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Let N be the set of nonnegative integers, and let B =
2B [b](ie N) be the direct sum of cyclic groups with 0(b,) =
p*'. Denote by B the torsion-completion of B. This paper
is concerned with pure subgroups of the group B. If G is
such a group, let

I(G) = {4]%** Ulm invariant of G is nonzero} .

Beaumont and Pierce introduced a further invariant for G,
namely,
U(G) = {I(A)|A is a pure torsion-complete subgroup of G}.
U(G) is a (boclean) ideal in &(N), the power set of .
If .7 is an ideal in Z°(N), then the canonical example of a
pure subgreup, G, of B with U(G) = .7 is constructed as follows:

G=Y(F)=23A,Ic-”) where A; is the
torsion-completion of X @ [b,](te 1) .
Beaumont and Pierce showed that if &°(N)/-” has no atoms
a,_nd 7 is free, then there exist maximal pure subgroups G of
B such that G D () and U(G) =-7. The purpose of this
paper is to give necessary and sufficient conditions for the
existence of such a G in the case that Z°(N)/.~ is finite. In
the process, some information is obtained about the number
of nonisomorphic extensions of £ (7).

I. Preliminaries. For the basic background on p-groups without
elements of infinite height see [2] and [3]. The groups G that we
congider in this paper will all be pure subgroups of B, where B is a
standard basic subgroup as above. The following definitions and facts
may be found in [1].

(1) DEFINITION. I(G) = {n|nth Ulm invariant of G is not zero}.

(ii) DEFINITION. If zeB and = 3r;b;(ic N), then () =
{i]7;b; = 0}.

(iii) PROPOSITION. If .7 1is an ideal in 7 (N), then T (.7)=
{x e Bli(z) e 7).

(iv) PROPOSITION. Z°(_#) s a pure subgroup of B and U(Z(.7))=
A

(v) PROPOSITION. If 7 contains all finite subsets of N (such
an ideal 1s called free) and is maximal in F(N), then Z(7) is a
maximal pure subgroup of B.

In [1] Beaumont and Pierce give an example to show that it is
not always possible to extend Z°(_7) to a maximal pure subgroup G
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with U(G) = % when _# is the intersection of two maximal ideals.
It turns out that this is the case which causes most of the difficulties,
and the majority of the paper is devoted to showing that their example
is typical of the situation where no such G exists.

II. Throughout this section .# will be the intersection of two
maximal free ideals. Let 7° and %~ be distinect maximal free ideals
of Z#(N)and let .# =7 N %. Let Ve? — .7 and let W= N —
V. Then We % — .# and by the maximality of 7" and %~ we
have 77 = [V, 7] and 9% = [W, . _#]. Note that F#(V)N . and
FP(W)N # are maximal ideals of Z#(V) and F#(W) respectively,
and that = (.7) = (@) N £(#).

Our purpose in this section is to give a necessary and sufficient
condition for a group G with (. F)cGc B and G/Z(7) = Z,(0)
to be of the form Z(7°) or &(¥#).

II. A. NOTATION.
(i) Let A, be the closure in B of X & [b](i e V).
Let A, be the closure in B of 3 @ [b;](ie W).

(ii) G = (F(V)nA).
G, = (L (W)n A)).
(iii) v,=2p""h(teV and 71=mn-—1).

w, = Zp"t'b(te W and ¢ =n — 1).
(iv) &4 ={G|G = () + [{u.|n e N}], where u, — pu,., €
() and 4, = v, + t,w, with 0 < ¢, < p"}
& ={G|G = €(F) + [u.|nwe N| where u, — pu,,, € () and
U, = W, + 8,v, with 0 < s, < p"}.
The following proposition records the obvious connections between
these objects.

II. B. PROPOSITION.

(1) A1®A2:E;G1@G2:g(j).
(ii) A =[{v.|neN}] + G, .

A, = [{w,.|neN}] + G, .
(iii) AlG, = Z (o) for 1=1,2.
(iv) Z(7°) = [{valne N} + £(F) .

(#) = [{w,|me N} + £(F) .
(v) G is a pure subgroup of B with G/Z(7) = Z,() iff Ge
4 4.

