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Let S be a bisimple semigroup and let E(S) be the set
of idempotents of S. If E(S) is an w-chain of rectangular
bands (E,: nc N, the nonnegative integers) and <, Green’s
equivalence relation, is a left congruence on E(S), we term
S a generalized v-“~unipotent bisimple semigroup. We char-
acterize S in terms of (I, 0), an w-chain of left zero semigroups
(I: ke N); (J, ¥) an w-chain of right groups (J,: k € N); a homo-
morphism (%, r) = a,,y of C, the bicyclic semigroup, into End (7,
0), the semigroup of endomorphisms of (I,0) (iteration); a
homomorphism (n, 7) > B, of C into End (J, *); and an (upper)
anti-homomorphism j — A; of (J, *) into T, the full transforma-
tion semigroup on I (4;is “almost’’ an endomorphism). In fact,
Se((¢, (n, k), 7):1€l,,jeJ,, n, ke N) under the multiplication
(4, (n, k), ))u, (r,s), v)={(te(ud ;aq,»)), (n+r—min (k, r), k+s—min
(k, 7)), 3Ber,5*v) (Theorem 4.1). We then characterize (J,*) as a
semi-direct product of an w-chain of right zero semigroups by
an w-chain of groups. Finally, we specialize Theorem 4.1 to
obtain our previous characterization of »--<-unipotent bisimple
semigroups S(E(S) is an w-chain of right zero semigroups).

We will use the definitions of Clifford and Preston [1] unless other-
wise specified. In particular, <, & &7 and < will denote Green'’s equi-
valence relations on a semigroup S, i.e., ((a, b)c .57 if a UaS=10UbS;
(@,0)e Z if aUSa=bUSb; 57 =B NF; D =% ((a b)e s
if there exists € S such that (a, x)e.<# and (2, b)e &¥). R, will
denote the #-class containing ae S. A semigroup consisting of a
single &-class is termed a bisimple semigroup. This bicyclic semigroup
is C = N x N under the multiplication (n, m)(p, ¢) = (» + » — min (m,
p), m + ¢ — min (m, p)). A semigroup S which is a union of a collection
of pairwise disjoint subsemigroups (S,: y€ Y) where Y is a semilattice
and S,S; &S, for all y, te Y is termed a semilattice ¥ of the semi-
groups (S,:ye Y).

If Y= N with n A m = max (%, m), S is termed an w-chain of the
semigroups (S,: ne N). A semigroup is termed regular if a € aSa for
every a€S. A rectangular band is the algebraic direct product of
a left zero semigroup Uz, ye U implies 2y = ¢) and a right zero
semigroup. A right group is a semigroup X such that a, b€ X implies
there exists a unique x ¢ S such that ax = b. If V is a subset of a
semigroup S, E(V) will always denote the set of idempotents of V.

In [4], we defined a generalized <“-unipotent semigroup to be a
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regular semigroup S such that E(S) satisfy the condition: e, f € E(S)
and ef = ¢ imply that gegfe = ge for all ge E(S). Combining [4,
Lemma 1] and a result of Clifford and McLean [2, 1, p. 129, Exercise 1],
a regular semigroup S is generalized .&“-unipotent if and only if F(S)
is a semilattice Y of rectangular bands (E,:ye Y) and & is a left
congruence on FE(S). Since any bisimple semigroup containing an
idempotent is regular by a result of Clifford and Miller [1, Theorem
2.11], the reason for the terminology “generalized w-<-unipotent
bisimple semigroup” is clear. We introduced the term “-unipotent
in [3] to denote a semigroup in which each <“-class contains precisely
one idempotent. By [3, Proposition 5], a semigroup S is .#-unipotent
if and only if S is regular and E(S) is a semilattice Y of right zero
semigroups (E,: y€ Y). Hence, the terminology “w-<"-unipotent
bisimple semigroup” is also clear.

Let S be a generalized w-<-unipotent bisimple semigroup. In
§1, we define a congruence ¢ on S such that S/t = C, the bicyclic
semigroup, and give an explicit multiplication for (E(C))t™, the kernel
of t(kert). In §2, we describe S as an “extension” of kert by S/t
(the converse of Theorem 4.1). In §3, we prove the direct part of
Theorem 4.1. In §4, we state Theorem 4.1 and characterize an -
chain of right groups as a semi-direct product of an w-chain of right
zero semigroups by an -chain of groups (Theorem 4.3). Combining
Theorem 4.1, Theorem 4.3, and Clifford’s characterization of semilattices
of groups [1; theorem 4.11], we have characterized generalized w-<-
unipotent bisimple semigroups in terms of groups, w-chains of left zero
semigroups, w-chains of right zero semigroups, and ‘homomorphisms’.
In §5, we obtain our characterization of - -unipotent bisimple
semigroups [5, Theorem 7.11] as a corollary of Theorem 4.1.

1. The congruence t. In this section, S will denote a generalized
w-.%-unipotent bisimple semigroup, i.e., S is a bisimple semigroup such
that E(S) is an w-chain of rectangular bands (E,:nec N) and & is
a left congruence on E(S). Recall S is a regular semigroup. Thus,
for each ac S, there exists ye .S such that aya = a and yay = y (for
example, if a = awa, let y = zax [1, Lemma 1.14]). The element y is
termed an inverse of a. We will denote the set of all inverses of a
by “(a).

Let ¢t = ((w, y)e S: 22/, yy' € E, and «'x, y'y € E, for some m, ne
N, 2’ e Z(x), and 4’ € “(y)). We first show that ¢ is a congruence
on S and that S/t = C, the bicyclic semigroup. We also note that C
may be taken as a set of representative elements for the t¢-classes
of S and that T = ker ¢ (the union of the collection of ¢-classes of S
containing idempotents) is an w-chain of rectangular groups.

