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Let X be a complex linear space endowed with a semi-
inner product [ , ]. An operator A on X will be called
Hermitian if [Ax, x] is real for all x 6 X; A is said to be
adjoint abelian if [Ax, y] = [x, Ay] for all x and yeX. Since
every Banach space may be given a semi-inner product (not
necessarily unique) which is compatible with the norm, it is
possible to study such operators on general Banach spaces.
This paper characterizes Hermitian and adjoint abelian opera-
tors on certain Banach spaces which decompose as a direct
sum of Hubert spaces. In particular, the Hermitian operators
are shown to have operator matrix representations which are
diagonal, with the operators on the diagonal being Hermitian
operators on the appropriate Hubert space. The class of spaces
studied includes those Banach spaces with hyperorthogonal
Schauder bases.

The notion of semi-inner product is due to Lumer [4] who also
introduced the concept of numerical range of an operator on a Banach
space in terms of a semi-inner product. This led to the definition of
Hermitian operator given above as an operator with real numerical
range. Another approach to the idea of numerical range appeared
about the same time in the work of Bauer [1]. A good account of
developments in the theory of Banach space numerical ranges is given
in [3].

In connection with this work on isometries of reflexive Orlicz
spaces, Lumer [5] has shown that the Hermitian operators on a
reflexive Orlicz space over a nonatomic measure space are essentially
multiplications by real L°°-functions. Tarn [10] obtained this same
result for Hermitian operators on discrete, symmetric Banach function
spaces with absolutely continuous norm.

A recent paper of Schneider and Turner [7], making use of
Bauer's approach to numerical ranges, characterizes Hermitian matrices
(on finite dimensional spaces with absolute norm) in terms of a certain
equivalence relation on the coordinates. The results of that paper
have motivated the present work. The property of a norm being
absolute can be expressed as a property of the basis; indeed to say
that a norm is absolute in the sense used in [7] is to say that the
natural unit vector basis is hyperorthogonal. By utilizing the notion
of hyperorthogonal Schauder basis we are able to extend the results
of [7] on Hermitian operators to Banach spaces with this type of basis.
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Our methods are slightly different in that we make use of an explicit
representation of the semi-inner product. Our results also extend
Tarn's theorem [10, Theorem 2] by removing the symmetry condition.

In § 2 we consider a class of Banach spaces which have what we
call Hilbert-decompositions and which have semi-inner products with
certain nice properties. We then characterize Hermitian operators
on these spaces [Theorem 2.6] and obtain some corollaries concerning
normal operators and products of Hermitian operators. In § 4 we
show that the class includes Banach spaces with hyperothogonal
Schauder bases, thus obtaining the results mentioned in the preceding
paragraph.

Stampfli [9] introduced the concept of adjoint abelian operator
on a Banach space. Our definition depends on the particular choice
of semi-inner product and therefore agrees with Stampfii's definition
on smooth Banach spaces. In § 3, we characterize these operators
on Banach spaces which are ίp-sums of Hubert spaces 1 < p < oo,
(p Φ 2). The class of adjoint abelian operators is generally distinct
from the class of Hermitian operators, although in some cases it may
be a proper subclass. We do show that if a Banach space X is
isomorphic to Hubert space then the classes of adjoint abelian and
Hermitian operators coincide if and only if X is isometrically iso-
morphic to Hubert space. In particular, the two classes are always
distinct on finite dimensional non-Euclidean spaces.

2* Hermitian operators*

DEFINITION 2.1. A semi-inner product (s.i.p.) on a linear space
X is a mapping [ , ] from X x X into the scalar field which satisfies

(2.1.1) [x + y,z] = [x, z] + [y, z] for all x,y,zeX,

(2.1.2) [Xx, y] — X[x, y] for λ a scalar ,

(2.1.3) [x, x] > 0 for x Φ 0 .

(2.1.4) I [x, y] |2 rg [x, χ][y, y] for a l l β j e l .

Lumer has shown that if (X, v) is a Banach space and φ is a duality
map from X into X* with dual norm v* such that v*(φx) = v(x),
φx(x) = [v(x)Y, then [x, y] = φy(x) defines a s.i.p. on X which is com-
patible with the norm; i.e., v(x) = [x, x]lί2. Such duality maps always
exist but are generally not unique unless the space is smooth [4]. In
addition one can assume that φXx — Xφx for each x.

DEFINITION 2.2. Let (X, [ , •]) be a complex semi-inner product
space. If A is an operator on X then the numerical range W(A) of
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A is defined by W(A) = {[Ax, x]: [x, x] = l}.
If X is an inner product space then it is well known that A is

self adjoint or Hermitian if and only if W(A) is real. Lumer [4] has
shown that if X is a Banach space and A is an operator on X then
the numerical ranges of A relative to s.i.p. ?s which are compatible
with the norm must have the same convex hull. Thus if W(A) is
real for a given s.i.p. which is compatible with the norm, then W(A)
is real for every such s.i.p. This makes the next definition possible.

DEFINITION 2.3. An operator A on a Banach space X is said to
be Hermitian if [Ax, x] is real for every x9 where [ , •] is a s.i.p.
compatible with the norm.

