ON A SPLITTING FIELD OF REPRESENTATIONS OF A FINITE GROUP

TOSHIHIKO YAMADA
ON A SPLITTING FIELD OF REPRESENTATIONS OF A FINITE GROUP

TOSHIHIKO YAMADA

The theorem of P. Fong about a splitting field of representations of a finite group G will be improved to the effect that the order of G mentioned in it will be replaced by the exponent of G. The proof depends on the Brauer-Witt theorem and properties of cyclotomic algebras.

Let Q denote the rational field. For a positive integer n, ζ_n is a primitive nth root of unity. Let χ be an irreducible character of a finite group G (an irreducible character means an absolutely irreducible one). Let K be a field of characteristic 0. Then $m_\chi(\chi)$ denotes the Schur index of χ over K. The simple component of the group algebra $K[G]$ corresponding to χ is denoted by $A(\chi, K)$. Its index is exactly $m_\chi(\chi)$. If L/K is normal, $\mathcal{E}(L/K)$ is the Galois group of L over K.

In this paper we will prove the following:

THEOREM. Let G be a finite group of exponent $s = l^n$, where l is a rational prime and $(l, n) = 1$. Let $k = Q(\zeta_n)$ if l is odd, let $k = Q(\zeta_n, \zeta_4)$ if $l = 2$. Then, $m_k(\chi) = 1$ for every irreducible character χ of G.

REMARK. In Fong [2, Theorem 1], the above s denoted the order of G (instead of the exponent of G).

First we review

BRAUER-WITT THEOREM. Let χ be an irreducible character of a finite group G of exponent s. Let q be a prime number. Let K be a field of characteristic 0 with $K(\chi) = K$. Let L be the subfield of $K(\zeta_n)$ over K such that $[K(\zeta_n): L]$ is a power of q and $[L: K] \neq 0 \pmod{q}$. Then there is a subgroup F of G and an irreducible character ξ of F with the following properties: (1) there is a normal subgroup N of F and a linear character ψ of N such that $L(\xi) = L$, (2) $F/N \cong \mathcal{E}(L(\psi)/L)$, (3) $m_\psi(\xi)$ is equal to the q-part of $m_\chi(\chi)$, (4) for every $f \in F$ there is a $\tau(f) \in \mathcal{E}(L(\psi)/L)$ such that $\psi(f n f^{-1}) = \tau(f)(\psi(n))$ for all $n \in N$, and (5) $A(\xi, L)$ is isomorphic to the crossed product $(\beta, L(\psi)/L)$ where, if S is a complete set of coset representatives of N in F ($1 \in S$) with $f f' = n(f, f') f''$ for $f, f', f'' \in S$, $n(f, f') \in N$, then $\beta(\tau(f), \tau(f')) = \psi(n(f, f'))$.

649
Proof. See, for instance, [1] and [4].

REMARK. The above crossed product is called a cyclotomic algebra (cf. [3]).

COROLLARY. Let p be a prime number. Denote by Q_p the rational p-adic field. Suppose that $p \nmid s$ if $p \neq 2$, and that $4 \nmid s$ if $p = 2$, s being the exponent of G. Then $m_{Q_p}(\chi) = 1$ for every irreducible character χ of G.

Proof. Set $K = Q_p(\chi)$. Then $m_K(\chi) = m_{Q_p}(\chi)$. Let q be any prime number. By the Brauer-Witt theorem, the q-part of $m_K(\chi)$ equals the index of some cyclotomic algebra of the form $(\beta, L(\psi)/L)$, where $Q_p \subset K \subset L \subset L(\psi) \subset Q_p(\zeta_s)$. It follows from the assumption that the extension $Q_p(\zeta_s)/Q_p$ is unramified, a fortiori, $L(\psi)/L$ is unramified. Because the values of the factor set β are roots of unity, it follows that $(\beta, L(\psi)/L) \sim L$. As q is an arbitrary prime, we conclude that $m_K(\chi) = 1$.

For the remainder of the paper we will use the same notation as in the theorem. Recall that $m_k(\chi)$ is the index of $A(\chi, k(\chi))$. Hence it suffices to prove $A(\chi, k(\chi)) \otimes_{k(\chi)} k(\chi) \sim k(\chi)$, for every prime p of $k(\chi)$, where $k(\chi)_p$ is the completion of $k(\chi)$ with respect to p. For simplicity, set $K = k(\chi)$. Because $A(\chi, k(\chi)) \otimes_{k(\chi)} K$ is K-isomorphic to $A(\chi, K)$, we need to show $A(\chi, K) \sim K$, i.e., $m_K(\chi) = 1$. Note that $k(\chi)$ is a cyclotomic extension of the rational field Q. If M is a cyclotomic extension of Q containing $k(\chi)$, then M^\flat represents the isomorphy type of the completion M_\wp, \wp being any prime of M dividing p.