Finally, we describe T in terms of (I, 0), an w-chain of left zero
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semigroups (I,: ne N); (J, *), an w-chain of right groups (J,:n€ N);
and an anti-homomorphism j — A; of J into T, the full transformation
semigroups on I. In fact, T'= U(I, x J,: ne N) under the multipli-

cation (7, j)(», @) = (¢ o pA,, 7*q).
LeMMA 1.1. If e,c E,, R, is a semigroup.

Proof. Lemma 1.1 is a special case of [5, Lemma 3.1].

REMARK. Immediately below, we write Theorem 1.2 [5, Theorem
3.3]). This means Theorem 1.2 is obtained by taking “Y” to be a
one element set in [5, Theorem 8.3]. (D;,:d¢ Y) is the collection of
-classes in the semigroup of [5, Theorem 3.3]. We do the same
thing in Note 1.3, Propositions 1.4 and 1.5, and Lemmas 1.9-1.12.

THEOREM 1.2 [5, Theorem 3.3]. ¢ is a congruence on S and S/t =C.

Note 1.3 [5, Note 3.4]. If welet t.,., = (n, k)t™", the t-classes of
S are (fnw:n, ke N) with .. 1t00 S tirr-ming,mkts-mingm. W MaY
write E(S) = U (E\.: k€ N) where E,, ., is a rectangular band and
E(ten) = Eun- Actually, E ., = E,.

PRrROPOSITION 1.4 [5, Proposition 3.5]. ¢t =(aeS:aa’ € E,,,, and
a'ac Ey;, for some a’'e A (a)) = UR.N Lyie€ B and fe Ey ).

A rectangular group is the algebraic direct product of a group
and a rectangular band.

ProprosITION 1.5 [5, Proposition 3.6]. For each ke N, t,,, is a
rectangular group. In fact, t,., =G x Eg, where G is o fized
maximal subgroup of S. Furthermore, ty pwli.o S timast.s), maxit,en-

REMARK 1.6. If be R, N Lye, f € E(S)), there exists x¢ S such
that bz = e. It is shown in the proof of [1, Theorem 2.18] that b~ =
fxe is the unique inverse of b contained in R, L, and that b0~ = ¢
and 570 = f.

Note 1.7. Let ¢, be a fixed element of E, and fix an element
e.€ E, . such that ¢, < ¢,. For example, select any fec E,, and let
¢, = ¢, fe,. Hence, e,€ E,,, by Note 1.8 and ¢, < ¢,

Note 1.8. Select and fix ae R, N L,. By Remark 1.6, there exists
a unique '€ F(a) N B, N L, with aa™ =¢, and a™'a = e,. Define
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a™™ = (a*)" for all positive integers n and define o’ =¢,. Utilizing
Proposition 1.4 and Note 1.3, a "a*€ ¢, ,, for all n,ke N.

LemMA 1.9 [5, Lemma 3.9]. a*a™ = ¢, for all ke N.

Lemma 1.10 [5, Lemma 3.10].

aF if k>r
aa™" = {a "R if r >k
€ if r=k.

LeEMMmA 1.11 [5, Lemmas 3.11, 3.12].

1) a*ara""q® = g~ krrminr g pismminty) 9y g~"q" € K, ,, for all r& N.

For brevity, let T, =t and let T = J (T,: ke N). Hence, T
is an ®-chain of the rectangular groups (7, ke N) by Proposition
1.5. Since E(S) = E(T) by Note 1.3, T is generalized & -unipotent.
Utilizing Proposition 1.5, T, = G x M, x N, where G is a group, M,
is a left zero semigroup, and N, is a right zero semigroup. By
Lemma 1.11, a*a*e E(T,). Let I, denote the set of idempotents of
the & -class of T, containing a*a* and let J, denote the #-class
of T, containing ¢ *a*. We may suppose that I, M, N N, a*a* =
(e, Iy, 1) where e is the identity of G, I, = (¢) X M, X (I), and J, =
G x (1) X N,. For brevity, let e, = (e, l;, l,). Hence, using Lemma
1.11, €., = maxnm>

Let I=U(,:neN) and let J = (J,: ne N).

LEMMA 1.12. I is an w-chain of left zero semigroups (I,: n € N).

Proof. By a direct calculation, I, is a left zero semigroup for
eachne N. Letxe l,and let ye I,. Hence, v¢, and yZe,. Since
T is generalized .&-unipotent, vy~ we,. Thus, since

0, L €180, XYL Crmaxiny *

Hence, 2y € Inoxi -

LemMA 1.13. For each ne N, J, is a right group. Ifxed, yed,,
and n = m, xy € J,.

Proof. By [1, Theorem 1.27], J, is a right group for each n e N.
Let vedJ,, yeJ,, and » = m. Hence, yHe, implies vy Awe,. Since
ere,) = (e.x)e, = e, and ze,c T,, ve,cJ, by a simple calculation.
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Thus, zy € J,.

LEMMA 1.14. Every element of T may be uniquely expressed in
the form x = i with v€ I, and je J, for some ne N.

Proof. If = (g, 1,5)e T, = = (e, ¢, L)y, L., 7).

If X is a set, T, will denote the semigroup (iteration) of mappings
of X into X.

LEMMA 1.15. There exists a mapping j— A; of J into T; and
a mapping p— B, of I into T; such that L[,A; & In.ximm SfOr 7€J,
and J,B, & Jnasinm Jor pel,. IfjedJand pel, jp = pA;jB,. Fur-
thermore, jp.#ZpA;(e T) and jpFjB,(c T).

Proof. Let jeJ, and pel,. Thus, j9€ Thnaxma. Hence, by
Lemma 1.14, there exists a unique %€ Inoxim,a and V€ Jpazm.. Such
that jp = wv. Let w = pA4; and v = jB,. The last statement is valid
by a simple calculation.

LEmMMA 1.16. Ifjed, jB., = ege,. Ifjed,andr = v, jB, = je,.

