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ONE SPHERES EMBEDDED IN S* BY
TAME POLYHEDRA

ROBERT J. DAVERMAN

We investigate properties of an (#» — 1)-sphere 2 topologic-
ally embedded in the n-sphere S* (» = 6) implying that each
(n — 8)-dimensional polyhedron in 2 can be homeomorphically
approximated by polyhedra in 2 that are tame in S*. In case
2 bounds an 7n-cell, we relate these properties and the exist-
ence of homeomorphic approximations to X by locally flat
spheres ‘“‘mostly’’ outside this n-cell. This leads to a negative
result eliminating a natural generalization to Bing’s Side
Approximation Theorem.

1. Definitions and notation. For any point p in a metric space
S and any positive number §, N,(p) denotes the set of points in S
whose distance from p is less than 4.

The symbol 4*> denotes a 2-simplex fixed throughout this paper,
o04? its boundary, and Int 4° its interior.

Let A denote a subset of a metric space X and p a limit point
of A. We say that A is locally simply connected at p, written 1-LC
at p, if for each ¢ > 0 there is a 6 > 0 such that each map of 34*
into AN N;(p) can be extended to a map of 4*into AN N.(p). Fur-
thermore, we say that A is uniformly locally simply connected, written
1-ULC, if for each ¢ > 0 there is a 6 > 0 such that each map of J4*
into a d-subset of A can be extended to a map of 4* into an e-subset
of A. Similarly, we say that A is locally simply connected in X at
p, written 1-LC in X at p, if for each ¢ > 0 there is a ¢ > 0 such
that each map of d4* into A N N,(p) extends to a map of £ into N.(»),
and we say that A is uniformly locally simply connected in X (1-
ULC in X) if the corresponding uniform property is satisfied.

We use p to denote a metric on S”. In case f and g are maps
of a space Y into S”, then o(f, g) denotes the least upper bound of
{o(f (), 9)|ye Y}. If Y is a subset of S* and f maps Y into S~,
we call f an e-map if o(f, i) < e, where ¢ denotes the inclusion map;
in addition, Y is called an &-set if the diameter of Y, written diam
Y, is less than e.

Let X be a closed (» — 1)-manifold topologically embedded in S
and T a (curvilinear) triangulation of 3. For¢ =0,1, <+« , n — 1 T®
denotes the i-skeleton of 7 and mesh 7 the maximum diameter of
the simplexes in T. For a subset X of 3, the star of X in T, written
St (X, T), is the collections of all simplexes = of T for which there

417



418 ROBERT J. DAVERMAN

exists a simplex v of T such that 7 is a face of v and TN X = ©.

A compact 0-dimensional subset X of 3 is said to tame (relative
to X) if there exists a homeomorphism A of X onto itself such that
h(X) is contained in a tame arc in 3, and a 0-dimensional F, set F'
in X is said to be tame (relative to X) if F' can be expressed as the
countable union of tame (relative to X) compact subsets.

We use the symbols Cl, Bd, Int to denote the topological closure,
boundary, and interior, respectively.

Other relevant terms are defined in [4].

2. Approximations to polyhedra and tame 0-dimensional sets.

LeMMA 1. Suppose X is an (n — 1)-sphere in S*(n = 6) and W
18 a component of S™ — X such that there exist triangulations R of
3 of arbitrarily small mesh for which W is 1-ULC in WU (Z — R®).
Let f be a map of 4* into Cl W such that f(@4&H W and € be a
positive number. Then there exist a map g: 4*—Cl W and a trian-
gulation T of 3 satisfying (i) o(g, f) < e, (ii) g|04* = f |04, (iii) mesh
T<e (v) g(HNT® = @, and (v) the diameter of each component
of 9(4) N 2 1is less than e.

Proof. By [5, Cor. 2C.2.1] or [6, Th. 3.2] we can assume that
FUf(4Y) N %) is 0-dimensional.

Step 1. Determine a positive number § so small that any é-
subset of Y is contained in an open (n — 1)-cell in 3 of diam < ¢/4,
and cover f7(f(4) N Z) by a finite collection of very small, pairwise
disjoint, open 2-cells Y,, Y,, --+, Y, in Int 4% TUse general position
techniques to approximate f by a map s: 42— S* such that

(1) sl -UY.=r7l#-UY,,

(2) o(s, f) < e/,

(3) diams(Y) <min {3, e/d} (i =1, -+, k),
(4) SY)Ns(Y) =@ (<i<j<h).