At this point we have explicitly realized B/Z(_#) as 4,/G, @ A,/G.
and have definite sets of representatives for A,/G, = Z,(~) and A4,/G, =
Z,(). By LB.v. the groups G that we are interested in are obtained
by taking a rank 1 summand of A,/G, @ A./G, and adding its represen-
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tatives to & (_#). Any such summand D will be complementary to
either A,/G, or A,/G, (or both). Now if D is complementary to A4,/G,,
for example, let 7, and 7, be the projections into A4,/G, and A,/G,,
respectively, with respect to the decomposition A4,/G, @ A,/G,. Then, of
course, for de D we have d = 7,(d) + 7.(d) and ¢ defined by ¢(z,(d)) =
w(d) is an element of Hom (4,/G,, 4./G,). In fact, there is a one-to-
one correspondence between H, = Hom (A,/G,, A4,/G,) and 5# and
H, = Hom (4,/G,, A,/G,) and 57. The following definition and proposi-
tion set forth the precise situation.

II. C. The Correspondence.

(i) Let ¢ H,, then ¢(v, + G) =t,w, + G,. Letwu, =9, + t,w,
and deflne Gl¢] = < (7) + [{u.|n e N}].

(i) If Ge A with G = £(.7) + [{v, + t,w,|n e N}], then define
6[Gl e H, by ¢|Gl(v, + G) = t,w, + G..

II. D. PRroOPOSITION. For ¢c H, and Ge S

(i) GJg] s a unigquely determined element of 7.

(ii) ¢[G] 2s a uniquely determined element of H,.

(i) GG = G.

(iv) SIGI8I] = o

By interchanging the roles of the w, and v, we get a similar
one-to-one correspondence between H, and 2#,. In fact, H, and H,
coordinatize 577 and 57 with some overlap as the following proposi-
tion makes clear.

II. E. PROPOSITION. If ¢ and + are distinct elements of H, U
H,, then Gl¢] = Glv] tff ¢ and + are isomorphisms with ¢ = .

Proof. This is the case where the summand defining G[v] is
complementary to both A,/G, and A,/G,.

We are now ready for the fundamental definition and theorem of
this section.

II. F. DerINITION. Let S, S, T, T, be abelian groups and let
é6eHom (S,/S,, T./T,). We say that ¢ is liftable if there is a d¢
Hom (S, T)) such that the following diagram commutes:

S, — " T,

S1/S2 "_é"‘" Ti/Tz .

II. G. THEOREM. Let Ge 57 with G = Glg] for ¢ H,. Then
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G = <Z(7) if and only if ¢ is liftable. A similar theorem holds for
Ge 27.

Proof. Clearly G = £ (77) if and only if there is a pure torsion-
complete subgroup A of G with I(4) = V.

(i) If ¢ is liftable, then @ ¢ Hom (4,, A,) by definition of liftable.
Now @ can be thought of as an endomorphism of B by taking @(4,) =
0. With this understanding, @ is height increasing on B[p], since if
ke W, @(p*b,) = 0, and if ke V, then 6(@(p*b,)) c W, so k¢ 6(D(p*by,)).
Let A= (1 + @)(4). Then AP A, =B, so A is a pure torsion-
complete with I(4) =V. If xze A,, then x = g + rv,, where g€ G, and
0 <r < p" for some n. Consequently, (1 + @)(z) € G since @ liftable
implies #(G,)C G, and v, + @(v,) e G. It follows that A C G.

(i) Assume that there exists -a pure torsion-complete A with
Ac Gand I(A) =V. Since UA) N U(G,) = Z(V)N (W NF)is empty,
we have A -+ G, is pure and the sum is direct. We claim that, in
fact, A@ G, = G. To see this note that U4 P G,) = F(V) + (WN.”)
so U(A P G,) is free. Hence any basic subgroup of A @ G, will be a
basic subgroup of B. One such basic subgroup is B’ = B, @ B, where
B, is a basic subgroup of A and B, = BN G,. One sees easily that with
respect to B', A @ G, is of the form Z(7"). Hence B/(A D G.) = Z,()
by 4.2 in [1]. And since AP G, = G, B/G = Z, (), and both G and
A G, are pure in B, we have A@ G, = G. Now B = A @ A, since
A A)=N. Let & be — (n|A,) where « is the projection of B
on A, associated with this decomposition of B. To show that @ is
a lifting of ¢ we must show the following two things:

(a) 9(G) S G,. This is clear because G = A D G, implies (A P
G)NA22(F)N A, = G, and @ maps into A, which is the closure
in B of G,.

