α e J ^ then

Π A* > A .
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(3.5) If follows from the above that if js/ is totally ordered
and {Ea c Y\ a e J^} is an arbitrary collection of subsets such that
Ea U A > A for all ae j y then (ϊίmαe ̂  Ea) U A > A where

lim #« = Π U ^
a e ^ jθ < a

(3.6) If j?c Y is connected and 2? Π A Φ 0 then E (J A > A.
We state without proof the following

LEMMA 3.7. Let FaY' be such that T~ιFci Yf and F\J A > A.
Then (T~XF) (j A > A. A similar statement holds for T.

We next define certain positively and negatively invariant subsets
of F . Let

) = {Fez Y: F is closed, F u A > A, TJ^c ί7}

J-(F) - {i^c Y'\ F is closed, F u A > A, Γ ' ^ c F)

DEFINITION. For an arbitrary E<zΣr define Ef\AY
r to be the

maximal subset E° of E Π Γ' having the property that i?° U A > A.
We next define a prolongation operator P + : 7+(y) —»I+(Z'). Let

ί'G J+( Y') and let {G(α) c Y: 0 < α < 1} be a collection of open subsets
such that Πo<«<i G(a) = F\j A and if a < β then G(a) c G(β) and
there exists 7 6 (0, a) such that G(τ)c G(/S). In the relative topology
of Y'jπe then have, for G\a) = G(a) Π Γ', G7^) c G(/9) for such a 7
and limα6(o,i) G'(α) = F. For each αe(0, 1) we define a sequence of
subsets of Y' by letting GQ(a) = G'{a) f\A Yr and

Then define

and

- 155

THEOREM 3.8.

(1) P+ is a mapping from I+(Y') to I+(Y') and for FaF,
both in I+(Y), Fa P+{F) c P+(F).

(2a) If for some FeI+(Y) and some ve(0, 1) it is true that
T-nG'{v)c.Y' for all integers n^O then P+(F) e I(Y') and there exists
an F* G Γ{Yf) and a subset GaY' such that FaGaG = F*.

(2b) In particular if P+(F) Π dΣ, Y
f = 0 then there exists such
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a v and in addition F* c int^, Y'.
(2c) Further, if Y is locally connected at each point of F{J A

then the subset G may be chosen to be open in Yf and such that G U A
is open in Y.

Proof. (1) Clearly P+ is well defined, i.e., it does not depend
on a particular choice of G{a). It is also clear that for

FczF,P+(F)(zP+(F).

For all a, G0(ά) U A > A and since G'(a) z> F and FijA^Awe have
G0(α) 3 F. Since Fe I+( Γ'), T-ιG0{a) z> T~ιF z> F and therefore G^a) U
A > A and G^α) ~D F. Continuing inductively we see that for all n ^ 0,
Gn(a) U A > A and (?„(#) Z) F. Using the properties of " > " mentioned
above we see that Pί(F) u i » 4 a n d Pί(F) z>F and finally P+(F) (J
A > A and P+CF) z> F. To finish the proof of (1) we show that TPa P
where P = P+(F). Let a e P . If xe F then Γ(α;) eFaP and we are
done. If xe P — F then there exists άe (0, 1) such that for all ae
(0,α), a ^G^α). But a e P implies αe P+(F) = U?=oGn(α) for all α e
(0, 1). Thus x e UZ=JτJa) for all a e (0, α). Thus for each fixed a e (0,
a) there exists a sequence xk -^x, xke Gnk{ά) for some sequence of
integers nk*zl. But then T(xk) —• T(#) and Γ(a;fc) 6 G^^-^α) and there-
fore T(x)ePί(F). But a^β implies P^jF)c:Pf(F) and therefore
2Xα>) G Pj(P) for all a e (0, 1). This proves T(x) eP= Πββ(M>"P

