SOLVABLE GROUPS IN WHICH EVERY MAXIMAL PARTIAL ORDER IS ISOLATED

ROBERTA MURA AND AKBAR H. RHEMTULLA
SOLVABLE GROUPS IN WHICH EVERY MAXIMAL PARTIAL ORDER IS ISOLATED

R. Botto Mura and A. H. Rhemtulla

It is shown that every maximal partial order in a torsion-free abelian-by-nilpotent group is isolated. The same is true for an ordered polycyclic group. Examples are given to show that maximal partial orders need not be isolated in torsion-free polycyclic groups, nor in ordered centre-by-metabelian groups.

1. Introduction. In ([3], p. 209, Problem 3) Fuchs suggested the problem of investigating those groups in which every maximal partial order is isolated. In this paper we show the dichotomies produced by groups having the above property in the class of solvable groups. We call P a partial order on a group G if it is a normal subsemigroup of G such that $P \cap P^{-1} = \{e\}$. P is a maximal partial order if it is a maximal normal subsemigroup subject to $P \cap P^{-1} = \{e\}$, and P is isolated if $g^n \in P$ implies $g \in P$ for all $g \in G$ and $n > 0$. Since every partial order on a group G can be extended to a maximal partial order using Zorn’s lemma, the class of groups in which every maximal partial order is isolated is the same as that in which every partial order can be extended to an isolated partial order. We shall adopt the notation used by Hollister in [7] and denote this class of groups by Γ^*. Clearly, every Γ^* group is torsion-free since $\{e\}$ itself is a partial order. Our main results are as follows.

THEOREM 1. Every torsion-free abelian-by-nilpotent group is in Γ^*.

THEOREM 2. Every ordered polycyclic group is in Γ^*.

THEOREM 3. The group

$$G = \langle a, b, t; a^t = b, b^t = (ba)^{-1}, t^5 = [b, a]\rangle$$

is not in Γ^*.

This group is one used in [2]. Theorem 3 shows that torsion-free polycyclic groups need not be in Γ^*, and has the following consequences.

COROLLARY 1. An ordered centre-by-metabelian group need not be in Γ^*.

1 A stronger version of this result will appear in the Journal of Algebra.
COROLLARY 2. An ordered abelian-by-polycyclic group need not be in I^*.

The above results show that the class I^* produces a dichotomy in the class of torsion-free solvable groups, separating abelian-by-nilpotent groups from polycyclic groups and centre-by-metabelian groups, and also separating ordered polycyclic groups from ordered abelian-by-polycyclic groups.

Since a locally I^* group is in I^* ([7], Corollary 3), we can conclude, from Theorems 1 and 2, that torsion-free locally abelian-by-nilpotent groups and locally ordered polycyclic groups are in I^*.

2. Notations. The following list of symbols will be used to denote the various classes of groups that are mentioned in this paper; \mathcal{N} for nilpotent groups of class at most c, \mathcal{A} for nilpotent groups, \mathcal{A} for abelian groups, \mathcal{P} for polycyclic groups, \mathcal{A} for abelian-by-nilpotent groups, \mathcal{F} for finite groups, \mathcal{F}^{-1} for torsion-free groups, \mathcal{C} for ordered groups.

For any subset X of a group G, we denote by $S(X)$ the normal semigroup generated by X in G. For a polycyclic group G, we denote by $h(G)$ the Hirsch length of G—the number of infinite cyclic factors in any cyclic series of G.

If x, y are elements of a group G, we write x^n to denote $y^{-1}xy$; $x^{p(y)}$ to denote $\prod_{i=0}^{p(y)} x^{c_i}$ where $p(y) = \sum_{i=0}^{n} a_i y_i$, a_i integers.

If P is a linear order on a group G and $x, y \in G$ then we write $x \preceq y$ to mean that the convex subgroup generated by x does not contain y. Thus if $y \in P$ and $x \preceq y$ then $x^ny \in P$ for all integers n.

3. Proofs. In order to prove Theorem 1 we require the following result which is interesting in itself.

Lemma 3.1. Let P be a maximal partial order on a group G and H a normal subgroup of G. If $H \in I^*$ then the restriction $P \cap H$ of P to H is an isolated partial order on H.