(b) o(v,) = t,w, mod G, where G = £ (7) + [{v, + t,w,|ne N}].
Because v, + 9(v,) € A C @G, it follows that (v, + @(v,)) — (v, + t.,w,) =
o(v,) — t,w, € G. Therefore, since 6(d(v,)) c W, ®(v,) — t,w, € GN A, =
G,; that is, &(v,) = t,w, mod G,.

II. G. REMARK. Note that it is not possible for G = G[g] e =&
to be isomorphic to Z(%#7) if Ker¢ > 0. This is the case because
G = (") implies that there is a pure AcCc &(¥#?") with A = A,
and Ker ¢ > 0 implies that A,[p] € G which would give G[p] C A,[p] +
Alp] = B[p]. The purity of G would now give G = B, a contradiction.
If Kerg =0, then we might have G = £ (%#7), this will occur if
¢7'e H, is liftable. Therefore, this theorem together with the corre-
sponding theorem for G e 57 give a necessary and sufficient condition
for G to be isomorphic to & (7") or & (¥#).
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III. In this section we state the main theorems of the paper.
The notation remains the same as that of II.

III. A. DeriNITION. For ¢ € H, U H, let K(3) = n if |Ker ¢| = p™.

III. B. PROPOSITION. Let ¢,+re H,. If K(¢) = K(4), then Glg]
is tsomorphic to Glv] and similarly for H,.

Proof. Glg] = ©(.7) + [{v, + t,w,|ne N} and G[y] = £ (F) +
v, + s,w,|ne N}]. Let m = K(¢) = K(+). Then ¢, = p™t, mod p*
and s, = p™s, mod p~ for (¢, p) =1 and (s}, ») =1 for n > m. Let
r, be such that r,t, = s, mod p*. Define a by:

ab,)=10b, for keVUlhe Wih<m—1}
a(b) = r,.,b, for heW and Az=m—1.

JII. C. DEFINITION.

(i) n(7, #) = min{K(¢)| ¢ € H,, U(G[4]) = 7} if this exists, and
o otherwise.

(i) %7, #7) = min {K(¢)|¢ € H,, U(G[¢]) = 7} if this exists,
and oo otherwise.

III. D. PROPOSITION. Let ¢€ H;. Then ¢ is liftable if o >
K(g) =z n(7", 77).

Proof. Let a = n(7", % ). By Ill. B. we have G¢] = & (7")
for every ¢ ¢ H, with K(¢) = a. By II. G. every such ¢ is liftable.
If K(¢) > a, then there is a € H, with

pX @70 = ¢ and K(y) = a. Then p*¥' ¥ = @ is a lift of 4.

III. E. DEeFINITION. If 7c N and % any integer, then we write
I—nfor {i —nlieI}NN. If 7 is an ideal of ZP(N), then 7" =
{I—nlIc7}.

III. F. PROPOSITION. Let 7° be a maximal free ideal of F(N).
Then

(i) 77" is a mazximal free ideal of 7 (IN).

(ii) If n = m, then 7"+ 7™

(i) n(7", 7™ = m; (7", 7"™) = 0.

Proof. (i) Clearly 7" is free. If V= N and Vg 7°*, then V +
ng?. Since N—(V+nU@ — V)+ n) is finite we have (N —
V) + ne? by maximality of . Therefore, N — Ve 7" by defini-
tion and 7" is maximal.
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(ii) If I¢ 7, then I — me¢? ™™ and I — n¢ 7 ™. Consequently,
f 7ym=7" then I—mNI—n¢7™=7"where I—-mnNI—n=
{k — m|there is a k'€ I with k — m = k' — n} = {k — m|there exists
keI with £k — k¥’ = m — n}. However, since 7~ is free, there exist
I's such that I¢ 7" and having the property that if %, k' e I with
k+Fk, then |k — k'| > m — n. For such an I we actually have I — m
and I — n disjoint.