Proof. Let jeJ, and suppose that » > »r. Thus, je, ¢ T, and
(je,)e, = je.. Hence, je, = (9, 7,1,) for some geG and i€ M, By
Lemma 1.15, je, = e,4;/B,, with jB, “je (< T). Hence, jB., = (9, L,
l,). Thus, jB., = (e, I, l.)9, %, l.) = e.je,. Next, suppose that r = v.
Hence, je,€ J, by Lemma 1.13. Thus, utilizing Lemma 1.15, ¢,(je,) =
je, = e,A;jB., where ¢,A;€ I, and jB, ¢ J,. Hence, jB, = je, by
Lemma 1.14. This establishes the second sentance of the lemma.
Since, for r = v, e, = e.6.j = e, = J, 1B, = e.je, for r = v.

LEMMA 117, (e, fle Z N (E(T)): and pe T imply (pe, pf)e
(e D).

Proof. Suppose (e, f)e & N (E(T))*. Hence, for
pe T, (p 'pe, p~'pf)e &
(p~* is the group inverse of p in the group containing p). Thus,
p"pep”'pf = p'pe and pT'pfpTpe = p~ipf. Hence, (pep )pf = pe
and (pfp~)pe = pf. Thus, (pe, pf)e (e T).
LemmA 1.18. If pel, B, = B,.

Proof. If m, me N, let nm = max (n, m) in this proof. LetjeJ,
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and pe I,. Hence ¢,j = (9, l,,, j') for some ge G and j'€ N,, by Lemma
1.13. By Lemma 1.12, pe,, = (¢, n, l,,) for some ne M,,. Thus,

€rsJD€rs = (9, Lrsy Uys) = €17€1€,,

Hence, if jp = (w, m, n) and je, = (u, ¢, d), then w = u. Since (p,
e,)€ %, (jp, je.)e (e T) by Lemma 1.17. Hence, n = d. Thus, jp =
(w, m, n) = (e, m, l,,)(w, l,, n) while je, = (w, ¢, n) = (e, ¢, l,.)(w, L., n).
Hence, utilizing Lemmas 1.14 and 1.15, jB, = jB, .

LeMMA 1.19. LetreJ, sed,v=u,andze N. Then,(a)(rs)B,, =

rB, sB,, (b) if we I, xA,, = x4,A,.

emax(z,v)

Proof. Letred,scd,,u=v, and xc I,. Hence, utilizing Lemmas
1.18 and 1.15, (rs)x = xA,(rs)B, while

r(sz) = r(@A;sB,) = (r(xA,))(sB,) = ©A,A(rB,,5B.) .

Thus, utilizing Lemma 1.14, zA4., = 24,4, and (rs)B, = rB,,, sB..
Utilizing Lemmas 1.15 and 1.18, (rs)B,, = rB 8B,

emax(z,v

If weJ, and yeJ,, define a*y = &B, y.
LEMMA 1.20. IfxeJ,and yed, 2™y = exy. Ifu=v, a*y = ay.

Proof. Let wed, and ye.J,. Hence, utilizing Lemma 1.16,
v*y = 2B,y = (e.xe,)y = e,x(e.y) = ey .

If u = v, again utilizing Lemma 1.16, 2™y = 2B, y = (ve,)y = v(e.,y) = .
Levmma 1.21. (J, *) 1s an w-chain of right groups (J.: ne N).

Proof. Utilizing Lemmas 1.13 and 1.20, (J,, *) is a right group
for each ne N and J,*J,, & Juoxmnm. We must just establish associa-
tivity. Let <e.J,, ped, and weJ,. Hence, utilizing Lemmas 1.15
and 1.13, *(p*w) = 1*(pB, ,w) = 1B, B, w while

(@*p)*w = (1B, p)*w = (1B, p)B, w .

max(y,z

Utilizing Lemma 1.19 (a) (¢B.,p)B., = B, B.,.., .,0B... However,
utilizing Lemma 1.16,

7/BeyBemax(u,z) = €max(y, 2yl ymaxiy,2) = Emaxty.n¥Cmaxy.y = ’I/Bemax(y,z)'

Hence, (¢*p)*w = 1B,,,,,, ,pB.,w = t*(p*w).

DEFINITION 1.22. Let the semigroup X be an w-chain of semi-
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groups (X,: ne N) and let ¢ be a mapping of X into a semi-group Y.
If reX,, se X,, and n = m imply (rs)¢ = s¢ré, ¢ is termed an upper
anti-homomorphism of X into Y.

LEMMA 1.23. r— A, is an upper anti-homomorphism of (J, ¥)
into T;.

Proof. Combine Lemmas 1.20 and 1.19 (b).
LEMMA 1.24. If jedJ, and i€ I, ji = 1A;je, = 1A;57%¢,.

Proof. Let jedJ, and 7€ I,. Hence, ji = 14,/ B; by Lemma 1.15.
However, utilizing Lemmas 1.18 and 1.16, jB, = jB,, = e,je.. Since
14;¢ TInaxtom, 145 = 1A maxw,. Hence, ji = tA0maxw nede. = 14;j6,.
However, e.je, = j*¢, by Lemma 1.20. Hence, ji = 14,5%e,.

LemmA 1.25. Ifr,se I with re I, (rs)A, = rA.sA,,. forall ze J.

Proof. Let r,sel with re I, and let zeJ. Hence, utilizing
Lemmas 1.15 and 1.12, z(rs) = (rs)A.xB,, while

(zr)s = (rA,2B,)s = rA.(xB,s) = rA,(sA,z vB.B,) = rA,;sA,; xB.B, .

Hence, utilizing Lemmas 1.15, 1.12, and 1.14, (rs)A, = rA.sd4,; . Utiliz-
ing Lemmas 1.18, 1.16, and 1.20, B, = B, = e,xe, = x™e,.

REMARK 1.26. Results of [6] could have been applied to charac-
terize T.