(2a) If for some F e I+(Γ') and some ve(0, 1), Γ G ' ^ c Γ for
all n ^ 0 then GQ(v) = G'(v) f)A Yr satisfies the condition GQ(v) n i » i ,
Since T~ιGQ{v) c Y' Lemma 3.7 implies T~lG0{v) U i » l Thus the
definition of Gλ(v) reduces to G^v) — T~ιGQ(v). Repeating this we see
that Gn(v) = T~nG0(v) c Y' and Gn(v) U A > A ΐor all n ^ 0. Thus
Gn+ι(v) = T~ιGn{v) and hence Γ" 1 P/(F)cP+(F). Taking lim sup we get
Γ P + ( F ) c P + ( F ) . This and part (1) implies P+(F)eI(Yf). Define
G = P+(F) and F* = G. It was shown in the proof of (1) that G U
A > A and therefore Γ u A » A Also from T^G c G follows

(2b) If P + (JP) C int W Y' then P+(F) U A c (int., Γ ) u A = int r Γ.
But P+(F) u A = ΓU(o,i) [̂ P«+(̂ ) U A] and since Y is compact there
exists a ve(0, 1) such that Pυ

+(F) u A c intΓF, i.e., F* = P+(F)c
intj/F' thus proving the assertion.

(2c) If Y is locally connected at each point of F U A then each
G(a) may be chosen to satisfy the additional condition, G(a) > A.
To see this, by the local connectedness assumption there is a con-
nected open Uxc Y, xe Ux for each xe F{J A. Define

G(l)= U J7..
xeFUA
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From properties (3.6), (3.2), and (3.1) we see that UXU F \j Ay F{jAy
A and therefore G(l) = \JxeF{JA(Ux U FU A) > A. Assume G(l/n) has
been defined and let UczY be open such that AczUaϋa G(l/ri) and
d{A, Y — U) < Ij{n + 1). Again for each xe F{j A there is an open
connected UxczY, xe Ux(zY. Define G(l/(n + 1)) = [JxeF^A Ux. Finally
for ae(l/(n + 1), 1/ri) define G(a) = G(l/ri).

Now G'(a) = G(a) Π Y' is open in Y' and G'(a) ϋA = G(a) » A.
Thus in the proof of (2a) G0(v) = G'(v) and it follows that G is open
in Y. To see that G U A is open in F let Z = Γ - G u A . Since
GQ(v) UA = G'(v) \JA = G(v) is open in Y t h e n defining

E = Y - [G0(v) U A]

we see that E is closed Y and EaY - A = Y'. Since G0(α:) c G , Z c
F - GQ(α) U A - E and also Z = ( F - G ) n ( r - 4 ) = ( 7 - ( J ) n F ' =
Y' — G implies ϋΓ is closed in Y'. This and ZCLECLY* implies Z is
closed in F. This completes the proof.

REMARKS. (1) Clearly by replacing T by T~ι throughout we may
construct P~(F) for FeI~(Y) and a similar theorem holds.

(2) The empty set 0 e I+(Y'). However, P + (0) need not be
empty. For example take A = {0} the origin in Rn and let A be an
asymptotically stable fixed point of a homeomorphism T: R% —• Rn,
i.e., r(x) —OasZ—cχ3. Let 21 = {||α?|| S 2} and Γ = {||α?|| g 1}. Then
P+(0) = Y-A = Y'.

COROLLARY 3.9. If for some Fe I+(Yf), Y is locally connected at
each point ofFuA and if there exists an xe Σ — Ysuch that Tn(x)~+
F[j A as n-+ oo, then P+(F) Π dΣYφ 0 .

Proof. If not then from part (2) of the theorem there exists
F* = Ge I~( Yr) where G U A is open in Y. For n sufficiently large
then s = Γ(ίt;)6G. But then » = Γ~^ and r F * c F * c 7 ' leads
to a contradiction since xe Σ — Y — Σr — Yr.

DEFINITION. Let A, Y, and T be defined as before. Then A is
said to satisfy property M in F with respect to Γ if I(Y') = {0}.
In particular if A is connected and T is a homeomorphism defined in
a neighborhood of A leaving A invariant, TA = A, then A satisfies
property M if and only if A is maximal in the class of T-invariant
continuua contained in F, or stated more simply, A is maximal in Y
with respect to Γ.

