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Let E be an open set in R™ which satisfies the “narrowness
at infinity” condition:

meas(EN{xeR~a=|z] <a-1}) < const (o 4 1)78,
for all ¢ > 0 and some 5> 0. It is known that a uniformly
strongly elliptic self-adjoint partial differential operator, on

such a set E, has a discrete spectrum of eigenvalues {1}.
This paper is concerned with the growth rate of the function

NQ) = ;.Es;. 1.

The main result of the paper is to give an upper bound for
N(2). This upper bound will be a function of the 3 from the
“narrowness” condition.

An unbounded open set E in Euclidean n-space R" is said to be
quasi-bounded if the points x€ E with |« | large are near the bound-
ary oE:

lim dist(z, 0E) =0.

g—oo,u € E

Let T be the L,(F)-realization of the uniformly strongly elliptic
second order partial differential operator a(x, D) with zero Dirichlet
boundary conditions:

a(x, D) = — >, alx)D*,  D* = (0/om,)™ -+ (3/0x,)*,
la|s2
’a’l = Iall + o+ ’anly
alx, &) = const [£]"™, weR", £c R

where a,(x, §) is the principle part of a(z, &); the coefficients a.(x)
are infinitely differentiable bounded real functions in R"; a(x, D) is
formally self-adjoint;

Z2(T) = H{(E) N {f € L(E): a(w, D)f € Ly(E)}
Tf =a@, D)f, fe=z(T),

where H/(E) is the standard Sobolev space. If E is quasi-bounded
and satisfies some additional smoothness conditions, that it is known,
Clark [4] and Adams [1], that T has a compact resolvent, and thus
a discrete spectrum, consisting of eigenvalues )\; satisfying
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O<MENMNS o Nj—>0 a8 J—> o0,

Define the “trace function” by
N =3 1.
L¥EYS

For a(x, D) equal to the Laplacian, the asymptotic nature of N(\)
was discussed by: Weyl for E a bounded set; Clark [5] for F an
unbounded set with finite volume; Clark and Hewgill [6] for E with
an infinite volume.

In this paper we consider domains which satisfy a g-condition:

meas(EN{mia<zs<a+1})<Cla+1)*, a=0,

where @ and C are positive constants. The main result we shall
prove is theorem. If 4k > @ when dim F = 2, and 2k > 8~ when
dim E = 3, then

N(\) £ const \** A>0.

This theorem will generalize, to an elliptic operator, some of the
results stated in Hewgill [8] and Rozenbljum [11].

The method we shall use is to construct a fundamental singularity
of a special type which will estimate the Green’s function for the
problem. Then, we prove that some iterate of the Green’s function
is a Hilbert-Schmidt kernel, from which our upper bound on N())
will follow.

1. The fundamental singularity and the Green’s function. We
take as a starting point Garding’s paper [7], which constructs a
fundamental singularity for 7 in an unbounded domain. We remark
here that Garding’s construction of the Green’s function and his
estimates for it will not work in an unbounded domain. Garding’s
results to be used are summarized in the following theorem:

THEOREM 1.1. Let the coefficients of the uniformly strongly el-
liptic operator a(x, D) be infinitely differentiable functions in R".
Then, there exists a function I'(7, 2, x), the fundamental singularity
for a(x, D), such that the following conditions hold:

I'(z, 2, ®) = Oz e(z(x — &)1 + |z(z — 2) |¥), x, 2€ B™,
where e(y) = |y " for n = 2;
(a(x, D) + t)I'(z, 2, %) =0, r#E 2

T a(w, D) + ) f(x) = f(x)
where
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I'f@) = Sr(z, e 0)f()dz,  feCr(R".

In these formulas N > 0 and 1 > ¢ > 0 are arbitrary, and the estimate
O@), for large 7, is uniform in R x R".

In the case where a(x, D) is the Laplace operator, Brownell [3]
has shown that the fundamental singularity has exponential decay
in R".

Next, we need a Green’s function Gg(z, 2, x) for the bounded cut
off domain E, = {xc E: |x| < R}. Krzyzanski [9] shows:

THEOREM 1.2. For 7 sufficiently large and positive, there exists
a Green’s function Gg(t, 2, ), which s continuous in cl B, x cl By

when © + z;
Gof @) = | Gulz, 5, 00f @z, feCr(By) ,

has continuous second derivatives in KEy;
(a(x, D) + )Grf(®) = f(®),  feCF(ER);

and Gpf(x) =0 for % in the boundary of K.