2. Structure theorem for generalized w-% -unipotent bisimple
semigroups. (Proof of converse.) In this section, we complete the
proof of the converse of our structure theorem for generalized w-
&#-unipotent bisimple semigroups (Theorem 2.21).

We will use a sequence of twenty entries to establish Theorem
2.21. S will denote a generalized w- % -unipotent bisimple semigroup.

LEMMA 2.1. Every element of S may be uniquely expressed in
the form x = ia"a*j where 1€ I, and je J,.

Proof. Let xet.,,. Hence, (z, e)c # for some ec E, by Pro-
position 1.4. Thus, (z, 7)€ <# for some 7€ I,. Thus, since a "a"€ I,
a left zero semigroup, % = & = (ia "e")x = 10 "a"%. Since a"ec R,

by Note 1.8 and Lemma 1.1 and a*a* = ¢, by Lemma 1.9, a*a %" =
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a”. Hence z = ia "(a*a *a™)x = (<a "a*)(a *a"x). However, a *a"x e
tww Dby Notes 1.8 and 1.8. Thus, since a*a*(a *a"x) = a *a"x and
a *a*e J,, a *a"x € J, by Proposition 1.5. Hence, © = 1a "a*j where
1el, and jeJ,. We next establish uniqueness. Suppose that z =
ia "% = wa""a*v(ie I,, jedJ,, we I, and ved,). Thus, using Note
13, x€tym N tes and, hence, n = r and &k = s. Thus, ta "a"j =
ua""a*v. Hence, a "a"ia""a*j = a "a"ua "a*v. Thus,sincea "a", 1, u ¢
I, a left zero semigroup, a "a"a "a¢*j = a "a"a "a*v. Hence, a "a"j =
a "a*». Thus, a*a"a "a’] = a *a"a""a*v. Hence, a*a*j = a*a*v.
Since a~*a*e KE(J,) and j, ve J,, a right group, 5 = v. Thus, ¢ "a*j =
ua~"a*j. Since J, is a right group, there exists z¢ J, such that jz =
a *a*. Hence ia "a*jz = ua""a"jz implies ta "a¢*a *a* = ua "a*a"*a’.
Thus, ta "a* = wa "a*. Hence ta "a*a"a™ = ua "a*a *a". Thus,
" = ua""a” .

Since i, w, a "a" € I,, a left zero semigroup, 7 = u.

DErINITION 2.2. If we€ T and #n, ke N, define uy, ,, = ¢ "a"ua " a.

LEMMA 2.8, TwWim S Trirominie,re

Proof. Let ge T,. Hence, utilizing Note 1.3, gv,;,., = ¢ "a*ga *a" €

t(n,lc)(‘r,?‘)(k,’n) = Tn+r—min(k,r)-

LeEMMA 2.4. Let g.€T, and h,eT,. If E=r,s or r=s2=k,
@I = 9Y0mPsVim-  IN particular, Yu,. s a homomorphism of
Tr ’I/)’LtO Tn—i—r——min(k,r)'

Proof. Let g.¢ T, and h,c T, with &k = », s. Hence,
(0. 2P0 = a~"a*g,ha " a™ = a "a*(a " "a g, yua " a" £ (haFa e Fa”

where (u;, a " *a*g,) € & with u, ¢ E(J,) and (f;, h.o "a*) e & with f, ¢ I,.
Hence, (¢,h)Y 0. = o "a*g,a*a"ha*a” = (¢ "a*g.a "a")(a "a*h.a *a") =
9 P0mlsYm. Next suppose that » = s = k. Then,

@1 = a”"abg. 0,07 b fh,a "

where (v, 9,) € . with v, e E(J,) and (f,, h,) € &2 with f,e I,. Hence,
(ga‘hr)”(k,n) = (a/‘na'kgra’_ka'n)(a»nakhra_dka%) = grv(k,n}hrv(k,nw

DErFINITION 2.5. Let viull = ayn and Yo,old = Buw-

LEMMA 2.6. (a) I’l‘a(k»'ﬂ) & In+r—~min(k,’r) (b) J'rB[km) g Jn+r—min(k,r>'

Proof. (a) By Lemma 2.3, Ly, & T, if k = rand Iy, S Toirs
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if r=zk. If k=7, V.. is a homomorphism of 7T, into T, by Lemma
2.4. Hence, Iy, & E(T,). Let g.eI,. Hence, 9.Fa"a(eT,).
Thus, 9.Y4,n-Fa "a*a "a"a *a™(c T,). However,

a "a*a""a"a Fa" = a""a"

by Lemma 1.11. Hence, 9.V, € I, if kK = r. The case r = k is treated
similarly. To prove (b), just replace “I” by “J” and “.<” by “<2”
in the proof of (a).

DeEFINITION 2.7. If X is a semigroup End X will denote the
semigroup of endomorphisms of X (iteration).

LEMMA 2.8. @u,. € End I for each n, ke N.

Proof. Let ¢,€I, and ¢, I,. If r =k, .07 %%, = i,4,. Hence,
(4 0) Ay = @~ "0%1,0.07 %™ = a"a"i.0 e a7 Fa

= a "a*,a Fa"a ek .07 A" = 1,00t Qi -
Next, suppose that k& > . Sinece S is generalized & -unipotent,
1,20~ "a" implies a *a*i, a0 *a*a""a’. Thus, a *a*i,a*a* by Lemma

1.11. Hence, a*a*i,e I,. Thus,
(Ci)Agm = a”"a", 1.0 %" = a " "a* (@ *a*1,)a *ar .0 a"
= (a””ak’ira“ka")(a"”ak’i,a—ka") = i,a(k,n)'iaa(k’m .

LEMMA 2.9. (n, k) — @y ts a homomorphism of C into End I.