Proof. Let A be the intersection of all maximal partial orders on H extending $P \cap H$. Clearly, A is isolated. A is normal in G for, if not, then $a^g \notin A$ for some $a \in A$, $g \in G$. Thus there is a maximal partial order Q on H such that $Q \supseteq P \cap H$ and $a^g \notin Q$. This implies that $a \notin Q^{\ast}$; but this is not possible since Q^{\ast} is also a partial order on H extending $P \cap H$. It is easy to check that AP is a partial order on G extending P and since P is maximal, $A = P \cap H$ is isolated.

Proof of Theorem 1. Since every partial order P on a free
metabelian group F can be extended to a linear order ([1], Theorem 4 and [5], Theorem 1) every torsion-free quotient of F is in I^* ([7], Corollary 7). Assume, by way of induction, that $F^{-s} \cap \mathcal{N}_e \subseteq I^*$ and let $G \in F^{-s} \cap \mathcal{N}_e$. P is a maximal partial order on G and $g^s \in P$ for some $g \in G$, $n > 1$. Consider $H = \langle G', g \rangle$. $H \lhd G$ and $H \in F^{-s} \cap \mathcal{N}_e$ ([6], Lemma 1.3). Thus $H \in I^*$. By Lemma 3.1, $P \cap H$ is isolated in H. Hence $g \in P \cap H \subseteq P$.

Lemma 3.2. If $G \in \mathcal{O}$ and $H \in \mathcal{N}_e$ is a normal subgroup of G such that G/H is periodic then $G \in \mathcal{N}_e$.

Proof. The above property is in fact true of groups in which $x^n = y^n$, $n \neq 0$ implies $x = y$. Such groups are called R-groups and contain the class \mathcal{O}. Using the fact that all terms of the upper central series of an R-group G are isolated in G (see [9], p. 245), one can easily check that $Z_i(G) \cap H = Z_i(H)$, $i \geq 0$. In particular $Z_i(G) \cap H = Z_i(H) = H$ and hence $Z_i(G) = G$.

Lemma 3.3. Let P be an order on a nilpotent group G, and let $a, b \in G \setminus \{e\}$. Then $[a, b] \ll a$ and $[a, b] \ll b$.

Proof. The result follows from the fact that under any order on a nilpotent group G, the convex jumps are central ([8], Lemma 1).

We shall need all the above results in the proof of Theorem 2. We shall also need the following property of ordered polycyclic groups.

Remark. Let $G \in P_{\mathcal{O}_1} \cap \mathcal{O}$ and suppose that $C \leq D$ is a convex jump under some order on G. Then it is well known (see [3], pp. 50–54) that C, D are normal in G, D/C is order isomorphic to a subgroup of the reals under addition and for any $t \in G$, the action of t on D/C under conjugation is that of multiplication by a positive real when D/C is identified as the subgroup of the reals. Since D/C is finitely generated, the action of t on D/C is that of multiplication by a positive algebraic integer. Thus there is an integer monic polynomial $p(x)$, irreducible over the rational field such that $d^{x(t)} = \overline{e}$ for all $d \in D/C$. Moreover, at least one root of $p(x)$ is a positive real.

Proof of Theorem 2. We use induction on $h(G)$. If $h(G) = 1$, then by Lemma 3.2, $G \in F^{-s} \cap \mathcal{O} \subseteq I^*$. Assume the result when $h(G) < h$ and let $G \in P_{\mathcal{O}_1} \cap \mathcal{O}$, $h(G) = h$. Let P be a maximal partial order on G and suppose that $t^s \in P$ for some $t \in G$, $n > 1$, but $t \notin P$. Since P is maximal and $t \in P$ if P^{-1}, $t^s \cdots t^{r} \in P^{-1}$ for some choice of g_1, \ldots, g_r in G and $r \geq 1$. Thus $gt^{-r} \in P$ for some $g \in G$, the commu-
tator subgroup of G. We can clearly assume that r is a multiple of n so that t^r and gt^{-r} lie in P. Our next result, Lemma 3.4, shows that in this situation $h(T) < h(G)$ where $T = \langle t^r \rangle$. By induction hypothesis, $T \in I^*$ so that $t \in P$ by Lemma 3.1. This contradiction completes the proof.