LEMMA 1.3. If dim E is 2 or 3, then the function I"f(x), defined
for fe Cy(R™) by Theorem 1.1, tends to zero as |x|— + oo,

Proof. By Theorem 1.1,

I'(z, 2, @) = Oz olw — ) 7" (L + [z(w — 2) "),

for arbitrary N and 0 < e < 1. If fe Cy(R™), then

17f@) | = | sup 2+ 1@ - AP} 0wl — 2 P

A+l — 2" D7 f (D) ldz,

by use of the elementary inequality (a + b)® < 2¢® + 2%

Since | f(z)| is bounded, the above integral is independent of x
by translation, and is convergent if N is chosen larger than »n + 1
with dim £ equal to 2 or 3. Since f has bounded support, the func-
tion I"'f(x) —0 as |[x] — oo.

LEMMA 1.4. The fundamental solution I'(t, 2, ) ts nonnegative
in R X R".

Proof. Assume I'(z, 2, x,) is negative for some z, and z, with
%, % %. Then, there is a function f, which is nonnegative and has



470 DENTON HEWGILL

small support, such that I'f(x,) < 0. Let ¢ = If(x)/2. By Lemma
1.3, we have a sphere K such that [I'f(z)| < ¢ in R* — K. Also

[—a(x, D) — | I'f(x) = —7°f(x) =0,

by Theorem 1.1. Thus the Hopf theorem implies that I'f(x) = —¢
in all of R, which is a contradiction and so the lemma is proved.

LEMMA 1.5. The Green’s function for the cut off domain Ep,
gtven wn Theorem 1.2, satisfies the inequality

0 =< Ge(r, 2, 2) = 1I(7, 2 0), x,2€ Ey .

Proof. The proof follows directly from a version of the maximum
theorem given in Krzyzanski [9, p. 436], by considering the function

V(Ty 2, m) = ['(Tv 2, x) - GR(Ty 2, x) ’

and using the properties of I" and G; proved in Lemmas 1.1, 1.2,
1.3, and 1.4.

The next task is to discuss the Green’s function for the whole
domain E and show its relation to the fundamental singularity I".

THEOREM 1.6. The operator T, which 1s defined on the open
domain E satisfying the B-condition, is a closed linear operator; the
spectrum o(T) is discrete and has no finite limit points; the resolv-
ent operator R T) = (W[ — T)™ is completely continuous; there is a
complete set of eigenfunctions {u;} such that Tu; = nu;.

Proof. Since the g-condition on E implies that F is quasi-bounded,
this is a special case of Clark’s result [4, Theorem 5] for a uniformly
strongly elliptic operator.

THEOREM 1.7. For n =2 and 3 the resolvent R(T) has a L (E)
Carleman kernel G(\, 2, x), called the Green’s function for T on the
domain E, such that

O = I)°f@) = —Gf@) = =| G0 2, 0f@dz,  fe L(B);
N —alx, D)G(\, 2,2) =0, for x=+2z;
and ¥(-)G(\, 2, ) e 2(T) for ¥ an infinitely differentiable function
which 8 zero im a meighborhood of z and equal to 1 in a boundary

strip.

The above theorem is proved in Maurin [10, p. 244].



EIGENVALUES OF A SECOND ORDER ELLIPTIC OPERATOR 471

LEMMA 1.8. Let the set A have a compact closure in E, and
fe Cy(A). Then, Gf = Gpf if R is sufficiently large, where G is the
Green’s operator for E and G, is the Green’s operator for the cut
off domain E.

Proof. From Theorems 1.2 and 1.7 we have, for R sufficiently
large,

(a(z, D) + ©Grf(x) = f(x),  Gof e H)(ER),
and
(a(x, D) + )G f(x) = f(x), M= —7*, GfeH)(E).

Now we extend G.f by zero so that it is in H}(E) and subtract the
above equations to get

(a(z, D) + )G f(x) — Gaf(@)] =0,

with Gf — Gpf e Hi(E). Thus the function Gf — G.f is eigenfunc-
tion corresponding to the eigenvalue —<7? however, —7* is not in the
spectrum of the self-adjoint operator T therefore Gf = G.f.

We finish this section with the following lemma.