Proof. Let ge I. We will employ Lemma 1.11. Thus,

90 Oy = a~Fa"a"*a"ga""a’a""a?

— a—(p+s—min(n,s))an+r—min(n,s)ga—(r+n-—mln(n,c))as+p——min(n,c)
= Gy sy(n,p) +
We next establish that 8, € End (J, *). This will be accomplished
by Lemmas 2.10-2.15.
LEMMA 2.10. B, € End(J, *).

Proof. Letwed,andu,ed,. If p=s, By, € End(J,*) by Lemmas
2.4, 1.20, and 2.6(b), and Definition 2.5. Let us first suppose s = 0.
Utilizing Lemmas 1.13, 1.11, Note 1.8, and Definition 2.5,

(wua™ = a ?aa ' a(wu)a ™t = a?a’a " (WKko) Bu.o
= a_papa—lao(wuo)ﬁu,o) = e;na'_pap—l(wuo)ﬁu,o) .
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We note that (wu,)Bu.0 € J,—. by Lemma 2.6(b). Utilizing Note 1.8,
Lemmas 1.15, 1.16, and Definition 2.5, wa™ = uea™ = ¢, 4, eue.a™" =
e A, 0 'aue ™ = e, 4,0 (UBun). Hence, utilizing Lemmas 1.15, 1.23,
1.18, 1.16, and 1.11, and Definition 2.5,

W~ = w(elAuO)aﬂ(uoB(l,o)) = elAwuoelwelaAl(uoﬁ(l,O))
= 0. A0 (@wa (U 1,0)) = € Auu @™ (WBw0)%Biuo
= elAwuoahpapa_lao(wBu,o>)uoB(1,0)

= ewaan_pafp‘l(wB(l,0))“018(1,0) .

Utilizing Lemmas 1.15, 2.6(b), and 1.13, e,4,.,€ I, and wSB,,n%Bu.n €
J,-.. Hence, (Wu)Biu.o = WBuwo%Bus by Lemma 2.1, Thus, utilizing
Lemma 1.20 and 2.6(b), (w*u)Bu.0 = WBwn %Baun. Next, we assume
that »p = s = 1. Hence, utilizing Lemmas 1.11, 2.6(b), and 1.20,

1 1

(w*u3)18(1,0) = (WMS)B(l,o) = aWU0~ = WA @ U
= (awa ) (au.a™")

= WRu0UsLBuo = wB(l,o)*usBu,o) .

= awae~'aa 0 U0
Finally, we assume s > p. Utilizing Lemmas 1.20, 1.13, 1.10 and the

case (p = s) just established,

(W %) B0y = ((€sW)U:)Biroy = (€:W)Bi1,0y%sBiioy = €sB,0WBw.0%sB 1.0
= aa"’a"a ' WBu.0UsBu,y = € WLu10WsSu0 -

Since 4,840 € J,—, by Lemma 2.6(b), e, WwBu0UsBu,n = WBEUsBe o by
Lemma 1.20. Hence, (w*u,)Bu.0 = WBH.o%sBi -

LEmMMA 2.11. By, € End (J, *).

Proof. Let w,edJ, and v,eJ,. Utilizing Lemmas 1.20 and 2.6(b),

WiV) By = (65U, V) Bo.0) = €olstyVsy = €81, 6,850V:80 = €58,U 8080V 6,

= €,(U:81,0) VB0 = UrfBi0.00 VsBroor +

LEMmA 2.12. (, k) — B %8 @ homomorphism of C into T;.

Proof. Replace “I” by “J” and “a” by “B” in the proof of Lemma
2.9.

LEMMA 2.18. By € End (J, *) for all ke N.

Proof. We have shown that B,, in End (J, *)(Lemma 2.11) and
that B, € End(J, *) (Lemma 2.10). Suppose that g€ End(J, *).
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We show that B,.,, € End (J, *). Letg, heJ. Hence, utilizing Lemma
2.12,

(0" M) Binsror = (@ B)BinoBuo = (980 hBwm.0)Bun
= 9808 w0 PBiumnBun = 9B "Bt -

LEMMA 2.14. By € End (J, *) for all ke N.

Proof. Let w,eJ, and v,eJ,. First, assume s = r. Utilizing
Lemma 1.20, (#,.*v,)Bo.n = (€sU,0)Bom. Since %, 7e., ey, e, = e,.
Hence, utilizing Lemma 2.4, ((¢,%4,)0,)Bw.ry = (€:%,)B0.1yVsBo.ry- Utilizing
Definition 2.5, Note 1.8, Lemma 1.1, and Lemma 1.9, (e.u,)Bw.r =
a *eeu, et = afeu,at = a"%e,afa*u,af = (a"*a"*ata*) (@ e u,a ") =
€oit{%:B0,1). Since 1,81 € Jop by Lemma 2.6(b), €.11%,Bi0,0V:B0n =
UrBom VsBow by Lemma 1.20. Thus, (%,"v.)B0.n = %:Bow VeBiun-
We utilize Lemmas 1.20 and 1.9, and Definition 2.5 for the case r» > s.

LEMMA 2.15. Bu.n<€ End(J, *) for all n, ke N.

Proof. Let g, heJ. Hence, utilizing Lemmas 2.12, 2.13, and 2.14,

(g*h),é?(n,k) = (9" M)Bmniow = (g*h)B(n,o)B(o,k) = (95<n,o)*h,3<n,o>)3(o,k>
= 9Buw.oBww hBuwoBorn = 9Bum.w B -

LEMMA 2.16. (1, k) — Bin.1) 18 @ homomorphism of C into End (J, *).
Proof. Combine Lemmas 2.12 and 2.15.
If a,be I, define aob = ab.

LemMmaA 2.17. S=((4, (0, k), §):1e I, 5eJ, n ke N) under the
multiplication (2, (v, k), )%, (1, 8), v) = (1 (udl ;q,m), (® + r — min(k, ),
k + s — min (&, 7)), 8™ 0).