Lemma 3.4. Let $G \in P \cap \mathcal{O}$ and let P be a partial order on G such that $t^r, gt^{-r} \in P$ for some $e \neq t \in G, g \in G'$ and $r \geq 1$. Then $h(G/T) \geq 1$ where $T = \langle t^r \rangle$.

Proof. Once again the proof is by induction on $h(G)$. If $h(G) = 1$ then by Lemma 3.2, $G \in \mathcal{A}$ so that $g = e$ and $t^r, t^{-r} \in P$. This is not possible. Assume that the result holds when $h(G) < h$ and assume that $h(G) = h$. Since $G \in \mathcal{O}$, amongst all possible orders on G pick one, say Q, such that the first convex subgroup $C_1 \neq \{e\}$ satisfies $h(C_1)$ minimal. Let

$$\{e\} < C_1 < \cdots < C_{k+1} = G$$

be the chain of convex subgroups of G under Q. Let N be the maximal normal nilpotent subgroup of G. Since $G \in P \cap \mathcal{O}, G' \leq N$ (see [3], p. 51), and $G/N \in \mathcal{A} \cap \mathcal{O}$. If $h(G/G') > 1$ or if $N = G$ or if $t \in N$, then $h(G/T) \geq 1$ so that we can assume, without loss of generality, that $G = \langle N, t \rangle, h(G/G') = 1, N/G' \in \mathcal{F}$ and $N = C_i$.

Let $\bar{G} = G/C_i$ and look at $S(t^r, gt^{-r}) = \bar{S}$ in \bar{G}. Either \bar{S} is a partial order on \bar{G} or not. We discuss these two cases.

Case I. \bar{S} is a partial order on \bar{G}. The hypotheses of the lemma are satisfied for the partial order \bar{S} on \bar{G} and $h(\bar{G}) < h$ so that $h(\bar{G}/T) \geq 1$ and hence $h(G/T) \geq 1$.

Case II. \bar{S} is not a partial order on \bar{G}. This implies that $S(t^r, gt^{-r}) \cap C_i \neq \emptyset$. Thus $(t^r)^{x_1} \cdots (t^r)^{x_m}(gt^{-r})^{y_1} \cdots (gt^{-r})^{y_n} = e \in C_i$ for some choice of $x_1, \ldots, x_m, y_1, \ldots, y_n$ in G. Since $G/C_i \in \mathcal{O}, S(gt^{-r}) \cap C_i = \emptyset$ so that $m \neq 0$. Clearly we can assume that $x_1 = e$ by conjugating the expression by x_1^{-1} if necessary. Thus

$$t^{-r}c \in S(t^r, gt^{-r}) \subseteq P$$

and $t^r, t^{-r}c \in P$ for some $c \in C_i$.

Note that $C_i \leq Z(N)$ for $\{e\} < C_i$ is a jump under the order $Q \cap N$ on N and $N \in \mathcal{N}$. Let $K = \langle C_i, t \rangle$. Then K is an ordered metabelian group and we can extend the partial order $P \cap K$ to a linear order R on K. Let $\{e\} < K_1 < \cdots < K_s = K$ form the chain of convex subgroups of K under R. Since $C_i \leq Z(N), R \cap C_i$ is a G-invariant order on C_i so that we can define an order on G with $\{e\} \leq K_i \cap C_i \subseteq$
Sketch of proof for Theorem 3. Let $P = S(t'')$. Since $t'' \in Z(G)$, P is a partial order on G, and it cannot be extended to an isolated partial order for t cannot be extended to a partial order G. Since $t'' G/F$ does not belong to any partial order on G since $t'' G/F$ is free metabelian and hence ordered. Thus $Z(G/F)$ is of finite index in G/F. By Schur's lemma, FG'/FE. Since $h(G/F) \geq 1$ we have $h(G/F') \geq 2$ so that $h(G/T) \geq 1$. This completes the proof.

Proof of Theorem 3. Let $P = S(t'')$. Since $t'' \in Z(G)$, P is a partial order on G, and it cannot be extended to an isolated partial order for t cannot be extended to a partial order on G. Since $t'' G/F$ does not belong to any partial order on G since $t'' G/F$ is free metabelian and hence ordered. Thus $Z(G/F)$ is of finite index in G/F. By Schur's lemma, FG'/FE. Since $h(G/F) \geq 1$ we have $h(G/F') \geq 2$ so that $h(G/T) \geq 1$. This completes the proof.

