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A uniform convergence space is a generalization of a
uniform space. The set of all Cauchy filters of some uniform
convergence space is called a Cauchy structure. We give
necessary and sufficient conditions for the Cauchy structure
of some totally bounded uniform convergence space to be
precompact; i.e., have a regular completion. Also, it is shown
that there is an isomorphism between the set of ordered
equivalence classes of strict regular compactifications of a
completely regular convergence space and the set of ordered
precompact Cauchy structures inducing the given convergence
structure.

Preliminaries. Kowalsky [5] has studied completions using only
Cauchy filters, described axiomatically, and not necessarily those of a
uniform convergence space. This has led others to the notion of a
Cauchy space, which is described axiomatically in [2]. The reader is
referred to [6], [7], and [8] for a discussion of completions of Cauchy
spaces.

For basic definitions of convergence spaces and uniform conver-
gence space, see [3] and [1]. A Hausdorff convergence space (S, q)
is compatible with a uniform convergence space iff it satisfies the
“Limitierungsaxiom”: ¥ N & g¢-converges to & whenever ¥ and & both
g-converge to x. We will make the assumption that all convergence
spaces in this paper satisfy this axiom. The closure operator in a
convergence space (S, g) will be denoted by I',. A Hausdorff con-
vergence space (S, ¢) is called regular if it has the property that I" &
(the filter generated by {I",F'| F'e®}) g-converges to © whenever ¥
g-converges to x. The filter # denotes the set of all subsets of S
containing the set {x}. If filters ¥ and © contain disjoint sets, we
write “FV & = 0”. The term “ultrafilter” will be abbreviated “u.f.”;
uniform convergence space will be abbreviated “u.c.s.”.

A Cauchy structure & on a set S is characterized axiomatically
in [2] as follows: (1) #e & for each ze S; (2) e & and © finer than
$ implies Gec &; B) B, ez and FVEO =0 implies FN Ge &
The pair (S, &) is called a Cauchy space. It should be pointed out
that the Cauchy space axioms of [2] are stricter than those of [5]
and [7].

A Cauchy space (S, &) induces a convergence structure ¢ in the
following way: & g-converges to z iff § N 2e & Conversely, if (S, q)
is a Hausdorff convergence space, then define the associated Cauchy
structure  on S: Fe & iff § g-converges. Note that (S, &) induces
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g on S. A Cauchy space (S, ©°) is called Hausdorff if the induced
convergence space is Hausdorff, and complete if each Cauchy filter
converges. We will assume that all spaces are Hausdorff umless
otherwise indicated. The above describes a one-to-one correspondence
between the convergence spaces and the complete Cauchy spaces. If
% is a Cauchy structure on S, then we often write C, for C if ¢ is
the induced convergence structure. (S, &) is called regular if
I'Fe % whenever Fe & This definition was suggested by the
referee, and corresponds to the definition of regularity for u.s.c.’s
given in [10] and [12].

Let (S, &) be a Cauchy space and define (as in [1]): F ~ © iff
FNGe & This equivalence relation partitions & into equivalence
classes of the form [F] = {Be % |G ~ F}. Let T be the set of
equivalence classes, and let j: S— T denote the canonical mapping,
ie., j(®) = [£].

DEFINITION 1.1. (P, &, f) is called a completion of the Cauchy
space (S, ©), if (P, &) is complete, and f is a dense embedding from
(S, @) into (P, ). If in addition, whenever a filter § r-converges
to y in P, there is a filter & on £S which r-converges to ¥ and such
that 7",& < B, then (P, =, f) is called a strict completion.

The notion of a completion of a u.c.s. is defined similarly. Wyler
[11] has shown that each u.c.s. has a completion, with the universal
property, and so each Cauchy space has a completion. If P denotes
any convergence space property, then we say that a (strict) completion
is a (strict) P completion if it possesses property P.

The next two definitions follow the terminology of [8]. Analogous
definitions apply in the u.c.s. setting.

DEFINITION 1.2. A completion (P, &, f) of the Cauchy space (S, &)
is said to be in standard form if P= T, f = j, and f& converges to
[B] for each Fe =z

DerINITION 1.3. The completions (P,, &;, f.), © = 1, 2, of the Cauchy
space (S, &) are said to be equivalent if there is an isomorphism g
from (P, &) onto (P, ;) such that gf, = f,.