Proof. Letiel, jed,, ue I, and veJ,. Hence, utilizing Lemmas
1.24,1.15,1.11, 1.9, 2.6(b), 1.20, and Definition 2.5,

(e "a*)(ua""a*v) = e "a*(Ju)a"a*v = ia""a*u A ja""a""av
= o "a*ud o *aka""a"ja " "atv
= i(a "a*(ud)a *a™)(a "a*a"a")a e ja T "atv
— ?:((uAj)a(k’n))a-—(n+’r—min(k,‘i‘))ak+s——min(k,’r)jﬁ(r’s)v
= To((WA,) e~ *FTTRIREMgERemmIRED(RE 0) |

Utilizing Lemma 2.6, 7o (wA;)®yn) € Lntr-min.ry and

. *
IBire™ V€ Jisemninm -
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Hence, ((i,(n,k),7): i€ I,, j€ J;, m, ke N) under the multiplication given
in the statement of the lemma is a groupoid. The required isomorphism
is given by the mapping (ia~"a*j)® = (3, (n, k), 7) by virtue of the above
and Lemma 2.1.

LEMMA 2.18. @i oA, = Ajsen Jor all jeJ and r,s€ N.

Proof. Let jedJ, and we I,. Utilizing Definitions 2.2 and 2.5,
and Lemmas 1.9, 1.12 1.15, and 2.6,

((wa o )We,n = a0’ j(a"a"wa"a%)a"'a"
= a7"a’ja e (@ TaTw)aTTaT = a”Tatja e Ta AW
= a~"a’ja" 0w = JBsnW = WAjﬁ(sij(s,mb .

Utilizing Lemmas 1.15 and 2.6, wA;s.., € Imaxig rip—mine,pn a0d

j‘B(s,r)Bw € Jmax(q,r+p——min(s,17)) .
Utilizing Definitions 2.2 and 2.5, and Lemmas 1.15 and 2.6,
(wa,, o )Wen = a7’ j(wa, ,)a"a"

= a—ras(wa(r,s)Ai)(ija(
= a7 a (W, A;)a (B ya, o a"

Ja*a"

Ty8)
= a7"a* (W, A5)a "0 (0770  Bya,, ,07'0")
= (wau,s)Aj)a’(s,r)(ija(,,s))B(s,n .

Utilizing Lemmas 1.15 and 2.6, wa, o A;®: r € Inaxp,stqomintr,gn+r—s and

(ija(T,s))B(s,r) € Jmax(p,s+q~miu(r,q))+r——s- Hence; wa(r,s)Aja(s,r) = WAjﬁ(S,r) by
Lemma 1.14,

LEMMA 2.19. (3) 9. = €,09 for all gel. (b) 9Bu.s = 9%
for all ge J.

Proof. (a) Let ge I. Utilizing Lemma 1.12 ga, o, = (¢.9)¢, = €, =
e.og. (b) Let geJ. Utilizing Lemma 1.20, g8, = e.0¢. = 9%e,.

In the following definition, we will describe the objects we will
use to represent generallized w-.&-unipotent bisimple semigroups.

DErFINITION 2.20. Let (I, 0) be an w-chain of left zero semigroups
(I,:ke N); let (n, r) — &(,.,, be a homomorphism of C into End (I, 0);
let (J, *) be an w-chain of right groups (J,: ke N); let (n, ) — Binn
be a homomorphism of C into End (J, *); let j— A; be an upper anti-
homomorphism of (J, *) into 7T;; and let I, N J, = (), a single idem-
potent, for each ke N such that
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(1) 9Bty = g%e, for all ge J.

(2) Lown S Liirninmn 204 J,8010 S Jiarminm,n-

(3) LA; € Luwxory if €,

(4) (res)A, = rA,°84,4,, for r,sel with re I, and xeJ.
(5) @u oA, = Ajssn for all jeJ and », s€ N.

We denote ((4, (n, k), 5): 1€ I,, 7€ J,) under the multiplication

(6) G, (n, k), )(w, (7, 3), v)
= (to(uA;Qym), (0 + r — min (k, 7), k + s — min (k, 7)), 18r.5"?)

by (1, J, a, 8, 4).

THEOREM 2.21. Let S be a generalized w-F-unipotent bisimple
semigroup. Then, S is isomorphic to some (I, J, a, 5, A).

Proof. The theorem is a consequence of the definition of “0”,
Lemmas 1.12, 2.9, 1.21, 2.16, 1.23, the choice of “¢,”, Lemmas 2.19, 2.6,
1.15, 1.25, 2.18, and 2.17.

We thank the referee for the following remark.

REMARK 2.22. In Definition 2.20, the middle component (m, n)
of (i, (m, m), j) serves only as a marker. Hence, S is actually repre-
sented by the cartesian product I x J under the multiplication

(@, (U, v) = (1o (WA ), IBir,0™V)

where i€ I, jedJ,, ue I, and velJ,.

3. Structure theorem for generalized w-.% -unipotent bisimple
semigroups (proof of direct half). In this section, we show that
(1, J, &, B, A) is a generalized w-<-unipotent bisimple semigroup.

LemmaA 3.1. (I, J, a, B, 4) is a semigroup.