(iii) Let V< N be such that V¢ 7" and VN (V — m) is empty.
Let W=(V-m)UNN — V), % = 7™ and use the notation of §2.

Let ¢ e H, with ¢(w, + G;) = v, + Gi.. A computation shows that
the following @ is a lift of ¢:

O(b;) = p™bjy,, for je V—m and O(b;) = 0 for je W — (V — m).
For this @ we have K(¢) = 0, so n,(7", 7"™) = 0.

Let ¢ € H, with ¢(v, + G,) = p™w, + G,. Define a lifting @ of ¢
as follows.

@(b;) = b;_, for ¢ Vand i = m

@(b;) = 0 for i€ V and 7 < m.

Once again, a straightforward check shows that @ is a lift of 4.
Hence, n(7", 7™ < m. By III. G. (ii) below, if » = n,(7; 7™ < m,
we have W = 7 = "™ in contradiction to III. F. (ii).

We now show that if & (_#) possesses at least one extension of
the form Z(7°) and at least one of the form ¥ (977) (other than the
ones corresponding to the zero homomorphisms in H, and H,), then
%" = 7°" for some m, or vice-versa.

III. G. THEOREM. Let 7" and %7  be maximal free ideals. If
n (7, #") < oo and (7", W) < oo, then

(i) n(7",#7) =0 for one of i =1 or 1 = 2.

(1) If n(7, 7)) = 0, then % = 7°", where n = n(7; %°).

Proof. Deferred to §IV.

III. H. COROLLARY. If 7" and %7  are moaximal free ideals with
I =N ¥, then there does not exist a G with £(~)C G, G/Z ()=
Z(0), and U(G) = 7 if and only if %% =7 or " = %

Proof. () If # =7 then n( 7, %) =0 and n( 7, %) =1
by III. F., so Ge 57 implies G = &(7°) and Ge 54 — 57 implies
G= (7).

(ii) If the G mentioned does not exist, then for every Ge 54 N &%
we have either G = (") or G= £ (%#"). Hence, one of the n, (7", %#")
is zero and the other is 1. By III. G. we have either 7" = %™ or
W =N

III. 1. THEOREM. If 7, ---, 7, are distinct maximal free ideals
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and 7 = 7{(1 = i = n), then there is a G, pure in B, with & (7) C
G, UG) = 7 and B/G = Z,() if and only if there is no pair 1, j
with 7; = 77

Proof. As in the case of n = 2 we may choose I; such that I;¢ 77,
N=UILQL<L i< n) with I, and I; disjoint for 7 == j. Define A; as
the torsion-completion of Y P [b;](je ) and G; as L (F(I)N 7).
For each ke N and each 1 <t n let v, = Yp™"*'b,(je ). Then
{v;»|k€ N} is a canonical set of generators for A;/G; = Z,(c). Let
H,; = Hom (A4,/G;, 4;/G,;) and 257, = {G|G is pure in A, P A; with
(A: D A)/G = Z,() and GO G; D G4}

Since our earlier theorems could have been stated and proved for
a standard subbasic we know that H;; coordinatizes 577;, that if
Ge 274; then G = A, B G; if and only if the associated ¢c H; is
liftable, and that Theorem III. G. holds.

We can realize B/<(_#) = D as YA;/Gi(1 <1 < n). Observe that
if G is a pure subgroup of B with B/G = Z,() such that G > & (_#),
then G is obtained by taking a rank # — 1 summand D, of D and
adding a set of representatives for D, to (7). Since D, is of rank
n — 1 there must be at least one summand of the form A,;/G;, with

D = (4,/G) @ D;. For j =+ 1 let ¢;, = — m;,; where «;; is the projec-
tion of A;/G; into A;/G, associated with this decomposition. Then
D,=3®Z(=1,---,nand j# 1) where a complete set of generators

for Z; is {v;, + ¢;:(v;) |k € N}. Alternatively if S;;e 57, is the
group associated with ¢;,¢e H;;, then G is the group generated by
{S;.q}.