Choose a positive number « such that

(5) a<@PpE(YIn, s(YAn3) (@=i<jish),
and choose a triangulation T of X such that

(6) mesh T < min {«, ¢/4},

(7) Wis 1-ULC in WU (X — T%).
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Step 2. By Condition (3) each set s(Y;) N Y is contained in a
small (n — 1)-cell in Y. Let X denote the component of 4* —
s7(s(4) N 2) containing 04° and observe that 4* — X< lJ Y,. Apply
Tietze’s Extension Theorem to extend s|Bd (Y, — X) to a map of
Cl(Y; — X) into an (n — 1)-cell in I of diam < ¢/4, thereby defining
a map t: 42— Cl W such that

(8) X =s]X,

(9) diam ¢(Y;) < ¢/2,
(10) o, s) < /2,

11) NI = £ — X

Step 3. In this step we indicate how to approximate ¢ so that
the images of distinct Y.’s are disjoint. For ¢ =1,2, «-+ k let R,
denote U, St (s(Y;)N 2, T), and let Q, denote St(s(Y;)NnZX, T).
The choice of « and T implies

(12) QinRi:® (’521,2,'“,/12).

For ¢ =1,2, --+, k there exists a compact 2-manifold-with-boundary
H, such that

(13) Bd(Y, — X)cInt H.c H,C Y.,
(14) HH)N X cIntQ, .

By approximating ¢]4® — Cl1 X: 4* — Cl X— 3 by a general position
map, we can assume in addition that

) (Y, -ClX)nuY;,—ClX)=0 (1=<i<j=<h),
(16) (L —-ClX)NT =@ .

With the techniques of [5, Cor. 2C.2.1] or [6, Lemma 3.1] we
construct a map u: 4*— Cl W very close to ¢ such that

(17) pw, s) < /2,

(18) diam u(Y;) < ¢/2,

(19) w| s —UH =t|4£~UH,

(20) Int H; N u'(u(4®) N Y) is 0-dimensional ,
(21) wH)NTcIntQ, (QA=i1=ZFh).

Since W is 1-ULC in WU (S® — T?), we can adjust the map a little
at points of Int H, N u~*(u(4%) N ) to make certain that w(Int H;)N
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T® = @, and by Conditions (11), (16), and (19) we have
(22) wdAHNT? =@ .

Fori=1,2 -+, k let B, =Y, — (H,;U X). By taking a general
position approximation to u|{J B,, keeping wu(4*— | B) fixed, we
can assume that

(23)  (dual (n — 4)-skeleton of T)YNR, Nu(B;) = D .

Now we push each «(B;) N R, very close to 7® UBdR,, thereby
defining a map g: 4> — Cl W such that

(24) 9|4 —UB: =ul4—-UB,
(25) s(UB)c?t,

(26) o(g, w) < mesh T < ¢/4,

@7 diamg(Y) <e(l =i =4k,
(28) JBINGH) =2 (@l j=i).

By continuing to require general position approximations, we can
choose ¢ so that

(29) gB)NgB) =0 (1=5i<j=kh),
(30) sqUB)NT® =g .

It follows from Conditions (11), (19), and (24) that g(£) N 2% is
contained in g(U ((Y: — X) U Hy)); from (22), (24), and (30) that
9N T*® = @; and from (21), (28), and (29) that I N g(Y,) N 9(Y;) =
@ whenever ¢ # j. Furthermore, Conditions (2), (17), and (26) imply
that o(g, f) < e. Thus, g is the required map.

LemmA 2. Under the hypotheses of Lemma 1, there exists a
map g of 4* into Cl W such that o(g, ) < ¢ and g(£H N3 is a tame
0-dimensional subset of 3.

Proof. Let e€,¢, --- be a sequence of positive numbers such
that 3¢, < e. Apply Lemma 1 repeatedly to obtain a sequence {g.}
of maps of 4* into C1 W and a sequence {,T} of triangulations of %
satisfying

(1) 0(Gny 9n1) < &,
(2) g, |04 = flos,
(3) mesh, T < s,,
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(4) 9.(AHNEZNT? =g .

