SUBALGEBRAS OF FINITE CODIMENSION IN THE ALGEBRA OF ANALYTIC FUNCTIONS ON A RIEMANN SURFACE

Bruce Stephen Lund
SUBALGEBRAS OF FINITE CODIMENSION IN
THE ALGEBRA OF ANALYTIC FUNCTIONS
ON A RIEMANN SURFACE

BRUCE LUND

Let \(R \) be a finite open Riemann surface with boundary \(\Gamma \). We set \(\overline{R} = R \cup \Gamma \) and let \(A(\overline{R}) \) denote the algebra of functions which are continuous on \(\overline{R} \) and analytic on \(R \). Suppose \(A \) is a uniform algebra contained in \(A(\overline{R}) \). The main result of this paper shows that if \(A \) contains a function \(F \) which is analytic in a neighborhood of \(\overline{R} \) and which maps \(\overline{R} \) in a \(n \)-to-one manner (counting multiplicity) onto \(\{ z : |z| \leq 1 \} \), then \(A \) has finite codimension in \(A(\overline{R}) \).

We say that \(A \) is a uniform algebra on \(\overline{R} \) if \(A \) is a uniformly closed subalgebra of the complex-valued continuous functions on \(\overline{R} \) which separates points of \(\overline{R} \) and contains the constant functions. If \(A \) is contained in \(A(\overline{R}) \), then we say \(A \) has finite codimension in \(A(\overline{R}) \) if \(A(\overline{R})/A \) is a finite dimensional vector space over \(\mathbb{C} \). A reference for uniform algebras is Gamelin [2].

Let \(U \) be the open unit disk in \(\mathbb{C} \). We call \(F \) an unimodular function if \(F \) is analytic in a neighborhood of \(\overline{R} \) and maps \(\overline{R} \) onto \(U \) so that \(F \) is \(\pi \)-to-one if we count the multiplicity of \(F \) where \(dF \) vanishes. If \(T \) is the unit circle, then \(F \) maps \(\Gamma \) onto \(T \). The existence of such a function was first proved by Ahlfors [1]. Later, Royden [4] gave another proof of this result.

1. Main results. Let \(A \) be a uniform algebra on \(\overline{R} \) which is contained in \(A(\overline{R}) \). If \(J = \{ f \in A(\overline{R}) : fA(\overline{R}) \subseteq A \} \), then \(J \) is a closed ideal in \(A(\overline{R}) \) and \(J \) is contained in \(A \).

Lemma. Let \(F \in A \) be an unimodular function of order \(n \). If \(\zeta_i \in \overline{R} \) is such that \(F^{-1}(F(\zeta_i)) \) consists of \(n \) distinct points, then there is \(G \in J \) such that \(G(\zeta_i) \neq 0 \).

Proof. Since \(A \) separates points on \(\overline{R} \), there is \(g \in A \) such that \(g \) separates \(F^{-1}(F(\zeta_i)) \). If \(z_i \in \overline{R} \), let \(F^{-1}(F(z_i)) = \{ z_i, z_2, \ldots, z_n \} \) (perhaps with repetitions) and let \(f \in A(\overline{R}) \).

Define \(Q(u) = f(z_i)[u - g(z_i)](u - g(z_2)) \cdots [u - g(z_n)] + f(z_2)[u - g(z_i)](u - g(z_2)) \cdots [u - g(z_n)] + \cdots + f(z_n)[u - g(z_2)] \cdots [u - g(z_n)] \) (cf. [5], p. 290). Then \(Q(u) \) is a polynomial in \(u \) of the form \(Q(u) = \alpha_{n-1}(z_i, \ldots, z_n)u^{n-1} + \alpha_{n-2}(z_i, \ldots, z_n)u^{n-2} + \cdots + \alpha_{0}(z_i, \ldots, z_n) \). The coefficients \(\alpha_j \) are symmetric functions in \(z_i, \ldots, z_n \). Hence, if
$w = F(z)$, then $a_j(w) = \alpha_j(z_1, \cdots, z_n)$ for $j = 0, \cdots, n - 1$ is well-defined on \bar{U}. Using Riemann’s removable singularity theorem, it follows that $a_j(w) \in A(U)$ for $j = 0, \cdots, n - 1$.

Since $a_j(w) \in A(U)$ for each j, there are polynomials $\{p_i(w)\}_{i=1}^\infty$ such that the p_i’s converge uniformly to a_j on \bar{U}. Then $p_j(F(z)) \in A$ for each k, and we conclude that $a_j(F(z)) \in A$. Letting $z = z$, and setting $u = g(z)$, we obtain $Q(g(z)) = a_{n-1}(F(z))g(z)^{n-1} + a_{n-2}(F(z))g(z)^{n-2} + \cdots + a_0(F(z)) = f(z) \prod_{i=2}^n [g(z) - g(z_i)] \in A$. Let $G(z) = \prod_{i=2}^n [g(z) - g(z_i)]$. Then $G(z_i) \neq 0$ and we have shown that $fG \in A$ for any $f \in A(R)$. Therefore, $G \in J$.

Theorem. Let A be a uniform algebra on \bar{R} which is contained in $A(R)$. If A contains an unimodular function, then A has finite codimension in $A(R)$.

