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Let (9, %) be a hereditary torsion theory for , 7, the
category of left A-modules. In this paper the property that
the torsionfree class % be closed under homomorphic images
is investigated. Particular attention is given to the case where
the torsion class .7 is torsion-torsionfree (TTF). Applications
to projective quasi-generators are given.

When .7~ is a TTF class the question naturally arises as to when
A,, the 7 -torsion submodule of A, is contained in a certain idempo-
tent topologizing filter of right ideals of A. This condition is shown
to be equivalent to the property that the torsionfree class .# be
closed under homomorphic images. Our results generalize results of
Jans [6] and Bernhardt [2] characterizing the property that the
torsion theory (.7, &) is centrally splitting. Dropping the assump-
tion that .~ is TTF, further investigation of the property that &
is closed under homomorphic images yields information as to when
7 is TTF, generalizing a result due to Rutter [10]. Finally, our
methods are applied to the TTF class .9 = {{X|P® ,X = 0} where
P, is a projective right A-module. The definition of P, being a
quasi-generator is given and characterizations are obtained.

Section 2 of this paper was taken from the author’s doctoral
dissertation, under the direction of Professor F. L. Sandomierski, at
the University of Wisconsin. Section 1 provides a generalization of
the material in §2 to arbitrary TTF classes. The author expresses
his gratitude to Professor Sandomierski for his guidance and encour-
agement.

In this paper A will be an associative ring with unit and all
modules will be unitary. The left (right) annihilator of I in X will
be denoted by I,(I) (r(I)). It is easy to see that for a left A-module
X and a two-sided ideal I of A, ry(I) = Hom, (4/I, X).

Dickson [4] has defined a torsion theory for ,.# to be a pair
(7, F) of classes of left A-modules satisfying

(1) 9 nF ={0}.

(2) 7 is closed under homomorphic images.

(3) & is closed under submodules.

(4) For each Xe , # there exists a (unique) submodule X, e .7~
such that X/X, e &.

A class 7 (&) of left modules is called a torsion (torsionfree) class
provided there is a (unique) class F# () such that (7, %) is a
torsion theory. A torsion theory (7, &) is said to be hereditary if
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the torsion class .7 is closed under submodules. For further informa-
tion on torsion and torsionfree classes the reader is referred to [4].
Gabriel [5] has shown that for a ring A there is a one-to-one
correspondence between the hereditary torsion classes of ,.# and the
idempotent topologizing filters F' of left ideals of A given by

The inverse correspondence is given by
F—bs 7 (F)={Xe |l x)e F for all x¢ X} .

Jans [6] has called a torsion class .7~ which is also a torsionfree class
for some torsion class &, a torsion-torsionfree (TTF) class. In this
case (.7, &) and (&, .7") are called the torsion theories associated
with .7 In [6] it is shown that 7~ is a TTF class if and only if
F(.77) contains a unique minimal left ideal T. Furthermore, T is an
idempotent two-sided ideal, T = A, (the Z*torsion submodule of A),
and there is a one-to-one correspondence between the TTF classes
7 of , # and the idempotent two-sided ideals of A given by

g —T.
The inverse correspondence is given by

T— {Xe , #|TX =0}.

1. TTF classes. Let 9 < ,# be a TTF class with associated
torsion theories (7, %) and (&, .7 ). Let T be the minimal, idem-
potent, two-sided ideal in F'(Z7). One easily checks that

I ={X|TX =0},
& = {,X|Hom (4/T, X) = 0},
and
& = {X|AIT®.X=0}.

Note that the .Z-torsion submodule of ,X is X, = rx(T) while the
&-torsion submodule is X, = TX. Furthermore, let

& = X|A]TR .M = 0 for every submodule M of X} .

LEMMA 1.1. 27 s a hereditary torsion class and F(57) =
(< JA|(I:a) + T = A for all ac A} where (I:a) = {xec Alzac I}.

Proof. It is left to the reader to check that ,Xe 57 if and only
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if xeTx for all xe X. If ,Ie F(5#), then A/lIe 2 Hence a +
Ie T(a+ I) for all ae A. Thus given ac A there exists t¢ T such
that ta —a = (¢t — 1)ae I. Therefore, t — 1€ (I: a), which implies that
le(l:a) + T.

Conversely, for a left ideal I suppose that (I:a) + T = A for all
ac A. Hence given a€ A, we have that 1 =2 + ¢ where z¢(I: a)
andteT. Thusa+ I=a(a+ I)+ ta+ I),andsoa + Ie T(a + I).

Lemma 1.1 can also be deduced from [9, Lemma 1.1].

LemMmA 1.2. For the torsion class & the following statements
are equivalent.