Our purpose in this section is to characterize Hermitian operators
on Banach spaces which are direct sums of Hubert spaces and which
possess s.i.p. 's which can be represented in a natural way.

DEFINITION 2.4. A Banach sequence space (E, μ) has an absolute
norm if given {xt} e E and {yt} with \yt\ = \Xi\ for each i then {yz) e E
and μ({yi\) = μ({#J). A Banach space (X, v) is said to have an
iϊ-decomposition if there exists a sequence of subspaces {XJ, each a
Hubert space, and a Banach sequence space (Ef μ) with absolute norm
such that (i) the X/s form a decomposition of X, i.e., every xeX can be
represented uniquely as x = Σ xi9 xt e Xif (ii) if α? = Σ χn then {|| x% \\} e E
and v(χ) = μ({\\ α^l}) and (iii) μ({uk}) = 1 for any sequence of the form
uk — 1 for k = i and uk = 0 for k Φ i.

REMARKS. If a Banach sequence space (E, μ) has an absolute
norm, then if {α?J, {yt}eE and \yt\ ^ \xt\ it follows that Mίi/J) ^
μ({Xi}). An example of a Banach space with an ίί-decomposition is an
lP(°° > P ^ 1) s u m of a sequence {XJ of Hubert spaces. Other
examples will be given in § 4.

DEFINITION 2.5. Let (X, v) be a Banach space possessing an
iJ-decomposition ({XJ, (£7, μ)). A semi-inner product [ , •] on X will
be called "sufficiently i^-like" if there exists a sequence of nonnegative
functions {αj defined on X with the properties: For x — X xit y — X yi9

(2.5.1) ak(x) = αλ(i/) for each /c if ||a?< || = \\y%\\ for every i,

(2.5.2) αt(λα;) = αt(^) for every nonzero scalar λ,

(2.5.3) for every pair ICΦJ there exist xkeXk, XjβXj such that for
x - xk + By, αfe(x) = a,j(x) Φ 0,

(2.5.4) for every pair k Φ j there exists xe X with xk Φ 0, ^ ^ 0
such that αfc(cc) ̂  aά{x),
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(2.5.5) [x, i/] = Σ (χu vd^iiv) where < , •> denotes the s.i.p. on Xt.

REMARK. If X is an lp-sum of Hubert spaces {XJ where 1 <
p < oo(p φ 2), then an example of a semi-inner product which is
sufficiently ^-like in the sense of 2.5 is given by: [x, y] =
where

In fact in this case the s.i.p. is unique.
If (X, v) is a Banach space which has an iί-decomposition ({#J,

(E, μ)) then every operator on X can be represented by an operator
matrix. For each positive integer k define the projection operator
Pk by Pkx = xk. Then for each pair of positive integers i, j define the
operator Ai3 from X3 to Xt by Ai3 = PιA3 where A3 is the restriction
of A to Xj. Now A can be represented by the operator matrix

All Άl2 ' * '

A 1 2 A 2 2 -

whose action on a vector x = Σ t ^ is interpreted in the obvious way.
In the remainder of the paper, we will say a Banach space belongs
to the class 6^ if it has an if-decomposition and possesses a suf-
ficiently ^-like semi-inner product.

THEOREM 2.6. Let (X, v) be a Banach space which possesses an
H-decomposition and suppose (X, v) possesses a sufficiently lp-like
s.i.p. An operator A on X with operator matrix {Ai3) is Hermitian
if and only if (An) is Hermitian for each i and Ati = 0 for i Φ j .
Furthermore, vo(A) = Sup* ||-4«|| where v0 denotes the operator norm.

Proof. Let {Xt} denote the family of Hubert spaces which decom-
pose Xand let < , ), II II denote the inner product and the associated
norm respectively on Xt.

First suppose A satisfies the condition given in the statement of
the theorem. If x = ^iXi£X then [Ax, x] = Σt < Λ A , ̂ *>a>i(%) where
the α/s satisfy the conditions given in 2.5. Since Akk is Hermitian
for each k and the α/s are real, [Ax, x] is real. Thus A is Hermitian.

Suppose now that A is Hermitian. Let i be given and xt an
arbitrary nonzero element of Xim Then

[Axi9 Xi] = (Auxif

must be real. It follows that Au is Hermitian as an operator on Xt.
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Now let k, j be given with k Φ j and xk, xs be arbitrary elements
of Xk and Xs respectively. Let x = xk + xs. Then

[Ax, x] = < A Λ , xk}ak(x) + (AkjXj, xk)ak(x)

The first and last terms have already been shown to be real. Since
[Ax, x] is real we have for all choices of xk e Xk and xs e Xjf

(2.6.1) (Akίxί9 xk}ak(x) + <Aifc%, Xj}a3(x) is real. We proceed to show
that Akj = 0 and Ajk = 0. From (2.6.1) we get

g 2 <Akjxjf xk}ak(x) + (Adkxk, xi>aj(x)

= <Λ^ y , xk}ak(x) + <AiΛα?A, Xj}a3{x) .