ProPOSITION 1.4 ([8]). Each Cauchy space (u.c.s.) completion is
equivalent to exactly one in standard form.

Let (S, ) be a Cauchy space and T, j defined as above. Let A
be a subset of S; then define A4 to be {[Fle T|Ac® for some
GelBl}. If ® is a filter on S, then Y® denotes the filter on T
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generated by {¥G | Ge ®}. Further, the convergence structure p on
T is defined as follows: <=7 p-converges to [F] iff § = X for some
®e[3]. In general p is not Hausdorff, and so we use the notation
&, only whenever p is Hausdorff. The following is straightforward
to verify: if p is Hausdorff, then (7, &, j) is a completion of (S, &)
iff (S, %) is regular. Our next result follows immediately from the
definitions.

ProrosITION 1.5. Let (T, &7, j7) be any completion of (S, &) in
standard form. The following are true.

(1) If AcS, then I'jA = XA and ')A = j7YA.

(2) The completion s strict iff s = p.

COROLLARY 1.6. (T, &,, 7) ts the only possible candidate for a
strict regular completion of (S, &) in standard form. Moreover,
(T, %,,7) has the universal property for regular Cauchy spaces.

Proof. The first part follows from (2) of Proposition 1.5 since
the convergence structure induced by any regular completion on T
must be coarser than ». The second part following from Theorem
4.11 of [7], since (T, &,) is the quotient space of the quasi-completion
mentioned there.

Finally, we remark that if (7, &,, j) is a completion of (S, %),
and if .7 is 2 uv.c.s. with Cauchy filters &, then by Theorem 15 of
[81, (S, ..7) has a u.c.s. completion with Cauchy strueture «,.

Almost topological completions, In [9] it is shown that a regular
compactification (R, », f) of a convergence space (S, q) is almost
topological, which means that » and its topological medification, A7,
coincide relative to the convergence of u.f.’s. The next theorem
characterizes those Cauchy spaces which have almost topological
completions. The proof of this theorem uses the following lemma
proved in [4].

LEMMA 2.1. Let (S, q) be a convergence space, ACS, F an u.f.
on S. [I,Aec$, then there is an u.f. & containing A such that
F=1,6.

THEOREM 2.2. The following conditions are equivalent for a
regular Cauchy space (S, &).

(1) (S, &) has an almost topological regular completion.

(2) IF IF VIS £ 0 for e &, O an u.f. on S, then FN Ge &

(38) (T, =, j) is an almost topelogical regular completion.
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Proof. (1) implies (2). Let (T, =, j) be such a completion in
standard form, and let &, @ be as in the hypothesis of (2). Then
gV r.g® =0, and so [§F] is an adherent point of the u.f. 7@ in
(T, »r). Thus j® Mr-converges to [F], and so by hypothesis r-converges
to [F]. Hence N Ge &, and (2) is satisfied.

(2) implies (8). First we show that if IFV IG =0, for F, Ge &
then [F] =[®]. Let Il be an u.f. on T such that U = IFV IG.
From Lemma 2.1 there is an u.f. § on S such that 39 <U. Thus
XHVIE#0, and by condition (2) [9] = [§]. Similarly, [9] = [®],
and so [§] = [®]. Thus (7, p) is Hausdorff, and so (T, &, J) is a
completion of (S, &).

Two steps are needed to prove I, is idempotent. First let AcS
and [Fle jA = I',TA. Then there is an u.f. Il p-converging to [F]
such that YAeN. Thus U = I¥® for some Ge[F]. By Lemma 2.1,
there is an u.f. § on A such that Il = ¥, and we have SGV X9 = 0.
By condition (2), [¥] = [9], and since Ae $, then [FleTA. Thus
I'yjA = I')jA whenever ACS.

Next let B T and [F]e I2B. Then there is an u.f. U p-con-
verging to [§] such that I',BeN. Thus Ul = I for some & e [F].
Using Lemma 2.1 again, there is an u.f. & on B such that 1 = I", &, and
also an u.f. Yon S such that =239. Thus U=T KR =27I,29=29,
and so IOV Y9 = 0, which implies that [F] = [§]. Since & p-con-
verges to [§] and Be &, then [F]e I',B. Thus I';B = I',B, for BC T.
If e & then I',2F = Iy = 38 = 2, and so (T, &, J) is a regular
completion of (S, ¥).