(1) (4/T), is flat. )

(2) & s hereditary (i.e., & = S7).

(3) N @)+ T= A for all t,e T.

(4) 1)+ T= A for all teT.
Furthermore, if & is hereditary, then F(&¥) = LIS JA|I+ T = A}.

Proof. (1) — (2) Take ,Xe & Since (A/T), is flat M/TM may
be viewed as a submodule of X/TX. Thus M/TM =0 as X/TX = 0.

(2)— (8) Since Te % we have that [,(t)e F(%¥) for all te T.
Thus N l(t) e F(%) for all t,e T as F(%) is closed under finite
intersections. Hence (i, l.(t;)) + T = A for all t,e T by Lemma 1.1.

(8) — (4) Trivial.

4)— (@) For te T, by assumption we have that 1 = a + ¢’ where
acl(t)and t'e T. Sot=at + t't =t'te Tt. That (A4/T), is flat now
follows by [8, Lemma 4.1].

If & is hereditary then ,Ie F (%) if and only if T(A/I) = A/L;
i.e., if and only if I+ T = A.

Since the minimal idempotent ideal T' in F(7) is two-sided let

7' = {X,| MR ,A/T = 0 for every submodule M of X},

a hereditary torsion class in _#,. Let I be a right ideal of A con-
tained in F(£#’). Then I+ T=A. If xc A, = r(T), then Az =
Ip + Tx = In < I. That is, A, is contained in every right ideal in
the filter F(5#'). Hence the question arises as to when A, is itself
in F(27')?

THEOREM 1.8. Let 7 & ,# be a TTF class with associated
torsion theories (7, ) and (&, 7). Using the above notation the
following statements are equivalent.

(1) A,e F(s#').

(2) A=A, + A..

(8) X=X, + X, for all Xe . #.

(4) 4(A/A,) is projective.
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(5) & s closed under homomorphic images.
(6) &F =2
(7)) ¥ ¢ @&

Proof. (1) — (2) This is immediate from Lemma 1.1.

@2)—(@) If A= A, + A, then for every ,X we have X = A4, X +
A X< X, + X,. The converse is trivial.

(2) — (4) This is Lemma 4.10 of [8].

4)— () Let ,Xe s and let a: , X— ,Y be an epimorphism.
Since ,(A/T) is projective we have an epimorphism «*: Hom, (4/T, X)—
Hom, (A/T, Y). Thus Hom, (4/T, Y) = 0; hence Ye #.

(5) — (6) For ,Xe 57 consider X, =< X. Now TX, = 0; but also
TX, = X, since Xe 57, Thus Xe & as X, =0.

Conversely, let ,Xe . &#. For xc X, Ave & since & 1is closed
under submodules. Thus Ax/Txc & by assumption. But Az/Txe 7~
since T(Ax/Tx) = 0. Hence Tx = Az for all x € X, which implies that
Xe oZ

(6) — (7) Trivial.

(7)— (2) By assumption A/A,€ & Thus A/A, = T(4/A) =T +
A A e, A+ A, = A.

(2)— () For all teT, r(t) + T = A since A, & r,(t). Thus by

Lemma 1.2 F(5#') = {I, < A.|I + T = A}. Hence A,c F(&#').

REMARK. The equivalence of (2), (8), and (7) was recently shown
by Kurata in [7]. He also shows that (5) — (7).

A torsion theory (7, &) is centrally splitting if 7~ is a TTF
class (with associated torsion theories (7, %) and (&, .27)) and
X=X, X, for all Xe , #Z The following corollary characterizing
centrally splitting torsion theories is due to Jans [6] and Bernhardt [2].

COROLLARY 1.4. Let 9 < ,# be a TTF class with associated
torsion theories (7, F ) and (&, 7). The following statements are
equivalent.

(1) A=A P A, (ring direct sum).

(2) X=X, P X, for all Xe , #

(3) ¥ =%

(4) 7 1is stable and A, is a direct summand of A.

(5) & s closed under homomorphic images and A, is a direct
summand of A.

(6) A, is a ring direct summand of A.

Proof. 7~ being stable (closed under injective hulls) is equivalent
to & being hereditary (see e.g. [2]). Using Lemma 1.2 and Theorem
1.3 conditions (1), (2), (3), (4), and (6) are easily seen to be equivalent
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to the condition that ,(A/A.) is projective and (A4/A,), is flat. That
(1) is equivalent to (5) is easy using Theorem 1.3.

An example of a TTF class .~ for which & is closed under
homomorphic images, but (7, %) is not centrally splitting is given
in §2. See Example 2.5 (i).