(i) Suppose that p is an infinite prime. Denote by R (resp. C) the field of real numbers (resp. complex numbers). If $k(\chi)$ is not real, then p is a complex prime, and so $m_K(\chi) = 1$. Suppose that $k(\chi)$ is real. Then $K = k(\chi)_p = R$, $l \neq 2$, and $n = 1$ or 2, i.e., $k = Q(\zeta_n) = Q$ and χ is real valued. Therefore, 4 does not divide s, the exponent of G. If $s = 1$ or 2, then G is abelian, and so $m_K(\chi) = 1$. Hence we assume that $s > 2$, so that the field $Q(\zeta_s)$ is imaginary and $R = K \subset Q(\zeta_s)^v = C$. Note that $m_k(\chi) = 1$ or 2. By the Brauer-Witt theorem there are subgroups F and N of G and a linear character ψ of N such that $F \supset N$ and $R(\psi^\flat) = R(\chi) = R$ and that $m_\psi(\chi)$ is equal to the index of a cyclotomic algebra of the form $(\beta, R(\psi)/R)$. Recall that $z(R(\psi)/R) \equiv F/N$. If $R(\psi) = R$, then $(\beta, R(\psi)/R) \sim R$. If $R(\psi) = C$, then $[F: N] = 2$. Set $F = N \cup N\bar{\psi}$. We have

$$(\beta, R(\psi)/R) = (\psi(\tau^\flat), C/R, \rho), \quad (\rho(\sqrt{-1}) = -\sqrt{-1})$$
where the right side denotes a cyclic algebra over R and $\psi(f^2)$ is a root of unity contained in R so that $\psi(f^2) = \pm 1$. If $\psi(f^2) = -1$, then the order of f would be divisible by 4, which is a contradiction. Consequently, $\psi(f^2) = 1$ and so $(\psi(f^2), C/R, \rho) \sim R$, yielding that $m_K(\chi) = 1$.

(ii) Suppose that p does not divide $s = l^n$. Then the corollary implies that $m_K(\chi) = 1$.

(iii) Suppose that $p \mid l$ and $l = 2$. Then $\zeta_4 \in K$, and so $\zeta_4 \in K$. It follows from [3, Satz 12] that $m_K(\chi) = 1$.

(iv) Suppose that $p \mid l$ and $l \neq 2$. Let q be a prime number. Let L be the subfield of $M = \mathbb{Q}(\zeta_{12}, \zeta_n)$ over $K = k(\chi) = \mathbb{Q}(\zeta_n, \chi)$, such that $q \nmid [L: K]$ and $[M: L]$ is a power of q. By the Brauer-Witt theorem there exist subgroups F and N of G and a linear character ψ of N such that $G \supset F \supset N$, $\mathcal{E}(L(\psi)/L) \cong F/N$, $[F: N]$ is a power of q, and the q-part of $m_K(\chi)$ is equal to the index of a cyclotomic algebra of the form $(\beta, L(\psi)/L)$. Since $l \neq 2$ and $\mathcal{E}(M/K)$ is canonically isomorphic to a subgroup of $\mathcal{E}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, it follows that M/K is cyclic, and so $L(\psi)/L$ is cyclic. Let $\rho = [F: N] = [L(\psi): L]$, $\langle \sigma \rangle = \mathcal{E}(L(\psi)/L)$ and $F = \bigcup_{i=0}^{q^i} N_i$. Then we have

$$(\beta, L(\psi)/L) = (\psi(f^{q^i}), L(\psi)/L, \sigma), \quad \psi(f^{q^i}) \in L.$$