LEMMA 1.9. The Green’s function G(\, z, x) is continuous for
x = 2 and satisfies the imequality

G(—1%, 2 2) <I'(t,2 2), «=* 2z for T sufficiently large .

Proof. Since the Green’s function G(), 2, ¢) satisfies the equation
O\ — afz, D))G(\, 2, z) = 0 if © = 2, the continuity of G follows from
a local regularity theorem for elliptic equations (see Agmon [2, Theo-
rem 6.3]).

Now assume that there are two different points &, » in E such
that

G(_—sz E: 7]) > ['(T; E; 77) .

Since both G and I" are continuous there are two disjoint neighbor-
hoods U and V of & and 7 respectively such that the same inequality
holds. Let f be a positive C(U) function. Then, Gf(x) and I'f(x)
satisfy the inequality

Gf(x) > T'f(x), zeV,

but Lemma 1.8 shows Gf(x) = Grf(x) if R is sufficiently large, there-
fore

Gpf(@) > I'f(x), xeV, R large .
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However, this contradicts Lemma 1.5, and hence our theorem is proved.

2. The Hilbert-Schmidt properties of the Green’s function.
In this section we make essential use of the B-condition to show that
some iterate of the Green’s function is a Hilbert-Schmidt kernel.

LEMMA 2.1. Ifa=0,7<pB, ©>1, and N is sufficiently large
(N > max {2n, 2(a + B)(B — ")),
then
1) | del+ 0@ +1e@ - e < K@yl + D,

where K = K(a, B, 7, T, N) but is independent of y.

Proof. Set B(y, 0) equal to the ball of radius 6 about v in R®,
B(y) = By, 0) N E, and B'(y) = E — B(y). Further set 0 equal to
(ly] + 1) raised to the power 2(a + B)/N.

Consider first the integral in (1) taken over the set B'(y). To
this integral we apply the inequality (a + b)* =< 2a® + 2b* to get

) I, (8] + D@ + 2@ — ) 1) ds
<21 + |7 [N,z)—lan A + | 7@ — 3) )da .

The integral on the right hand side of (2) is independent of y by
translation, and is convergent in R* if N > 2n. Thus the left hand
side of (2) is bounded by a constant times (1 + |7d [*/®™, which is in
turn bounded by a constant times (Jy]| + 1)™*7%, after we substitute
the value of 6 which depends on y.

Next, we consider the remaining part, over B(y), of the integral
in (1). Then

(3) |, (ol+ 07+ @~ 9) ) ds
< |, (el + Ddo < (max {1, |y| — 3))™ meas B@) .
From the B-condition on E,
meas(ENfzia sz <a+1) 2CA+ a)™?,

we have
meas B(y) < const |y | + D[y ] + )™ (ly | + "o,

which is less than a constant times (y| + 1)7if N> 2(a + 8)(B — 7)™
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If we now insert this estimate for meas B(y) into the left hand side
of (3), then (8) is bounded by a constant times (Jy|+ 1)™ 7. The
combined estimates for (2) and (8) complete the proof of inequality (1).

LEMMA 2.2. If v < B, T> 7, and N sufficiently is large, then
there 18 an ¢, and a K such that

(1) | Je—yr@+1te - 9dy s Koyl + 0
where 0 < e < ¢, & =&(B, V), and K = K(B, 7, T,, N).

Proof. Set B(y) = B(y, 1) N E, where B(y, 1) is the ball center
at y and radius equal to 1.

The integral on the left hand side of (4), integrated only over
the set B(y), is bounded by

(5) | lo—yldy s meas Bay={| [o—ylay)

if we apply the Schwarz inequality m times to the left side of (5).
From the B-condition on K, we have

meas B(y) < const (Jy| + 1)7¢.

Now pick m so large that B(1 — 2™™) > =, then pick ¢, so small that
2mg, < m. The choice of ¢, makes the integral on the right hand side
of (5) convergent for e < ¢, and leads to the estimate of a constant
times (Jy| + 1)77 for (5).

To estimate the integral in (4) over B'(y) = E — B(y), we use
Lemma 2.1 with @ =0 to get the estimate of a constant times
(ly| + 1)7. This completes the proof of inequality (4).

Let G(\, z, #) be the iterates of the Green’s function on E,
which was constructed in Theorem 1.7, these iterates are defined by

GO, 2, ) = GG, 2, 2); GV, 2, ©) = G\, 2, @) .