In the remainder of this section we investigate the condition that
the torsionfree class of a hereditary torsion theory (7, %) be closed
under homomorphic images, dropping the condition that .7~ be a TTF
class. Assuming & is closed under homomorphic images, % is now
a torsion class; i.e., a TTF class. (7, %) is one torsion theory as-
sociated with #. Let (#, &) be the other. The .Z-torsion sub-
module of A4, A4,, is in F (&) since A/A,e . Furthermore, if ,Ie
F(¥), then 4,n Ie F(%), which means that 4/A, N Ic .. Thus
A, JA. N Ie #. Since A,/JA, N I is also in .9~ we have that A,/A, N
I=0; i.e., A, = I. Hence A, is the minimal element of the filter
F(<). As before we have that

F = X|AX =0},
<~ = {,X|Hom, (4/4,, X) = 0},
and
I = {X|4/A, R X =0}.

(By Theorem 1.3 if .7~ is a TTF class then & is the torsionfree
class associated with £#7) Since .7~ is hereditary, (4/4,), is flat by
Lemma 1.2. Furthermore, F(9) = { IS JA|I+ A, = A}.

If in fact (4/A4,), is projective, then 4 = [,(4,) + A, by [8, Lemma
4.10]. Thus l,(A,) e F(9"). Furthermore, 1,(4;) is the minimal ele-
ment of F(Z ) by an argument similar to the one used prior to
Theorem 1.3. Hence .7~ is a TTF class.

THEOREM 1.5. For a hereditary torsion theory (7, F ) the follow-
ing statements are equivalent.

(1) & 1is closed under homomorphic images and (A/A,). has a
projective cover.

(2) & s closed under homomorphic images and A, is finitely
generated as a right A-module.

(3) 7 s a TTF class where A, = 1,(A,) and (4/A4,), is pro-
Jective.

Proof. By our above argument (3) will follow from (1) or (2) if
we can show that the flat module (4/A4,), is projective. In (1) this
follows since (A/A,), has a projective cover [8, Lemma 1.2]. In (2)
this follows by [3, corollary to Proposition 2.2].
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By Theorem 1.3 (1) and (2) will follow from (3) if we show that
A=A, + A, Since (4/4,). is projective, A = A, + l,(4,) by [8,
Lemma 4.10]. Thus A = A, + A, by assumption.

COROLLARY 1.6. (Rutter [10, Proposition 2].) Let A be a semi-
perfect ring and (7, F ) be a hereditary torsion theory in . #. If
F 1s closed under homomorphic images, then 7~ 1is a TTF class
where A, = 1,(4,).

COROLLARY 1.7. Let A be a right Noetherian ring and (7, F)
be a hereditary torsion theory im , #. If F 1is closed under homo-
morphic t1mages, then 7 1s a TTF class where A, = 1,(4,).

2. Projective quasi-generators. In this section P, will be a
projective right A-module with trace ideal T = > cxompr,0 im f and
A-endomorphism ring B. For further information on projective mod-
ules and the idempotent trace ideal the reader is referred to [13].
Let 7 = {{X|P® ,X = 0}, a hereditary torsion class in , Z It is
easily seen that 7 = {(X|TX =0} and F(9 ) ={ < A|T<I}.
Hence 7~ is a TTF class, and the notation of §1 applies.

Sandomierski [12] has defined an A-module ,X(X,) to be T-acces-
sible if TX = X(XT = X). Note that X, is T-accessible if and only
if X, is a homomorphic image of a direct sum of copies of P, [12].
Define an A-module X to be strongly T-accessible if every submodule
of X is T-accessible. The class of T-accessible (strongly T-accessible)
left A-modules is our class & (5#). From Lemma 1.1 we see that
«X is strongly T-accessible if and only if xe T for all z ¢ X.

We shall call P, a quasi-generator if every T-accessible right A-
module is strongly T-accessible. That is, if every submodule of a
homomorphic image of a direct sum of copies of P, is itself a homo-
morphic image of a direct sum of copies of P,. This definition is
dual to the definition of self-cogenerator given in [11].

THEOREM 2.1. For P, projective with trace ideal T the following
statements are equivalent.

(1) P, is a quasi-generator.

(2) P, is strongly T-accessible.

(3) T, s strongly T-accessible.

(4) (A/T) is flat.

(5) 7r4p)+ T = A for all peP.

(6) r,)+ T = A for all teT.

Proof. By definition P, is a quasi-generator if and only if the
torsion class &’ = {X,| X® ,A/T = 0} is hereditary. Thus the equiv-
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alence of (1), (4), and (6) follows by Lemma 1.2. As 57 =
(X, IMQLA/T =0 for every submodule M of X} is the class of
strongly T-accessible right A-modules, the equivalence of (2) and (5),
and the equivalence of (3) and (6) follows from Lemma 1.1. That
(1) implies (2) is by definition.