Proof of Corollary 1. Let E be the free centre-by-metabelian group on two generators. Observe that $Z(G) = \langle t'' \rangle$ and $G/\langle t'' \rangle$ is abelian by cyclic of order 3. Since G can be generated by a and t, G is a torsion-free quotient of E, and therefore, by a result of Hollister ([7], Corollary 5), $G \in P$. On the other hand, $E \in \mathcal{F}$, see ([10]) and since $E/Z(E)$ is free metabelian and hence ordered ([1], Lemma 4.1), $E \in \mathcal{O}$ ([4], Theorem 4).

Proof of Corollary 2. Let

$$A = \langle a, b, t; a' = b, b' = (ba)^{-1}, [a, b], [b, a] = e \rangle,$$

and let F/K be a representation of A as a quotient of a free group.
Since A has the invariant chain $\{e\} \triangleleft \langle [a, b] \rangle \triangleleft \langle a, b \rangle \triangleleft A$ with torsion-free abelian factors, $F/K' \in \mathcal{O}([11], \text{Theorem 2})$. Clearly F/K' is abelian-by-polycyclic and it is not in I^* since it has a quotient isomorphic to G.

REFERENCES

Received February 16, 1973. Research partially supported by N.R.C.

UNIVERSITY OF ALBERTA, CANADA
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 51, No. 2 December, 1974

Robert F. V. Anderson, Laplace transform methods in multivariate spectral theory ... 339
William George Bade, Two properties of the Sorgenfrey plane 349
John Robert Baxter and Rafael Van Severen Chacon, Functionals on continuous functions .. 355
Phillip Wayne Bean, Helly and Radon-type theorems in interval convexity spaces .. 363
James Robert Boone, On k-quotient mappings 369
Ronald P. Brown, Extended prime spots and quadratic forms 379
William Hugh Cornish, Crawley’s completion of a conditionally upper continuous lattice ... 397
Robert S. Cunningham, On finite left localizations 407
Robert Jay Daverman, Approximating polyhedra in codimension one spheres embedded in S^n by tame polyhedra 417
Burton I. Fein, Minimal splitting fields for group representations 427
Peter Fletcher and Robert Allen McCoy, Conditions under which a connected representable space is locally connected 433
Jonathan Samuel Golan, Topologies on the torsion-theoretic spectrum of a noncommutative ring .. 439
Manfred Gordon and Edward Martin Wilkinson, Determinants of Petrie matrices .. 451
Alfred Peter Hallstrom, A counterexample to a conjecture on an integral condition for determining peak points (counterexample concerning peak points) ... 455
E. R. Heal and Michael Windham, Finitely generated F-algebras with applications to Stein manifolds ... 459
Denton Elwood Hewgill, On the eigenvalues of a second order elliptic operator in an unbounded domain .. 467
Charles Royal Johnson, The Hadamard product of A and A^* 477
Darrell Conley Kent and Gary Douglas Richardson, Regular completions of Cauchy spaces ... 483
Alan Greenwell Law and Ann L. McKerracher, Sharpened polynomial approximation .. 491
Bruce Stephen Lund, Subalgebras of finite codimension in the algebra of analytic functions on a Riemann surface 495
Robert Wilmer Miller, TTF classes and quasi-generators 499
Roberta Mura and Akbar H. Rhemtulla, Solvable groups in which every maximal partial order is isolated ... 509
Isaac Namioka, Separate continuity and joint continuity 515
Edgar Andrews Rutter, A characterization of QF – 3 rings 533
Alan Saleski, Entropy of self-homeomorphisms of statistical pseudo-metric spaces .. 537
Ryōtarō Satō, An Abel-maximal ergodic theorem for semi-groups 543
H. A. Seid, Cyclic multiplication operators on L_p-spaces 549
H. B. Skerry, On matrix maps of entire sequences 563
John Brendan Sullivan, A proof of the finite generation of invariants of a normal subgroup ... 571
John Griggs Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, VI .. 573
Ronson Joseph Warne, Generalized $\omega - \mathcal{L}$-unipotent bisimple semigroups ... 631
Toshihiko Yamada, On a splitting field of representations of a finite group ... 649