LEMMA 2.8. If v < B, T> 1, and N is sufficiently large, then
the iterate G*(\, y, x) satisfies

(6) [G¥=7y, o) =ML+ |c@—y)|*)" for dimE=3;
(7) |G(=7%y,0)| = MA + [e@ — ) ") (o] + D)7 y]| + 1)7"

Jor dim E = 2, where M s independent of © and y.

Proof. From Lemma 1.9 and the triangle inequality, we have
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(8) IG(z)(._ﬂ, Y, a;)l =M1+ 'T(x —¥) |le)—1
X SEI (@ —2) " ez — y) "1 + (e — 2) [
X 1+ |tz — @) ") 'dz .

If we apply the Schwarz inequality, then the integral in (8) can be
estimated by

(9) {SEI (@ — 2) [ (1 + | T(e — 2) [N)—ldz}”z

times exactly the same integral with x replaced by y. If in expression
9, N>mn, 2n + 2 —4 <n (i.e., » =2 or n = 3), and E is replaced
by R", then the expression is seen to be bounded by a constant,
which is independent of x. This completes the proof of inequality
(6). The estimate for expression (9) can be improved in the case
n = 2. Lemma 2.2 implies, if ¢ is sufficiently small, that (9) is bo-
unded by const (Jx|+ 1)7%. Combining all estimates, we have in-
equality (7) when dim F = 2.

THEOREM 2.4. If v < B, © > 7, and N sufficiently large, then
SSEG@“(—za o, yfdady < M3, i, dim F = 2,
and
SSEG‘Z’”(—ﬁ, v, yydudy < M3y, dim E =3,
where k 1s a positive tnteger, and M is a constant.

Proof. We will only consider the case dim E = 3—the other case
is similar.

We can show using induction, the triangle inequality, Lemma 2.3,
and Lemma 2.1 that

G#*(—7% &, y) < const (|2| + 1)"* {1 + |z(x — v) |")*
for k a positive integer (k =1 is Lemma 2.3).
If we square both sides of the above inequality, integrate over
E, and apply Lemma 2.1, then
[ G (=2 2, yrda < const (| + 1y
E

Integrating again over E, we have

S S G#(—7, x, y)’dedy < const i g (ly]| + 1)y~ *-vrdy
EJE =0 JE;
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where E;, = {xe E:¢1 < |x| < ¢ + 1}. This expression is in turn
< const >, (¢ -+ 1)V meas (E,) < M >, (1 + 1),
1=0 =0

since meas (E;) < const (¢ + 1)# by the g-condition. This completes
the theorem.

COROLLARY 2.5. The iterate G*(—1%, x, y) ts a Hilbert-Schmidt
kernel, in Ly E) for T > 7, provided 4k > B8~ in case dim E = 2, and
2k > 87" in case dim E = 3, where B is given by the B-condition.

Proof. Pick v < 8 but sufficiently close, and apply Theorem 2.4.
3. The eigenvalues of the problem,

THEOREM 3.1. Let \; be the set of eigenvalues, given in Theorem
1.6, for T on the set E. Then the series

2 )\J?k
converges for dim E = 2 if 4k > B, and for dim E = 3 if 2k > B~

Proof. Let u; be the orthonormal set of eigenfunctions, given
by Theorem 1.6, corresponding to the eigenvalues »;. If A < 0is not
in the spectrum of 7, then it follows from Tu; = :\u; that Gu; =
(\; + 9 'u; where A = —7°. Thus for the 2k iterate of G we have
G%y; = (\; + ) %u;. However, from Corollary 2.5 we have that
the kernel G*(—72 z, y) of G** is Hilbert-Schmidt for dim E = 2 if
4k > g™, and for dim F =3 if 2k > g*. It follows from Agmon
[2, Theorem 12.18] that the Hilbert-Schmidt double norm

21(7\1.7 + Z.2)~—4k < oo,
§=

But since all the eigenvalues of T are positive, we have our desired
result.

COROLLARY 3.2. If k satisfies the conditions of Theorem 3.1,
then the function N(N) = 3,21 satisfies

AV *¥N(\) < constant .
Proof. Since the sequence {\;**} is nonincreasing and > \;j* <

o, by Theorem 3.1, we have \j* = O(;7'). Hence X\; = Mj'* for
some M > 0, and therefore
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Ny =31 5 1=

is(r—12)tk

this shows that A N(\) < const, as asserted.
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