Proof. We use (2) and (3) of Definition 2.20 to establish closure.
We next establish associativity. Let (7, (n, k), 7). = 7 and (¢, (n, k),
Das = ((n, k), 7). Let a = (3, (n, k), 5), b = (u, (r, 8), v), and ¢ = (2, (,
q), wye(,J, a, B, A). Utilizing the fact that (%, ) — B is a homo-
morphism,

((@b)e)es = (3o (WA 0tm), (m, k)T, 5), IBr.* VN2, (D, @), W))es

= ((n’ k)(’l", 8)(p9 Q)y (jB(T,s)*v)B(p,q)*w)
= ((n’ k)(’)", S)(p; Q)9 jﬁ(r,s)(p,qJ*vB(ﬂ,q)*w)
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while

(a’(bc))% = ((1’: (’}’I/, k)7 j)(’u,o (zAva(S,r)), (’i", S)(p; q); /vxg(p,q)*w))zs
= (('}’L, k)(/}", S)(p, q)y J.B?(r,s)(%q)*vle(:ﬂ,q)*w) i

Hence, ((ab)c)y; = (a(be))y. Utilizing the faet (k, n) — @y, is & homo-
morphism of C into End (I, 0), the fact j — A; is an upper anti-homo-
morphism of (J, *) into T7, (5), (1), and (4),

((ab)e), = 1oud,@,m© zAiﬁ(r’S)*va(s,r)(lc,n)
=10 ((wd;e zAjﬁ(T,s)*vaw,m)a(k,m)
= 1o ((ud;o ZAUAJ'ﬂ(T,S)a(s,r))a(k,fn))
= 1o ((Wd; o 24,0 nA 0 00, n) Xk, m)
= 1o (WA; 0 2 A0,y A0l r )i m)
= 1o (Ao 24.0,nAjs, ) 0uwm)
= 1o ((wd;o 24,0 nAjxe,)Xkm)
= 1o ((UozAa,m) Al )

= (a(be)). .
Hence, (ab)e = a(be).

LeEmmA 8.2. Let (¢, (n, k), 7), (w, (p, q), 2)e (I, J, a, B8, A).

@) @G, (i, k), DABw, (v, q), 2) if and only if 1 =w and n = p.

®) @, (n, k), DL (w, (p, 9), 2) if and only if k=q and (J, 2)€
g (e d,).

Proof. (a) Let us show that (4, (n, k), 5).2(4, (n, @), 2). Let ue
I,. Hence, uAa;..c I, by (2) and (8). Thus, since (I,, 0) is a left
Zero semigroup, 7o UA ;& = 1. By (2), 58u.. € J,. Hence, since (J,, *)
is a right group, there exists veJ, such that jB.,*v = 2. Hence,
utilizing (6), (¢, (», k), 9)(u, (k, @), v) = (3, (n, @), 2). Similarly, there
exists ae I, and beJ, such that (¢, (n, @), 2)(a, (¢, k), b) = (%, (n, k), 7).
Utilizing (6), the converse follows from the fact that <&# is the
dentity on (I,0) and (n, k)#(p, q) in C implies n = p. Let us
show that (7, (n, k), 1) (w, (p, k), 2) if (4, 2)e 7 (e J,). Since (J,
2)e &7 (e J,), there exists ueJ, such that u*j = 2. By (2), uBunm€
J,. Utilizing (1) and the fact (n, k) — B..1 18 a homomorphism of C
into End (J, *), 4Bu,mBumn = 4B = we,. Hence, (4Bum)Bun’i =
u¥elj = u*j = z. Thus, utilizing (2), (8), and (6), (w, (p, 1), WS m)(1,
(n, k), 7) = (w, (p, k), 2). Similarly, there exists veJ, such that (3, (n,
D), VBu.o)w, (p, k), 2) = (1, (n, k), 7). Utilizing (6), the converse follows
from the fact that 5 = & in (J, *) and (n, k)< (p, ¢) in C implies
k=q.
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LemMA 3.3. (I, J, a, B, 4) is a bisimple semigroup.

Proof. Let (4, (n, k), 5), (u, (v, 8), v)e (I, J,a, B, A). Hence, utilizing
Lemma 3.2, (%, (n, k), j) G2, (n, 8), )L (v, (r, ), v). (I,J,a, B, 4)is
a semigroup by Lemma 3.1.

LEMMA 3.4. E(I J, o, 8, A) = (G, (n, n), 5): j€ E(J,), ne N).

Proof. Let (¢, (n, k), 7)€ E(I, J, a, B, A). Hence, (i, (n, k), /)1, (n,
k), 7) = (¢, (n, k), j). Using (6), » = k since (n, k)* = (», k) in C. Hence,
using (6) and (1), J = JBu.»*J = 7*elj = j2. Utilizing (6), (2), (3), and
(1), 7€ E(J,) implies (3, (n, n), )€ E(, J, a, 8, A) for ne N and i€ I,.

LemMma 3.5. (1, J, a, B, A) is a regular bisimple semigroup.

Proof. It follows from a result of Clifford and Miller [1, Theorem
2.11] that any bisimple semigroup containing an idempotent is regular.
Hence, we just apply Lemmas 3.3 and 3.4.

LEmMA 3.6. E(I, J, a, B, A) is a semigroup.

Proof. We will utilize Lemma 3.4. Let a = (3, (n, n), 5), b = (u,
(s, s), v)e E(1, J, a, B, A). Hence, jc E(J,) and ve E(J,). Thus, using
1), JBu»*v = j*efv = j*v. However, E(T) is a semigroup for any
chain of right groups T. Thus, it follows that j*v € E(Jpnexm.). Hence,
abe E(I, J, a, B, A) by Lemma 3.4.

LEMMA 3.7. & s a congruence on the semigroup E(I, J, a, 8, A).

Proof. Let X be any semigroup such that E(X) is a semigroup.
Then, it is easily seen that if e, f e E(X), (¢, f) e & (e X) if and only
if (¢, f) e & (e E(X)). Let je E(J,) and ve E(J,). Hence, utilizing
Lemmas 3.4 and 3.2(b), (¢, (n, n), ). (4, (s, 8), v)(€ E(I, J, a, B, 4)) if
and only if n = s and 7 = v. Thus, using (6), &~ is a left congruence
on E(I, J, «, B, A) by a routine calculation.

LEMMA 3.8. E(I, J, a, B, A) is an w-chain of rectangular bands
(E,:ne N) where E, = ((¢t, (n, n), j): i€ I, j€ E(J,)).