LEMMA 3.10. // A satisfies property M and EeI+(Y') then
Π«=o T*E = 0 . /w particular for all xe E, d{ Tn(x), A)—>0 an n~+^.
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A similar statement holds for Ee I~(Y) with T replaced by T~\

Proof f|~=o TnEe I(Y') follows from the fact that TEaE,Eu
Ay Ay Lemma 3.7 and property (3.4.)

Another immediate result of Theorem 3.8 is

COROLLARY 3.11. If A satisfies property M then either P + (0) =
0 or P+(0)ΠdΣYφ 0 .

THEOREM 3.12. Let A be a fixed point of T which is maximal
in Y. If Y is locally connected at A then either P+(0) Π dΣYΦ 0
or A is asymptotically stable under T~\

Proof If P+(0) ΓϊdΣY= 0 then from Theorem 3.18 (2b) there
exists an open G c F such that G = F* e Γ( Y) and G u A is open
in Y. Let F c Γ b e an open neighborhood of A. We must find an
open neighborhood U of A such that T~%UaV for all n^O and
d(T~nU, A)->0 as %-> co. From Corollary 3.10 Π~=o T~n{G\jA) = A
and therefore there is an n0 such that T~niG U A) = Π?=o T~n(G U
4̂.) c V. Simply define U = T~n°(G (j 4̂.) and the theorem is proved.

COROLLARY 3.13. Under the condition of Theorem 3.12 if there
exists an xeΣ such that d{Tnx, A)—*0 as n—+ °o then there exists a
continuum of such points extending from A to dΣ Y.

If the "maximal" assumption is dropped, Corollary 3.13 is no
longer true as illustrated by the following

EXAMPLE. We construct a mapping T: R2 —• R2 such that the
origin is fixed and A+ = {pe R2 - (0, 0): Tnp-*(0, 0) as n-+ oo} i s

discreet. Define / : [0, oo) -* [0, 1] to be continuous, f(2~j) = l/(j + 1)
for j e Z+, f is linear on each interval [2~j~\ 2~j] and f(t) = 1 for
ί ^ 1. Clearly / is monotone increasing. Define E = {(x, y) e R2: x =
0 or 2~n,neZ+} and let δ:R2-+R be the distance from #, i.e., δ(x, y) =
d((aj, i/), # ) . Finally define Γ by T(x, y) = ( ^ 2/0 where

Vi = V - f(δ(x, y))

The 1/ — axis consists of fixed points and A+ = {(2J", 0): j 6 2Ί. To see
this note that for points (x, y) e E, Tn(x, y) —• (0, y) as n —> ©o and only
those in A+ approach (0, 0). Further, for (xOf y0)£ Ewe will show that
Tn(xQ, y0) becomes unbounded. For n sufficiently large Tk(xOt yQ) is in



ASYMPTOTIC APPROACH TO PERIODIC ORBITS 281

the strip | x | < 1 for all k ^ n so we might as well assume | xQ | < 1
to start with. Then δ(x0, y0) — δ0 where 2~~ι ^ δ0 < 2~ι+1 for some
integer l^ 1 and if (xn, yn) = Tn(x0, yQ), δ(xn, yn) = 2~nδ0 ^ 2 — ' . There-
fore, f(δ(xn, yn)) ^ f(2-n~ι) = l/(n +1 + 1). But yN = y0- Σ S f(δ(xnf

yn)) ^y0- Σ»=o V(n + 1 + 1) shows that yN -> - oo as ΛΓ — oo.
If we take Σ = R2 and Γ the unit disc Δ = {(#, 2/) e # 2 : a;2 + y2 ^

1} and A = (0, 0) we see that /+(Γ') = J(Γ') and Fe I+(Y') implies
ί7 = {(0, y):a^y ^ /3,y^0} for some a and A - l ^ α ^ 0 ^ / 5 ^ 1 .
For all Fe I+(Y'), P+(F) - {(0, y): 0 ^ y ^ 1} U F. Of course A fails
to be maximal.