(5) The diameter of each component of ¥ N g.(4% is less than
¢,. Here g, denotes f. In addition, after g, is defined, the remain-
ing maps ¢,,, are required to be so clogse to g, that

(6) there exists a neighborhood U, of ,T® such that g,.,,.(4%) N
U, =,

(7) there exist finitely many open (in S”) sets E,, E,, +--,
E, .., each of diameter less than ¢, and having pairwise disjoint
closures such that

k(n)
gn+r(AZ) ﬂ 2 - U En,i ’

k{n) kin)
gnw‘—rldz - g;jﬂ.('«:lJl En,7,> = gnlA2 - g;1<L=JI Enz) .

Let g =limg,o-+.0g,. Clearly g is a map of 4* into Cl W such
that o(g, f) <e. That g(4) N 3 is 0-dimensional follows from Con-
dition (7): g(4) N 3 is covered by U:» Cl E, ; for every =, and these
sets can be expanded to give an open cover of g(4%) N 3 by arbitrarily
small, pairwise disjoint, open subsets of S*. Furthermore, Condition
(6) implies that g(4) N ,.T*® = @ for every =, from which it is easy
to demonstrate that ¥ — (g(4*) N %) is 1-ULC. Consequently, the tame-
ness of g(4*) N 2 follows from [9].

THEOREM 3. If X is an (n — 1)-sphere in S™(n = 6) and W 1is
a component of S™ — X such that there exist triangulations R of 2
of arbitrarily small mesh for which W is 1-ULC in WU (Z — R?),
then there exists a tame (relative to X) O-dimenstonal F, set F' such
that WU F 4s 1-ULC.

Proof. For each & > 0 there exists a finite collection of open
sets {V;} covering S” such that any map of 94% into V,N W extends
to a map f of 4% into an e-subset of Cl W. By Lemma 2 there exists
a map g of 4* into an e-subset of Cl W such that g|d4* = f|04* and
g(4) N % is a tame 0-dimensional subset of ¥. Since there are just
a countable number of homotopy classes of maps of 04 in V, N W,
one can define a set F' as the countable union of sets of the form
9(4) N 2 so as to make it obvious that W is 1-ULCin WU F. The
argument given for Theorem 4.2 of [2] can be used to prove from
this that WU F' is 1-ULC.

The hypothesis regarding R® in these first three results may
appear unnatural, but it is necessary in order to deal effectively
with a sphere ¥ which is well-behaved (in terms of Theorm 3) from
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only one of its complementary domains. In the following theorem,
the main result of this section, where one must consider both com-
plementary domains of 3, one naturally resorts to the condition that
R™® be tame. Seebeck has established a similar theorem [12, Th. 4]
for an m-manifold ¥ in S® such that » — m > 1. Using different
means Bryant has demonstrated the equivalence of Conditions 1 and
3 [3, Th. 3].

THEOREM 4. Let X denote an (n — 1)-sphere in S"(n = 6). The
Sollowing statements are equivalent:

1. There exist triangulations R of X of arbitrarily small mesh
Jor which R® is tame relative to S™.

2. There exists a tame (relative to X) 0-dimensional F, set F
in X such that, for each component W of S* — %, WU F 4s 1-ULC.

3. For each k-dimensional polyhedron P(k < n — 3) topologically
embedded im ¥ and ¢ > 0, there exists an &-push h of (X, P) such
that h(P) is tame relative to S™.

Proof. Clearly, (3) implies (1). We shall prove that (1) implies
(2) and (2) implies (3).

Assume (1). Let W, and W, denote the components of S* — ¥,
and T a triangulation of 2 for which T is tame in S”. Any very
small loop in W, is contractible in a very small subset of (S — T®).
The technique of Step 2 in Lemma 1 can be used to cut off this
contraction on a small subset of X, and a general position approxima-
tion (in %), as in Step 3 of Lemma 1, can be used to force the con-
traction to operate in a small subset of Cl(W,) — T®,

Consequently, Theorem 3 implies the existence of a tame (relative
to X) 0-dimensional F, set F; such that W, U F, is 1-ULC (¢ =1, 2).
Let F = F,UF,. Clearly, W, is 1.-ULC in W, U F(i =1, 2) and the
argument of [2, Th. 4.2] can be applied again to prove that each
W.U F is 1-ULC.

Assume (2). Construct an e-push 2 of (2, P) such that A(P)N
F=@. It is relatively easy to prove that S* — m(P) is 1-ULC.
Hence, by [4, Th. 3] and [10, Th. 1], 2(P) is tame.

Furthermore, the argument in the preceding paragraph, omitting
the last sentence, produces the following result.