Proof. Let (1, (m, m), 5), (4, (n, n), v)e E,. Utilizing (6), (2), (3),
and a routine calculation, (¢, (%, %), 5)(u, (#, n), v) = (%, (n, n), v). Hence,
E, is a rectangular band. Again, utilizing (6), (2), (3), and a routine
caleulation, E.E, S Euwzin.i-



646 R. J. WARNE

THEOREM 3.9. (I, J,a, B, A) 1s a generalized w-Z-unipotent
bisimple semigroup.

Proof. Combine Lemmas 3.5-3.8.

4. Structure of generalized ®-~ -unipotent bisimple semi-
groups. Combining Theorems 4.1 and 4.3 (below) will give a description
of generalized w-.<-unipotent bisimple semigroups in terms of groups,
w-chains of left zero semigroups, and w-chains of right zero semigroups.

THEOREM 4.1. (I, J, a, B, A) is a generalized w-F-unipotent
bisimple semigroup, and conversely every such semigroup s 180-
morphic to some (I, J, a, B, A).

Proof. Combine Theorems 3.9 and 2.21.

REMARK. In contrast to the structure theorem for generalized
&Z-unipotent semigroups given in [4], no factor systems are required
in Theorem 4.1.

We will next characterize an w-chain J of right groups (J.:ne€
N) as a semi-direct product of an w-chain X of right zero semigroups
(X,:ne N) by an w-chain G of groups (G,: ne€ N).

We first need a definition.

DEFINITION 4.2. Let the semigroup U be an @w-chain of semigroups
(U,e N) and let 6 be a mapping of U into a semigroup V such that
re U, se U, and m =n imply (rs)d = rfsf. We term ¢ a lower
homomorphism of U into V.

Let (G, 0) be an w-chain of groups (G,:ne N) and let (X, *) be
an w-chain of right zero semigroups (X,: n€ N) such that G, N X, =
(e.), a single idempotent element, for each ne N. Let g— B, be a
lower homomorphism of G into T, subject to the conditions (1) X, B, &
Xpoxtam if g€G, (2)if re X, se X,and m = n, (r*s)B, = rB. ,,*B,.
Let (G, X, B) denote U (G, x X,: ne N) under the multiplication (%,
Mo, @) = (Z°p, IB5Q).

THEOREM 4.3. J 15 an w-chain of right groups if and only if
J = (G, X, B) for some collection G, X, B.

Proof. We just specialize [6, Theorem 7.2].

Note 4.4. The structure of G is known mod groups and homo-
morphisms by a well known result of Clifford [1, Theorem 4.11].
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5. - -unipotent bisimple semigroups. In this section, we
specialize Theorem 4.1 to obtain [5, Theorem 7.11] (our previous
structure theorem for w-<"-unipotent bisimple semigroups).

A bisimple semigroup S is termed w-<“-unipotent if E(S) is an
w-chain of right zero semigroups.

THEOREM 5.1. Let S be an w-F-unipotent bisimple semigroup.
Then, there exists an w-chain (J, *) of right groups (J.:ne N) and
a homomorphism (n, r) — Bw.. of C into End (J, *) such that for each
ke N there exists e, € E(J,) and

(1) 9Buww = g¥e for all geJ.

(2) JBim E Jrtrmininn. Furthermore, S=(((n, k), 7):5edy, m,
ke N) under the multiplication.

(3) ((n, k), ((r, s), v) = ((n, k)(r, 8), 1B, V) where juataposition
denotes multiplication in C.

Conversely, let (J, *) be an w-chain of right groups and let (n,
1) — B be a homomorphism of C into End (J, *) such that (1) and
(2) are valid. Then, S = (((n, k), 5):5€ J;, 0, k€ N) under (3) is an
w-Z-unipotent bisimple semigroup.

Proof. We first establish the converse. We employ Theorem
4.1 and its notation. Let I, = (e,) for each ve N and define ¢,c¢, =
Cmaxune Let I = U (LL:veN). Then, (I, 0) is an w-chain of left zero
semigroups (I,: ne€ N). Define e, &, = €,2n-minn,» a0d €, 4, = Cmaxinm
if vedJ,. By a routine calculation, (n, r) — @, , is a homomorphism
of Cinto End (7, 0) and p — A, is an upper anti-homomorphism of (J, *)
into T; such that (2)-(5) of Theorem 4.1 is valid. The multiplication
(6) of Theorem 4.1 becomes (6') (¢,, (n, k), 7)(e., (7, 8), ¥) = (€nsrmintk,r»
(n, k)(r, 8), 1B *v) where juxtaposition is multiplication in C. Hence,
U=(J, a B, A) (notation of §3) is a generalized w-#-unipotent
bisimple semigroup by Theorem 4.1. Utilizing Lemma 3.4, E(U) =
((en, (m, m), 3): 5 € E(J,), n€ N). Utilizing Lemma 3.2, (e,, (%, n), 5)- (e
(k, k), w)j € E(J,) and u € E(J})) implies n = k and j = u. Hence, E(U)
is an w-chain of right zero semigroups and, thus, U is an -2 -uni-
potent bisimple semigroup. Since (e., (n, k), /)P = ((n, k), J) define an
isomorphism of (U, (6')) onto (S, (8)). S is an w--unipotent bisimple
semigroup.

Next, let T be an w-<-unipotent bisimple semigroup. Hence,
T is a generalized w-~-unipotent bisimple semigroup and the strue-
ture of T is given by Theorem 4.1. Thus, utilizing Lemmas 3.8 and
3.2, I, = (e,) for each ne N. Hence, utilizing (2) and (3) of Theorem
41, e.Qui = Crir-minmn aNd €,A4; = €puxirsy if j€J,. Thus, (6) of
Theorem 4.1 becomes (6) and (U, (6')) = (S, (3)). The conditions of
Theorem 5.1 are given by Theorem 4.1 ((1) and (2)).
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