Finally, we show that » and Ap coincide on u.f.’s. Let [Fle T
and U an u.f. such that 1 = N {H | D p-converges to [F]}. The latter
intersection is the p-neighborhood filter at [F], and since I, is idem-
potent, the Ap-neighborhood filter at [¥]. Note that [§] = 1V 3.
From Lemma 2.1, there is an u.f. ® on S such that Ul = ¥®, and so
ruz=r,28=238. Thus YOV X% # 0, which implies [®] = [F], and
so U p-converges to [¥], which completes the proof.

ProposITION 2.3. If (T, &, J) s any almost topological regular
completion of (S, ¥) in standard form, then s<p and s=p on
u.f.’s.

Proof. Clearly s < p. Let U be an u.f. which s-converges to [F]
in T. Then from Lemma 2.1, there is an u.f. @ on S such that
rj® <1. Thus the u.f. /& \s-converges to [F], which implies by
hypothesis that /& s-converges to [F]. Hence ¢ [F], and from Propo-
sition 1.5 I",j® = ¥®, which implies that 11 p-converges to [F], and
80 s = p on u.f.’s.
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Precompact Cauchy spaces. A Cauchy space (u.c.s.) is said to
be totally bounded if every u.f. is Cauchy. A totally bounded Cauchy
space with a regular completion will be termed precompact. From
Theorem 2.2 we conclude the following.

PrOPOSITION 3.1. A precompact Cauchy space is almost topological
and has an almost topological regular completion.

Another characterization of precompact Cauchy spaces is given by
Theorem 3.4. First, we need two preliminary results, the first of
which is proved in [9].

LEMMA 3.2. A convergence space (S, q) is compact and regular iff
(S, q) is almost topological and Nq is a compact Hausdorff topology.

PROPOSITION 3.3. Let (S, .#) be a u.c.s. with a compact regular
induced convergence structure q, and let Z7 be the filter of \q-neigh-
borhoods of the diagonal 4s in S X S. Then each element of 7 1is
finer than Z/.

Proof. Itfollows from Lemma 3.2 that Z is a Hausdorff uniformity.
Let ®¢c .7 and assume 72 £ @®. Then there is an u.f. F on S x S such
that 9 < F and Z £ F. Let §, and §, be the first and second pro-
jections, respectively, of ¥ onto S; then by the assumption of
compactness, there are points  and y in S such that $, g-converges
to  and §, g-converges to y. Since Z £ F, ¢ and y must be distinet.
But 3 Xx8)VO@ -0, and s0 & X § = (E X F)o@o(F, X ¥)e..% This
contradicts the fact that (S, ¢q) is Hausdorff.

THEOREM 3.4. The Cauchy structure (S, &) of a totally bounded
u.c.s. (S, .7) is precompact iff the following conditions are satisfied.

(1) #=N{@|0ec. 7} is a Hausdorff uniformity on S.

(2) (S, %) is regular.

(3) If & and © are u.f.’s on S such that Fx & = Z, then
T x Ge A

Proof. Assume the three conditions. Let (S, %47) denote the
Hausdorff uniform completion of (S, %). For each Z~Cauchy filter
K on S, let [F]l, = (O] ® is Z-Cauchy and F x & = %'}. From con-
dition (3) and the fact that (S, ) is totally bounded, it follows that
an u.f. ® is in [F] (the &Zequivalence class) iff e [F],. Since S’ can
be identified with {[F]. | is an u.f. on S}, we can identify S’ with
T={3l1Fe&}. If r is the topology on T associated with 977
then YAcCI',jA, AcS. If Fe% and ® is an u.f. on S such that
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IZVI® -0, then 'y VI, j® =0, and so [F]. = [®].. Hence
[B] = [®], or N G e &, and by Theorem 2.2, (S, &) is precompact.