COROLLARY 5. Suppose X is an (n — 1)-sphere in S*(n = 6) sat-
18fying any of the statements of Theorem 4. For each k-dimensional
compactum Kk =n — 3) in 2 and positive number ¢ there exists
an e-push h of (2, K) such that S* — K(K) 1s 1-ULC.

REMARK 1. The examples constructed in [7] indicate that the
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hypothesis of Theorem 3 is necessary. There exists an n-cell C in
S*(n = 4) that is locally tame modulo a Cantor set, but some 2-cell
in Y = 0C cannot be pushed to a tame 2-cell by a small push of 2.
Thus, no tame (relative to ) 0-dimensional F, set F will cause
(S* — C)U F to be 1-ULC (at least in the case » = 5; a somewhat
more complicated contradiction can be found for the case n = 4).

REMARK 2. In case n = 4 the equivalence of Statements (1) and
(2) in Theorem 4 can be demonstrated with methods more element-
ary than those developed here; however, in case » = 5, the equiva-
lence of these statements is an open question.

In case ¥ is only partially wild, there is another condition im-
plying the existence of the F, set, perhaps simpler than that of
Theorem 4. Quite obviously it cannot stand as 2 necessary condition;
any 2 locally tame modulo a Cantor set tame relative to X but wild
relative to S would serve as a counterexample.

THEOREM 6. If the (n — 1)-sphere X in S™(n = 6) is locally tame
modulo an (n — 8)-dimensional set X and each tame Cantor set in
2 is tame relative to S*, then ¥ contains a tame (relative to XY) O-
dimensional F, set F such that, for each component W of S — 2,
WU F is 1-ULC.

Proof. The idea here is elementary: for each tame 2-complex
P in Y and &> 0, we build an e-push of (3, P) such that A(P)N X
is 0-dimensional. This is accomplished by pushing the 1-skeletons of
increasingly fine triangulations of P off X. The hypothesis dim X <
n — 3 makes this possible by guaranteeing that near each arc A in
Y isan arc A" in ¥ — X.

As a result h(P) is locally tame modulo a Cantor set in A(P) N
X. By hypothesis such a Cantor set is tame in S”. From this one
can prove quite easily that A(P) is tame by showing that S™ — h(P)
is 1-ULC.

This means that X contains triangulations of arbitrarily small
mesh having tame (in S") 2-skeletons, and the desired conclusion
follows from Theorem 4.

3. Side approximations to the boundary of a cell. Bing’s
Side Approximation Theorem [1, Th. 16] has been so essential to the
study of embeddings of surfaces in S°® that there may be value in
making some observations about generalizations to it in higher dim-
ensions. In the definitions that follow X denotes an (n — 1)-sphere
in S* and W a component of S* — 3. We say that X can be almost
approzvimated from W if for each ¢ > 0 there exists an e-homeomo-
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rphism % of X into S™ and there exists a finite collection E, E,, ---,
E, of open, pairwise disjoint, e-sets in ¥ such that #(Z) N 2 is con-
tained in |J E; and the diameter of each component of A(3) — W is
less than . We say that XY can be strongly almost approvimated
from W if the preceding defining properties are satisfied with the
additional hypothesis that the E,’s be open (n — 1)-cells on . If the
reembeddings h can be obtained so that, in addition, A(2) is locally
flat, then we say that 3 can be (strongly) almost approximated from
W by locally flat spheres.

The examples of [7] indicate that some spheres X can be almost
approximated from a complementary domain W but cannot be strongly
almost approximated from W. This is clarified by the remark fol-
lowing Corollary 5 and by Theorem 8, which relates, for the case
where S® — W is an n-cell, the existence of a tame (relative to %)
0-dimensional F, set F such that WU F' is 1-ULC and the property
that 3 can be strongly almost approximated from W.

LemMMA 7. Suppose ¥ is an (n — 1)-sphere in S™ and W is a
component of S* — X such that X can be strongly almost approxi-
mated from W. Then 3 contains a tame (relative to X) 0-dimen-
sional F, set F such that WU F 4s 1-ULC.