Proof. Suppose $F \in A$ is an unimodular function of order n. Let hull $J = \{z \in \bar{R} : f(z) = 0 \text{ for all } f \in J\}$. If $\zeta \in J$, then $dF(\zeta) \neq 0$ ([7], p. 367) and consequently $F^{-1}(F(\zeta))$ consists of n distinct points. By the lemma, hull $J \subset R$. It follows that hull J is a finite set. By applying [6], Theorem 1 and [3], Lemma 2.5, we conclude that $A(R)/J$ is finite dimensional. Hence, A has finite codimension in $A(R)$.

Let $R = \{z \in C : 1 < |z| < 2\}$. Again let $J = \{f \in A(R) : fA(R) \subset A\}$ where A is a uniform algebra on \bar{R}. Using the same technique we prove the proposition below.

Proposition. Let A be a uniform algebra on \bar{R} which is contained in $A(R)$. If A contains z^n and z^{-n} for some positive integers n and m, then $A = A(R)$.

Proof. Let N be the least common multiple of n and m. Then z^n and $z^{-n} \in A$. Also, z^n is an N-to-one map of \bar{R} onto \bar{R} without branch points. For any $\zeta_i \in \bar{R}$ there are N distinct points $\{\zeta_{i1}, \zeta_{i2}, \cdots, \zeta_{iN}\}$ which satisfy $\zeta_i^n = \zeta_{iN}$. Fix $\zeta_i \in \bar{R}$ and let $g \in A$ separate $\{\zeta_i, \zeta_{i2}, \cdots, \zeta_{iN}\}$. Let $f \in A(R)$.

Letting z^n take the role of F and using g and f, we form $Q(u)$ just as in the proof of the lemma. The coefficients $a_j(w)$ of $Q(u)$ belong to $A(R)$. Hence there are polynomials in w and w^{-1} which converge uniformly to $a_j(w)$ on \bar{R}. Since z^n and z^{-n} belong to A, it follows that $a_j(z^n)$ is in A.

Consequently, $Q(g(z)) = f(z) \prod_{i=2}^n [g(z) - g(z_i)] \in A$ for all $f \in A(R)$. Let $G(z) = \prod_{i=2}^n [g(z) - g(z_i)]$. Then $G \in J$ and $G(\zeta_i) \neq 0$. Therefore, hull $J = \phi$. This implies $A = A(R)$.

2. Question. The theorem of this paper gives an affirmative
answer to a special case of the following question. Suppose \(A \) is a uniform algebra on \(\tilde{R} \) and \(A \) is contained in \(A(R) \). If \(A \) contains a nonconstant function which is analytic in a neighborhood of \(\tilde{R} \), does it follow that \(A \) has finite codimension in \(A(R) \)?

References

Received February 22, 1973 and in revised form June 25, 1973.

The University of New Brunswick
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 51, No. 2 December, 1974

William George Bade, Two properties of the Sorgenfrey plane ... 349
John Robert Baxter and Rafael Van Severen Chacon, Functionals on continuous functions 355
Phillip Wayne Bean, Helly and Radon-type theorems in interval convexity spaces ... 363
James Robert Boone, On k-quotient mappings ... 369
Ronald P. Brown, Extended prime spots and quadratic forms ... 379
William Hugh Cornish, Crawley’s completion of a conditionally upper continuous lattice 397
Robert S. Cunningham, On finite left localizations .. 407
Robert Jay Daverman, Approximating polyhedra in codimension one spheres embedded in s^n by tame polyhedra .. 417
Burton I. Fein, Minimal splitting fields for group representations ... 427
Peter Fletcher and Robert Allen McCoy, Conditions under which a connected representable space is locally connected ... 433
Jonathan Samuel Golan, Topologies on the torsion-theoretic spectrum of a noncommutative ring 439
Manfred Gordon and Edward Martin Wilkinson, Determinants of Petrie matrices ... 451
Alfred Peter Hallstrom, A counterexample to a conjecture on an integral condition for determining peak points (counterexample concerning peak points) .. 455
E. R. Heal and Michael Windham, Finitely generated F-algebras with applications to Stein manifolds 459
Denton Elwood Hewgill, On the eigenvalues of a second order elliptic operator in an unbounded domain 467
Charles Royal Johnson, The Hadamard product of A and A^* ... 477
Darrell Conley Kent and Gary Douglas Richardson, Regular completions of Cauchy spaces 483
Alan Greenwell Law and Ann L. McKerracher, Sharpened polynomial approximation 491
Bruce Stephen Lund, Subalgebras of finite codimension in the algebra of analytic functions on a Riemann surface ... 495
Robert Wilmer Miller, TTF classes and quasi-generators .. 499
Roberta Mura and Akbar H. Rhemtulla, Solvable groups in which every maximal partial order is isolated .. 509
Isaac Namioka, Separate continuity and joint continuity .. 515
Edgar Andrews Rutter, A characterization of QF – 3 rings ... 533
Alan Saleski, Entropy of self-homeomorphisms of statistical pseudo-metric spaces .. 537
Ryōtarō Satō, An Abel-maximal ergodic theorem for semi-groups ... 543
H. A. Seid, Cyclic multiplication operators on L_p-spaces .. 549
H. B. Skerry, On matrix maps of entire sequences .. 563
John Brendan Sullivan, A proof of the finite generation of invariants of a normal subgroup 571
John Griggs Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, VI 573
Ronson Joseph Warne, Generalized $\omega – L$-unipotent bisimple semigroups ... 631
Toshihiko Yamada, On a splitting field of representations of a finite group ... 649