(2)— (1) Let X, be T-accessible. Then X, is a homomorphic
image of PI, a direct sum of copies of P,. Now Plie 57" as P,e 57’
by assumption and S#’ is closed under direct sums. Thus Xe 57’
as 57’ is closed under homomorphic images.

Ware [13] has called a projective module regular if every homo-
morphic image is flat.

COROLLARY 2.2. Let P, be a regular module. Then P, is a
quast-generator. Hence over a regular rimng, every projective is a

quasi-generator.

Proof. Let xe P, and consider the exact sequence

0—>3A—>P— PlzA—0.

Since P/xA is flat there exists a map §: P, — xA such that 0(x) = =
[13, Lemma 2.2]. Letting T be the trace ideal of P,, we have that
x = >, pt; where p,e P,t,eT,v=1,2, -.--,n. Hence zx =0(x) =
0 = pt) = S 0(p)t, € xAT = «T. Thus P, is strongly T-accessible,
hence a quasi-generator by Theorem 2.1.

The remainder of the corollary follows from the fact that over
a regular ring every projective is regular [13, Example 1, page 238].

In our present framework the question that we asked prior to
Theorem 1.3 becomes the following: When is r,(T) = r,(P) strongly
T-accessible as a right A-module?

THEOREM 2.3. Let P, be projective with trace ideal T and B =
End (P,). The follwoing statements are equivalent.

(1) r4(P) is strongly T-accessible as a right A-module.

(2) ru(P)+ T = A.

(8) (A/T) s projective.

(4) P; is a generator where A = Ajr(P).

(5) P, is a quasi-generator and ,T is finitely generated.

(6) P, is a quasi-generator and P is finitely generated.

Proof. The equivalence of (1), (2), and (3) follows from Theorem
1.8. That (8) is equivalent to (5) follows since P, is a quasi-genera-
tor if and only if ,(A4/T) is flat.

(2) — (4) P; is projective with trace ideal T = T + »(T)/r(T).



506 ROBERT W. MILLER

Thus »,(P) + T = A if and only if T = 4; i.e., if and only if P; is
a generator.

(4) — (6) Since B = End (P3), zP is finitely generated. Thus (6)
follows by (8).

(6) — (1) Since ;P is finitely generated we may write P= Bp,+ - - -
+ Bp, where p,, --+, p,€ P. Since P, is a quasi-generator r,(p;) e
F(e7") for 1 =1, ..., n. Thus 7,(T) = r(P) = N, 70 € F(#)
since F'(5#') is closed under finite intersections.

REMARK. While r,(T) € F(5#”) implies that F(5#’) has a minimal
element, it is possible for F(5#’) to have a minimal element without
r,T) being contained in F(5#’). Let A be a left perfect ring and
let P, be a faithful projective that is not a generator. F(S5#”’) has
a minimal element L [1, Corollary 1.6], but L = r,(T). Otherwise
L =0, which implies that every right A-module is torsion; i.e., P, is
a generator.

COROLLARY 2.4. Let P, be projective with trace ideal T and
B = End (P,). The following statements are equivalent.

(1) P, is a generator (progenerator).

(2) P, is a (finitely generated) faithful quasi-generator and
2P is finitely generated.

(8) P, s (finitely generated) faithful and ,(A/T) is projective.

ExampPLE 2.5. (i) Let A be the ring of all 2 by 2 upper trian-
gular matrices over a field K. Let

0 0
e= (0 1) :
Then P, = e¢A is a projective quasi-generator. P is finitely generated
since zP = Be where B = ¢Ae. However, P, is not faithful, so P, is
not a generator.

Also, T = AeA is a left direct summand; i.e., ,(4/T) is projective.
However, (4/T), is not flat (see Corollary 1.4).

(i) Let A = [l..; K; where K, = K a field and the index set I
is countable infinite. Let P, = @;.; K;. We may write P, = @,.;¢.A
where 2 = ¢, A and ¢;A = K, for 1€ I. Then P, is projective with
trace ideal T = @..;¢;A. Since A is a regular ring ,(4/T) is flat,
and thus P, is a quasi-generator. Furthermore, P, is faithful, but
P is not finitely generated as ,T is not finitely generated. Hence
P, is not a generator.

REMARK. By Corollary 2.4 (38) if A is a semiperfect ring, then a
projective module P, is a generator if and only if P, is a faithful
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quasi-generator. Also, by Corollary 2.4 (2) if A is a regular ring,
then a projective module P, is a generator if and only if P, is faith-
ful and P is finitely generated.
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