Taking Σ = E, Y= Δ Π E and A - (0, 0) we see that /+(Γ') is the
same but P+(F) - F for all F e / + (Γ') . Thus the assumption of local
connectedness in Corollary 3.9 cannot be dropped.

4* Flows* We now consider the behavior of a flow π: X x R—>
X near a compact invariant subset IczX a metric space. Suppose
if is a compact neighborhood of / and define

A+ = {xeK:x R+aK and ω(x)al} ,

the stable set associated with /.

DEFINITION. We say / is maximal in K with respect to π if
whenever Fa K is closed, 7Γ-invariant and ίΓ T> / then F — I. In
particular if / is connected then / is maximal if it is a maximal
element in the class of closed π-invariant continua contained in K.

LEMMA 4.1. If I is maximal in K then A+ is closed.

Proof. Let xne A+, xn—*x. Then clearly x R+ c K and hence
ω(χ) is compact and therefore connected. There exists a subsequence,
again call it xn, and sequences tn and τn in R+, tn < τn such that
l i m , ^ xn tn = ω(α ) and l i m , ^ xn τn = Fa I for some nonempty subset
/' of / (this follows directly from the continuity of the flow). Define
F =limn^OΛxn [tnfτn]. Then F is clearly closed and since ω(x) is
connected so is F and FiDω(x) u Γ. Defining F' = F{J I, let us show
that JF' is invariant. If suffices to show Ff — ω(x) U / is invariant.
Let y e Ff — ω(x) u /. Then there is a sequence sn e (ίΛ, τn) such that
%» - $n -* 2/ Since / and ω(a ) are invariant, sTO — ίΛ —> oo and rΛ —
sft —> co with n. Now let Γ > 0 and let N be so large that τn — sn >
T for all n ^ N. Then for n^N,xn (sn + T) e xn [tn, τn] and there-
fore y Γ = lima;n (sΛ + T) e Ff - ω(x) u /. Similarly for T < 0.
Therefore, ί7' — α>(̂ ) u I and hence ί7' is invariant. Clearly F' is
closed and since F is connected and F[j / Z) /' Φ 0 it follows from
(3.6) that Ff > /, i.e., F \J > I. But / maximal implies Fez I and there-
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fore ω(x) a I completing the proof.
It is easily seen that if we define F = f]teR+A+-t then F is

invariant and F > I. Thus if I is maximal in the neighborhood K
we have F = /, i.e., A+ satisfies

Condition B. A subset D, la Da K, satisfies Condition B if
Γ\teR+ D -1 — I. Consider also

Condition B'. A subset D, la D a K, satisfies Condition B' if
for all xe D — I there exists f(x) e R~ such that x /(&) e X — K.

DEFINITION. A subset Da K is relatively negatively invariant
(relative to K) if for all x e D and te R~~ we have [t, Oj-xa D whenever

[t, 0] x a K. The set A+ is an example of such a subset.

LEMMA 4.2. Consider a subset D, IaDaK.
(1) If D is positively invariant and satisfies Condition B' then

it satisfies Condition B.
(2) If D is relatively negatively invariant and satisfies Con-

dition B then it satisfies Condition B'.

Proof. (1) If not, there exists xe Γ)feR+ D -t — I. I f r > 0 then
xeD τ implies x - [- τ, 0] c D r [- τ, 0] = U.eκ,o] D (r + σ) c Z>
since τ + σ >̂ 0 and D is positively invariant. Thus for all τ > 0,
a; [ — r, 0] c D contradicting Condition B'.

( 2) If not, there is an x e D — I such that x R~ a K and since
D is relatively negatively invariant, x R~ a D. Thus for all t ^ 0
there is a y e D — I such that y -1 = x, namely y = χ (—t). But
then xe D-1 for all £ ̂  0 and therefore xe Γ\teR+ D -1 contradicting
Condition B.