Conversely, assume (S, &) is precompact. From our previous
results, (T, &,, J) is a regular completion of (S, ). From Theorem
15 of [8], there is a u.c.s. _# on T which has Cauchy filters &, and
such that (T, % j) is a completion of (S, .#). Note that _# induces
the convergence structure p on T. Let %7  be the uniformity on T
of wp-neighborhoods of the diagonal 4,. By Proposition 3.3, each
ye_Z isfiner than %77 Let ¥ = (j X j)"(#"); then Z is a uniformity
and each &®¢ . .# is finer than . Thus Z < N{?|9ec.7”}. If &
is strictly coarser than () @, then there is an u.f. § on S X S such
that § = Z, but §2Z N ®. Let F, B. denote the projections of F;
then since (j X 7)& = ¥, 73, and j§, converge to the same point in
(T, p). Thus ¥, X §.€ 4 and so e % which contradicts F 2 N 2.
Hence %z = N ¢ is a Hausdorff uniformity on S, and (1) follows.

Of course (2) is clear. If §, ® are u.f.’s on Ssuchthat Fx G = %,
then ;3 x /& = %; and so they \p-converge to the same point. Since
(T, p) is almost topological, then 5& and j®& p-converge to the same
point, and so F X G e % which implies (3).

Strict regular compactifications. One of the more significant
results in uniform space theory is the existence of an isomorphism
from the ordered set of equivalence classes of the Hausdorff com-
pactifications of a completely regular topological space and the ordered
set of compatible precompact uniformities.

(R, 7, f) is said to be a strict compactification of the convergence
space (S, q), if f is a dense embedding, (R, r) is a compact convergence
space, and if $§ r-converges to ye R, then there is a filter @ on fS
which r-converges to y and I",® < 5. We define equivalence classes
of compactifications of (S, q), and an ordering among the classes,
analogous to the topological setting. Also if (S, &), (S, &) are two
Cauchy spaces, then &, = &, is defined to be &, C &,.

A convergence space will be called completely regular if it has a
strict regular compactification.

PROPOSITION 4.1. A convergence space (S, q) is completely regular
iff it is almost topological and g is a completely regular topology.

This result is essentially proved in [9], but the following two points
need to be added. The compactification in [9] is in fact a strict regular
compactification. The “Limitierungsaxiom” was not assumed in [9], but
causes no difficulty if imposed.

THEOREM 4.2. If (S, q) is a completely regular convergence space,
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then the ordered set of equivalence classes of strict regular compacti-
fications of (S, q) is isomorphic to the ordered set of precompact
Cauchy structures on S which induce q.

Proof. Let (S, &) be a precompact Cauchy space which induces
q on S; then (T, &, j) is a strict regular completion of (S, ). Thus
(T, p, j) is a strict regular compactification of (S, q). Define ¥(S, ©¥) =
(T, p,j). We show that v is an isomorphism.

Suppose &, and &, are distinct Cauchy structures on S; with no
loss of generality assume e &, — &,. We claim that (S, &) =
(T, p, 5,) is not equivalent to ¥(S, &) = (T, ps, J:). Assume, on the
contrary, that there is a homeomorphism f: (T}, p,) — (T, »;) such
that fJ. = 7.. Then 7, p,-converges to [Bl,e T}, and so f4,8 = 7.F
p,-converges to an element in 7,. This can occur only if §e &, which
contradicts the choice of %, and it follows that v is injective.

Next to show v is onto. Let (R, r,f) be any strict regular
compactification of (S, g). Let & be the set of all filters ¥ on S such
that f§ r-converges in RB. By a straightforward argument, it can
be shown that & satisfies the Cauchy space axioms, and is also totally
bounded and induces g. Since (R, &, f) is strict regular completion
of (S, ¥), then by Theorem 2.2 (T, &, j) is also a strict regular com-
pletion of (S, ). By Corollary 1.6, (P, p, j) and (R, 7, f) are equiva-
lent. Hence v is subjective.

Finally to show that v and v are order preserving. Suppose
G = e, EC % Let (S, &) =T, p,3), 1=12. It is
straightforward to check that if f: 7, — T, such that f([3]) = [Tl
where [F]; is ths equivalence class in T; of Fe &, then f(2,4) c 3,A4.
Thus f(2.8) = 2.3, and so f is continuous. It follows that (T}, », 7,) =
(T, ps, J:). The proof that ™' is order preserving is straightforward,
and the theorem follows.

We conclude with the following remarks concerning Theorem 4.2.
In either of the ordered sets of Theorem 4.2, each nonempty subset
has a supremum; the finest precompact Cauchy structure on S which
induces ¢ corresponds to the Stone-Cech compactification (S, q).
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