In fact, G will contain other groups of the form S;,e 274, If
1% j # h+#1and K(¢;,;) = K(¢,,;), then let ¢,, € H; , be the map defined
by 65,1(vi) = i if 65:(v50) = 7e8n,i(Vii).  IE Sy € 577, is the group
associated with ¢,,, then we have S;, c G. It follows that for every
pair j,h with 1 < j, h < n, G contains an element of either 57, or
o7, ;. Consequently, in view of III. H., if U(G) = .7 then we cannot
have 7; = 77 for any pair 1, j.

Suppose now that we do not have 7; = ;' for any pair ¢, j.
Then for every pair 1, j either n(%;, 7;) =2 or w7, 75)=2. A
simple combinational argument shows we may assume that n,( 7;, 7;) =
2|75 —i|. Fori>1 choose ¢;,¢ H;, with K(¢;,,) =1 — 1 and let S;, ¢
57, be the group associated with ¢,,.

If G is generated by {S;.|i =2, ---, n}, then G is pure, B/G =
Z () and GO Z(.#). We claim that U(G) = _# If not, then I;¢
U(G) for some 7. Note that I, ++ I, since this would mean that there
existed a pure torsion-complete A with A G and I(4) = I,. However,
APAD---PA,=Band (4, --- @ A,)[p] G by construction,
so Ac G would imply G[p] = B[p]. Since G is pure this would give
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G = B, a contradiction.

As noted above, for every pair k, j, G contains a subgroup of 5% ;
or 5%, Because of our assumed ordering of 73, ---, 7, we know
that for j <k G>OS,;,;c5%,,. Let T be the group generated by
{S;,;lk =1+ 7}. Then clearly G = T S;,- On the other hand, U(T),
U(4), and U(G,) are pairwise disjoint, so T P A b G, is pure and since
AD--- DA DALD - DAINTDG) = Z,(~) we have G =
THGADG,. Hence S;;, = AP G,. But this contradicts our choice
of S;,. Hence U(G) = A

IV. In this section we provide the proof of Theorem III. G.

For simplicity, the following remarks and proposition will be stated
for g€ H, The case of ¢ H, is exactly the same. The notation is
that of II.

Let ¢ € H, and assume that @ is a lift of ¢, with &(b,) = 3 m,,,b.(h e
W) for each ke V. If r is any integer, then we can write @ = @, , +
?,,., where @, ,(b,) = Zm,,by(heW and h <k +7r) and @,,(b,) =
2my b, (he W and h = k + r) with the understanding that either of
these sums is zero if its index set is empty. Clearly @,, and &,
are elements of Hom (4,, 4,).

IV. A. LemMa. 0, (G) < G, and @,,(G) < G..

Proof. Since O(G,) & G, we need only show that @,.(G) € G,.
Let x € G, and assume @, ,(x) ¢ G,. Then for some J € 7; & = Ym,b,(keJ)
with mb, = 0. If J, = {keJ|0(m,b,) = p°**} and z, = Zm,b,(keJ,),
then z = J%,(0 < s £ n — 1) where 0(x) = p". Since 9@,,(z) ¢ G,, there
exists an s such that @, ,(x,) ¢ G,. Hence we may assume that x = =,
and J = J,.

Since 0(m,b,) = p*+* for keJ, we may write m,b, = p*~*l,b, where
(I, p) = 1. It follows that

(1) 9,,,(mby) = Zp**limy byl — s — 1 < h <k +7)

because h < k — s — 1 implies p**b, = 0.

Foro<t<s+r+1let K, ={t +n(s+r + 1)|ne N}nJ. Since
the K, are pairwise disjoint and J = |J K;(0 < ¢t < s + r + 1) we have
z=232,0=<t<s+r+1) where x, = Smb, (ke K,). It follows that
there exists a ¢ with @, .(z)¢ G.. Hence, we may assume that & = ,
and J = K,. As a consequence, if jeJ and keJ with j = k, then j
and % differ by at least s + r + 1 in absolute value and by (1) above
0(®,,,(m;b;)) and 6(®,,,(m,b;)) are disjoint.