LEMMA 4.3. Let D+ a K be a closed, positively invariant subset
which satisfies Condition B. Then (1) there exists an open neighbor-
hood V of I such that VaK and for allxe V Γ\ D+, x - R+ Π dxK= 0
and (2) for any open neighborhood V of I with VaK, there exists a
t0>0 such that D+ - [t0, oo)cF.

Proof. (2) This follows directly from Condition B. (1) If not,
there exist xn e D+, tn e R+ such that xn —> I and xn- tne D+ f] dxK.

Then tn -^ oo since / is invariant. Let yn — xn tn. By compactness
there is a subsequence, again call it yn, such that yn—>yeD+f) BXK.
Now yn [— tn, 0] c D+ implies that y R~ a D+. Thus since D+ is also
positively invariant, y Ra D+. But ?/ R is invariant which con-
tradicts Π D+ ί = I and completes the proof.
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5* Flow near an invariant Jordan curve* In this section we
consider an ^-dimensional manifold Mn and a flow π: Mn x R —> M*
which admits a Jordan curve J as an invariant set. Assume X is a
closed neighborhood of J which is a solid torus having J as "center
line", i.e., there exists a homeomorphism h: Vn~ι x S1-* X such that
h({0} x S1) = J where F"" 1 = {# e JJ "1: ||α || ^ 1} is the closed unit n -
1 ball and Sι = {Ze C:\Z\ = 1}. Henceforth, by an open (closed)
tubular neighborhood of J we will mean the image h(Vr x S1) where
Vr c R1"1"1 is the open (closed) n — 1 ball of radius r, 0 < r ^ 1.

Define A+ = {a;el:a; β + c l , ω(#)c J} and assume there exists
D+cA+ which is a closed, positively invariant and relatively nega-
tively invariant subset of X satisfying Condition B (and hence also
Condition B' by Lemma 4.2). If / is maximal in X we may simply
choose D+ = A+. By Lemma 4.3 we may choose an open tubular
neighborhood V of J such that for all x e V Π D+, x R+ Π dX = 0 .
Under an additional condition (Condition A) we will prove that (X —
V) Π D+ carries a Cech 1-cycle Z which is homologous over D+ to the
basic 1-cycle carried by J. In the case in which X is convex to the
flow [6] we may take D+ = A+ and apply the results repeatedly using
a sequence Vn c Vn+1 such that \jVn — int X Then by applying a
continuity argument to the nested compact subsets Kn = (X — Vn) Π
A+ we obtain a 1-cycle on Π Kn = A+ Π 3X which agrees with the
result of [3] in which J is a periodic orbit of a continuous vector
field in R3 and in addition J is assumed to be isolated as an invariant
set.

We now describe Condition A and the results. Let E — Vn~ι x
R be the covering space of Vn~ι x S1 with projection p': E —> Vn~2 x S1

defined by p'(y, t) — {y, e2πit). Then E covers X with projection p =
hop'. Let q:E~+R be projection onto the second factor, (x, t)-*t.
Since p is a local homeomorphism we have the local covering flow ft
in E defined as follows: Let U be a neighborhood in E such that
(p\U): U~+p{U)a X is a homeomorphism. For (y9 t)e U x R such
that π(p(y), [0, t])ap(U) define ίf(y, t) = (p|U)-ιπ{p{y), t)e U. One
can easily verify that π is continuous for all (y, t) such that π(p(y),
[0, φ c i n t X .

Define functions t+, r : D+ - (J U 3X) -> i2" as follows:

r(α ) = inf {t < 0: α? [ί, 0 ] c ΰ + n int X}

t+(x) = sup {ί < 0: a (Γ(a?), ί) c D+ n int (X - V)} .

Since D+ satisfies Condition B', for any x e D+ — (J \j dX) the point
x t must leave X for some t < 0 and therefore ί""(α?) > — oo and
x ί~(a?)e 9X. Also it is clear that t~(x) < t+(x).

LEMMA 5.1. If V is chosen as above then t~ is upper-semicon-
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tinuous and t+ is lower-semicontinuous on D+ — (J U dX). Further
there exists an M > 0 such that t+(x) + t~(x) < M for all x e D+ —
(J U dX).