Since the details of this argument would read like a too-familiar
story, we sketch a brief outline. For each map f: 42— Cl W such
that f(04) c W and each ¢ > 0, we cut off f, first on a very close
approximation X’ to Y and then on some small cells containing 3’ N %,
in order to define a map g: 4*— Cl W such that o(g, ) <e, gl =
f104% and g(4%) N X is contained in the union of finitely many pairwise
disjoint, open (n — 1)-cells in ¥, each of diam < ¢. We then follow
the procedures in the proof of Lemma 2 to obtain a sequence {g,}
of maps of 4* into Cl W that converges to a map g¢: 4#2— Cl W such
that o(g, /) <e, g|o4* = f|of, and g(4) N 2 is covered by collections
of finitely many pairwise disjoint, arbitrarily small, open (» — 1)-
cells in ¥. Lemma 2 of [9] implies then that g(4) N2 is a tame
0-dimensional subset of 3.

THEOREM 8. Suppose the (n — 1)-sphere 3 im S™(n = 5) bounds
an n-cell C. Then 2 contains a tame (relative to X) 0-dimensional
F, set F such that (S — C) U F is 1-ULC if and anly if 2 can be
strongly almost approximated from S* — C by locally flat spheres.

Proof. The sufficiency half of the theorem is an immediate con-
sequence of Lemma 7.
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Assume that X contains a tame 0-dimensional F, set F such that
(8" — C)U F is 1-ULC, and let ¢ denote a positive number. There
exists a countable collection {D,} of tame (n — 1)-cells in X such
that U D, D F, diam D, < ¢/2 for all 4, D; N D; = @ whenever ¢ = j,
and lim diam D,— 0 as % — oo,

Choose a null sequence {C;} of n-cells in C such that diam C, <
¢/2, C;N2Y =D, and C;NC; = @ whenever ¢+ 35, in such a way
that there exists an (¢/2)-homeomorphism f of C onto Cl(C — | C))
satisfying

(1) f1@-UD;, =1

(2) f(UIntD)cIntC

(3) f(2) is locally flat in C at each point of f(U Int D,).

Clearly S* — f(C) is 1-LC at each point of f(U D;). To see that
S* — f(C) is 1-LC at the other points of f(Z), observe that the C,’s
can be used to prove that each very small loop in S — f(C) is ho-
motopic, in a small subset of S* — f(C), to a loop in S* — C, which
is contractible in a small subset of (8" — C)U Fc S — f(C). By
[11, Th. 9], f(2) is flat.

As a result, there exists an (g/2)-homeomorphism g of S* onto
itself such that gf(Z) N f(C) = @. Let h = gf. Observe that 2(3) N
Y is contained in {J Int D,. Since the D,’s form a null sequence of
open subsets of 3, h(X) can intersect only a finite number of the
D.s. Consequently, the locally flat sphere A(X) strongly almost ap-
proximates (for this choice of &) ¥ from S™ — C.

As indicated in the comments following Theorem 9 of [11], we
could require the approximating spheres to be PL rather than locally
flat, which would better reflect the spirit of Bing’s work. However,
Theorem 8 as stated has an immediate generalization to closed PL
(n — 1)-manifolds 3 in S™ that are collared from one side, and such
a generalization could not be obtained so easily were the locally flat
condition replaced by a PL one.

COROLLARY 9. Suppose 2 is an (n — 1)-sphere in S™(n = 6) that
bounds an n-cell C. Then the equivalent statements of Theorem 4
all hold if and only if 3 can be strongly almost approximated from
S* — C by locally flat spheres.

COROLLARY 10. Let C* denote an (n — 1)-cell in S* '(n = b) and
C the natural suspension of C* in S*, the suspension of S*'. Then
the boundary 3 of C can be strongly almost approximated from
S* — C by locally flat spheres.

Proof. By [8, Cor. 7] there exists a tame (relative to 2) 0-



426 ROBERT J. DAVERMAN

dimengional F, set F'in 3 such that (S* — C) is 1-ULCin (8" — C)UF
(equivalently: (S — C) U F' is 1-ULC).

That the D,’s in the proof of Theorem 8 constitute a null se-
quence of tame (n — 1)-cells enabled us to prove that A(2) intersects
Y in the union of finitely many (n — 1)-cells. If we were to use an
arbitrary null sequence of open sets {D,} on X covering F, we could
construct an associated null segnence C, of open sets in C, with C,
homeomorphic to D; x [0, 1), in such a way that the argument there
will establish the following result.

THEOREM 11. Suppose the (n — 1)-sphere 3 im S™(n = 5) bounds
an n-cell C and contains a 0-dimensional F, set F' such that (S™ — C)U
F is 1-ULC. Then 3 can be almost approximated from S™ — C by
locally flat spheres.
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