As ψ is a linear character, $\psi(f^{q^i})$ is a primitive tth root of unity for some integer t. Let $t = q^i h, (q, h) = 1$. Then we can write $\psi(f^{q^i}) = \zeta_{q^i h}^{\zeta_h}$, which implies that the order of f is divisible by q^{i+d}. Consequently, q^{i+d} divides n, and so a primitive q^{i+d}th root of unity $\zeta_{q^{i+d}}$ belongs to L. We may assume that $\zeta_{q^{i+d}} = \zeta_h$. Let r be an integer satisfying $rq^i = 1 \pmod{h}$. Since both $\zeta_{q^{i+d}}$ and ζ_h belong to L, it follows that

$$N_{L(\psi)/L}(\zeta_{q^{i+d}}^{\zeta_h}) = \zeta_{q^{i+d}}^{r \cdot \zeta_h} = \zeta_h^{r \cdot \zeta_h},$$

which yields that $(\psi(f^{q^i}), L(\psi)/L, \sigma) \sim L$. Therefore, the q-part of $m_K(\chi)$ is equal to 1. As q is an arbitrary prime, it follows that $m_K(\chi) = 1$.

(v) Suppose that $p \mid n$ and $p \nmid 2$. Then k contains a primitive pth root of unity ζ_p, p being the rational prime divided by p. It follows from [3, Satz 12] that $m_K(\chi) = 1$.

(vi) Suppose that $p \mid n$ and $p \mid 2$. Then $k = \mathbb{Q}(\zeta_n)$. If $4 \mid n$ then $\zeta_n \in K$ and so $m_K(\chi) = 1$. If $4 \nmid n$, then $4 \nmid s$. It follows from the corollary that $m_K(\chi) = 1$.

The theorem is completely proved.

REFERENCES

Received February 21, 1973. This research was done while the author was a Visiting Associate Professor of Queen's University for 1971/72.

Tokyo Metropolitan University
William George Bade, *Two properties of the Sorgenfrey plane* .. 349
John Robert Baxter and Rafael Van Severen Chacon, *Functionals on continuous functions* 355
Phillip Wayne Bean, *Helly and Radon-type theorems in interval convexity spaces* 363
James Robert Boone, *On k-quotient mappings* ... 369
Ronald P. Brown, *Extended prime spots and quadratic forms* .. 379
William Hugh Cornish, *Crawley’s completion of a conditionally upper continuous lattice* 397
Robert S. Cunningham, *On finite left localizations* ... 407
Robert Jay Daverman, *Approximating polyhedra in codimension one spheres embedded in s^n by tame polyhedra* ... 417
Burton I. Fein, *Minimal splitting fields for group representations* ... 427
Peter Fletcher and Robert Allen McCoy, *Conditions under which a connected representable space is locally connected* .. 433
Jonathan Samuel Golan, *Topologies on the torsion-theoretic spectrum of a noncommutative ring* 439
Manfred Gordon and Edward Martin Wilkinson, *Determinants of Petrie matrices* 451
Alfred Peter Hallstrom, *A counterexample to a conjecture on an integral condition for determining peak points (counterexample concerning peak points)* .. 455
E. R. Heal and Michael Windham, *Finitely generated F-algebras with applications to Stein manifolds* ... 459
Denton Elwood Hewgill, *On the eigenvalues of a second order elliptic operator in an unbounded domain* ... 467
Charles Royal Johnson, *The Hadamard product of A and A^* .. 477
Darrell Conley Kent and Gary Douglas Richardson, *Regular completions of Cauchy spaces* 483
Alan Greenwell Law and Ann L. McKerracher, *Sharpened polynomial approximation* 491
Bruce Stephen Lund, *Subalgebras of finite codimension in the algebra of analytic functions on a Riemann surface* ... 495
Robert Wilmer Miller, *TTF classes and quasi-generators* .. 499
Roberta Mura and Akbar H. Rhemtulla, *Solvable groups in which every maximal partial order is isolated* ... 509
Isaac Namioka, *Separate continuity and joint continuity* .. 515
Edgar Andrews Rutter, *A characterization of QF – 3 rings* ... 533
Alan Saleski, *Entropy of self-homeomorphisms of statistical pseudo-metric spaces* 537
Ryōtarō Satō, *An Abel-maximal ergodic theorem for semi-groups* ... 543
H. A. Seid, *Cyclic multiplication operators on L_p-spaces* .. 549
H. B. Skerry, *On matrix maps of entire sequences* ... 563
John Brendan Sullivan, *A proof of the finite generation of invariants of a normal subgroup* 571
John Griggs Thompson, *Nonsolvable finite groups all of whose local subgroups are solvable, VI* ... 573
Ronson Joseph Warne, *Generalized ω – L-unipotent bisimple semigroups* 631
Toshihiko Yamada, *On a splitting field of representations of a finite group* 649