Proof. Let ε > 0 and τ = Γ{x) + ε. Then x [r, 0] c int X and
by continuity there is a neighborhood N oΐ x such that for £ e N,
ξ [r, 0] c int X Thus f(£) ^ τ for all £ e N, i.e., ί" is upper-semi-conti-
nuous at x. Now let ε > 0 be such that t~{x) < £+(#) — ε < t+(x). From
the upper-semicontinuity of t~ choose a neighborhood N oΐ x such
that r(£) < £+0*0 - ε for ζeN. Let τ = t+(x) - ε. Then x - (t~(x),
τ] c D+ Π int (X — V). We cϊαίm there exists a neighborhood N' a N
of a? such that ξeN' implies 5 (r(f), r ] c ΰ + n int (X - F). Granting
this for the moment we then have t+(ξ) >̂ τ for ί e iV', i.e., ί+ is
lower-semicontinuous at x. To prove the claim, from the given con-
dition on V there is an open U such that Va Uc i7cintX and for
all y e V Π D+, y . i2+ c EΛ Hence if yeD+ f] int (X - t/) we have
2/ (Γ(#), 0 ] c ΰ + ί l ( I - F ) . Now choose s e (Γ(x), τ) such that

x (t-(a), s]aD+f] int (X - D)

and a neighborhood N' a N such that £ s c D+ Π int (X — U) and
ί [s, τ]cz D+ ΓΪ int (X — F) for all ξ e N'. Applying the previous state-
ment to y = ί s we get

f . s (Γ(£ «), 0] = £ (Γ(£), s] c J9+ n int (X - V) .

Combining the inclusions in the last two sentences we obtain the
claim. To prove the last assertion of the lemma we argue negatively
and assume there exists a sequence xne D+ — (J [j dX) and times tn9

sn such that t~(xn) < tn < sn < t+(xn) where σn = sn — tu —> °o. But
then xn [tn, sn] c D+ Π (X — F) and therefore there exist points yn =
^ . ί M e ΰ + n ( I - F ) such that ^ . [ 0 , ( 7 j c ΰ + n ( I - F ) . From
compactness of the latter there exists y e lim yn such that y R+ c
D+ Π (X — F) contradicting Condition B and the lemma is proved.

Define

A = p~1(D+) aE,J= p-\J) = {0} x R c #, 1 = A - (J u p"1^^))

and the lifted functions Γ+, Γ": A-~+R~ by Γ*^) = t±op(y). Assume
that our dynamical system satisfies

Condition A. There exists a bounded connected subset Γ c i
and a sequence yne Γ such that <7(̂  T~(yn)) —• — oo.

REMARKS. (1) We do not exclude the possibiliy that some trajec-
tories in A+ could be asymptotic as t —• oo to critical points on J.
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(2) We do not require that J admits a local (quasi) section.
However, if it does admit one of the form Σ = p(F % - 1 x {0}) and if
A+ — J Φ 0 and J is assumed maximal in X, then applying Corollary
3.9 we may choose Γ to be any component of p~]{P+(Φ) — dX) such
that p(Γ) contains the singleton A = Σ Π J. Condition A is then
satisfied by choosing any sequence yne Γ such that p(yn) —> A.

THEOREM 5.2. Let V be an open tubular neighborhood of J such
that for all xe V C\ D+ we have x R+ Π dX — 0 and suppose that
Condition A holds. Then (X — V) Π D+ carries a Cech 1-cycle which
is homologous over D+ to the basic 1-cycle carried by J. Here the
coefficient group G is taken to be either the reals R, the rationals Q
or the reals mod 1, Rt.

Proof. Define K = (X — V) Π D+. Among all open covers a of
X we consider only those which are finite and have the property that
if Uίf , Uιe a are such that U% Π K Φ 0, i = 1, , I, then ΠU ET*
is nonempty if and only if Π U UZΠ K Φ 0. By [11] and the com-
pactness of X these covers form a cofinal subcollection of the collec-
tion of all open covers.