We now know that the (@, .(m,b,)) are pairwise disjoint for ke J
and that their cardinality is less than s +  + 1. Hence, 4(2,,.(x)) =
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U (@, (mb))(keJ) and, since @,,(x)e G, 6(D, (x)e F(W)N A
Therefore, it is possible to choose one integer ¢, from each d(®, ,(m;b,))
such that {¢t,|keJ}e P(W)N A For ked we define n,b, inductively
as follows:

(i) mub, = myb, if & is the least element of /.

(i) n.b, = 0 if w, e o(@(Fn;b))) for 7 <k and jeJ

n.b, = mpb, if w,e d(@(Zn;b,)) for § <k and jelJ.
Let

y = Inblkeld).

Then d(y)cJ 80 ye G,. On the other hand, §(@(y)) D {w,|k e J} since
i€ 6(¢(mb,)) implies 1 >k —s—1and w, <k —s—1 for j <k and
jeJ. Hence @(y)¢ G, and this is a contradiction to the assumption
that @ is a lift of ¢.

IV. B. Proof of IIl. G. Let n=n(7 27") and m = ny( ¥,
%7). Choose ¢c H, with ¢(v, + G,) = p"w, + G, and € H, with
w(wy, + G,) = p™v, + G,. Let @ and ¥ be the lifts of ¢ and . In
the notation of Lemma IV. A., let 0 =@,, +- @,, and ¥ =¥, + ¥, ..
By IV. A., @,, and ¥,, induce maps ¢,€ H, and € H,. If (vd. v, +
G) = rw, + Gy, then 6(b,) = 7,0, for ke V is a lift of (y,¢,) since
b, = V1 — DUy, for ke V by definition.

We claim that +, = 0 or ¢, = 0 or, equivalently, that ¥, .(4,) C G,
or @,,(A)C G,. To show this we need only prove that .6, = 0 since
the images of +, and ¢, must be either Z, (o) or zero. If 4,6, % 0,
then {k]r,.0, %= 0}e .22 (V)N 7 since # is a lift of g, If je
o(¥,,0,,.(b,), then j > k since h € 6(D,,,(b,)) implies h >k and j € 6(¥,,.(b,))
implies 7 > h by definition of @,, and ¥,,. Hence (0 — ¥,.0,.)(b,) =
P00, + Y, Where j € 6(y,) implies 5 > k. Since {k|r,..b, = 0} ¢ ZA(V) N
7% a construction exactly like the one at the end of Lemma IV. A.
produces an xze€ A, — G, with (0 — ¥,,0, )(x)e A, — G,.. However, 8
and ¥,,0,, are both clearly lifts of gy, so (9 — ¥,,0,,)(4) CG.
This contradiction shows that ¢, = 0.

Assume that ¢, = 0. It follows that @, is a lift of 9. Let 4, =
G, yu—0,, for 0Zt<n-—1and 6,=,_,.,. Then 64.(G) < G,
since @,, has this property for every . Therefore, 4, induces 6, ¢ H,
and, since @,;, = 30,0 <t < n) we have ¢ = Y0,(0 £t £ n).

If 4, # 0, then there is a k& with 6,(v,) = s,w, = 0mod G,. Since
Ov,) = 20,070y = — Ipim; b, (7€ V), we have

V' = {je Viptm, b, = 0)e P(V) O 7

and W =V' — te FP(W)n .~ However, since 6,(G) & G,, it follows
that for any subset K of V', ¥p'"*'b,(je K) is an element of G, if
and only if — Yp"*"'m,;_,b,_,(j € K) is an element of G,. Equivalently,
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KeZ2(V)n ifandonlyif K — te A(W)N A Since V'V, Wc
W,V'¢ # and W'e¢ . ” we clearly have % = 7', By IIl. F. (iii)
we have n = n,( ¥, %) <t < n. It follows that 4, = 0 for ¢ < » and,
since ¢ = 0, 0, = ¢ which implies %~ = 7"
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