Let a be an open cover of X and denote by Xa the nerve of a
and by Ka the nerve of the induced cover on the closed subset
KdX. Assume a is so fine that H^Xβ) = G for all covers β > a,
i.e., which refine α. Define Z = D+ — (J U dX) and consider the
functions t+, t~:Z—>R~ defined earlier. Since t+ and t~ are respec-
tively lower and upper-semicontinuous on Z, a, normal, countably
paracompact space and t~(x) < t+(x) for all x e Z we have (Dowker
[5]) a continuous function φ: Z—>R~ such that t~(x) < φ(x) < t+(x)
for all xeZ. Clearly then x - φ(x) e K for all x e Z. Let Y = p~\Z)
and define Ψ: Y-+R~ by Ψ(y) = φ°p(y). By Condition A there is a
bounded connected subset ΓαY and a sequence yne Γ such that
Q(Vn' T~(yn))—* — co. From the second assertion of Lemma 5.1 we
see that 0 < ¥(yn) - T~(yn) < M and therefore q(yn Ψ(yn)) — - oo.
Thus if we define the function λ: Γ —> F by y —>y - Ψ{y) we see that
λ is continuous and letting C = λ(/τ) we see that C is connected,
Cαp-\K) and C is noncompact. Define K' = p{G)ciK. Then K'
is compact and connected.

Now let β > α be an open cover of X. We cίαim that there
exists a nontrivial class 7 6 H^Kβ) such that 7 is not in the kernel
of the inclusion induced map i*: H^Kβ) —• H^Xβ). To prove this define
C/o = U { t Γ e / 9 : ί 7 n i Γ ' ^ 0 } . It suffices to show the existence of a
map /: S1 —> Z70 which is not null-homotopic over X For letting
j : Uo —* X be inclusion, then j o f is homotopic over X to a map p: S1 —> J"
of degree w ̂  0. This in turn implies that the subset I m ( j o / ) c Z
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carries a cycle of Z^Xβ) generating a nontrivial class in Hλ{Xβ). But
Im (/) c Uo and by our choice of covers, any cycle on Xβ having
vertices Ue β such that U Γ\ KΦ 0 is actually a cycle on Kβ which
establishes the claim.

To verify the sufficient condition let UdUQ be the component
containing K' and arguing negatively assume every map f:S1—>Uis
null-homotopic. Then every closed curve in U can be lifted to a
closed curve in the covering space E. But then (Spanier [10]) p~\U)
is a disjoint union of subsets each homeomorphic to tj via p, i.e.,
there is a homeomorphism g:U -^Wcz E where W is the component
of p~ι{U) containing C. Since K' a U is compact, g{Kr) is a compact
subset of E. But Cag(K') contradicting the fact that C is non-
compact. Thus the claim is proved.

Since the coefficient group G is divisible and H^Xβ) ~ G we see

that the sequence H^Kβ) > HJ^Xβ) —> 0 is exact. Now form the
Cech homology groups Hγ by taking, inverse limits along the cofinal
sequence of open covers described earlier. Since all groups involved
are either finite dimensional vector spaces or compact topological
groups, and the inverse limit of exact sequences of such groups is
itself exact, we see that the following sequence of Cech groups is
exact:

Hλ{K) > fli(X) > 0 .

The flow induced map ht: D
+ —+ D+ t given by ht(x) = x t is a

homeomorphism and from Condition B, Πί^o D+ -1 — J. Thus, taking
the inverse limit as t —* oo in the sequence

H1(D+ . 8, J) ~ — H1(D+ - ί, J ) < < lim H1(D+ . ί, J)

and using the continuity of the Cech theory we obtain

H ^ , J) ~ lim HX{D+ -t,J) = fli(J, J) = 0 .

The commutative diagram (all maps inclusion induced)

, >H1(D\J)

0

with exact column and HJ^X) = G shows that we have constructed
a Cech 1-cycle on K which does not bound in X but when considered
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as a cycle on D+, it is homologous over D+ to the basic cycle carried
by J. This completes the proof of the theorem.
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