If we let α;' = ia?Λ + α?3 , then ak(xf) = αfc(α;) and α^α;') = α/α;) by (2.5.1).
The substitution of x' into (2.6.2) yields

iCAfciίCi, α;fc>αfc(α;) + i(Ajkxk,

= i(AkjXj, xk}ak(x) - i(Ajkxk, x^a^x) .

Dividing through (2.6.3) by i and adding to (2.6.2) leads to

(2.6.4) (Ajkxk, x^a5{x) = (Akjxjf xk)ak(x) which holds for all choices
of xk 6 Xk and x5 e Xs.

It follows from (2.5.3) that there exists xkeXk and aj e l ,- such
that αfc(a?') = α^a?') Φ 0 for a? = xk + a J. If α?fc, Xj are arbitrary non-
zero elements of Xk and JSΓ,- respectively and x — ||a;'fc || (xj\\xk ||) +
ll^ίll (^i/ll^ill) it follows from (2.5.1) that ak(x) = «,-(») ^ 0 and from
(2.6.4) we have

(2.6.5) < A A , %> = <Ajkxk, xj}

Combining (2.6.5) and (2.6.1) we see that

(2.6.6) (AkjXj, xk}ak(x) + (Akjxh xk}aj(x) is real for all choices of xk e Xk

and xό G Xj.

It is clear that (2.6.6) will be contradicted if there exists xkeXk,
Xj e Xj with (Akjxj9 xk} Φ 0 and ak(x) Φ aό{x) where x = xk + a?,-.

Suppose then that ak(x) — as(x) for every x = % + a?,- such that
<Afc^y, %> ^ 0. If Afcy Φ 0, then there exists xke Xk and α Ĝ Xj such
that (AkjXjf xk) Φ 0. It y = yk + yά is given, then (Akizs, zk) Φ 0 where
2; = II 2/i II O /ll % II), ̂  = II Vk\\ (xJW %k II). By (2.5.1) and our assump-

tion, ak(y) = aό(y).
Hence, in order that (2.6.6) fail to be contradicted if Akj Φ 0, we

must have ak(x) = a&x) for all x = xk + xό.
More generally, from (2.6.5) we have
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[Ax, x] = Σ l<Apgxg, xP)ap(x) + (Apqx,, xP)aq(x)]

is real for all x = Σ %t e X. For a given i, we may group the terms
involving j and replace x by #' = xι + #2 + + e*'&y + to obtain

(2.6.7)
+ e~iθ( Σ <Apiα?Λ α?p>αy(α?) + Σ <AJqxq, xj>as(x)) + 7

1£< >Σ
q>3

is real for all choices of θ, 0 ^ ί < 2ττ where 7 is independent of #.
From the lemma of Tarn [9, p. 236], and after some straightforward
computation, we may conclude that

Σ <Apjxh xp)(ap(x) - aό(x)) + Σ <Aίqxq, %i>
(2.6.8) ^p<j g>j

x (aq(x) - aj(x)) - 0

for any x with XSΦ 0. By (2.5.1) we may replace each term in (2.6.8)
by its absolute value, and can therefore conclude that (Akjxjf xk}ak(x) =
(Akjxh xk)dj(x) for any choice of x. If (Akjxjf xk) Φ 0 we conclude
that ak(x) = a3(x). It follows that ak(x) = αX#) for all x if Akj Φ 0.
But from (2.5.4) we know that ak(x) Φ a3{x) for some x and conse-
quently Akj = 0. It now follows from (2.6.5) that Ajk is also zero.

To complete the proof, we must show that vQ(A) — sup* \\AU ||.
Let M = supi || Ati ||. Then for any x9

v{Ax) = μ({\\ Auxt ||}) ^ μ({\\ Au \\ . || a, ||}) ^ M^ ({|| xt ||}) -

Hence PO(-A) ^ ilf. Since it is obvious that vo(A) ^ M, we obtain
equality and the proof is complete.

In each of the following corollaries, X will denote a Banach space
which satisfies the hypothesis of Theorem 2.6.

COROLLARY 2.7. Let A, B be Hermitian operators on X. Then
AB is Hermitian if and only if AB = BA.

Proof. This follows from the characterization of A and B as
having diagonal operator matrix representations and from the corre-
sponding result for Hubert spaces.

The conclusion of Corollary 2.7 does not hold in general [2,
p. 106].

COROLLARY 2.8. If A is a Hermitian operator on X, then An

is Hermitian for every positive integer n.

Again this result does not hold for general Banach spaces [4,
p. 84].
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Following Lumer [5, p. 79], we say an operator T on a Banach
space X is normal if T — A + iB where A and B are Hermitian and
AB — BA. The next corollary characterizes normal operators in our
particular class of spaces.

COROLLARY 2.9. Let T be an operator on X. Then T is normal
if and only if T is represented by an operator matrix T — (Tkj) such
that Tkj — 0 for k Φ j , and for each k. Tkk is normal on an operator
on the Hilbert space Xk.

Proof. It is well known that an operator if on a Hilbert space
is normal if and only if K — R + iJ where R, J are Hermitian and
RJ = JR. The desired result follows readily from the characterization
of Hermitian operators on X.

An operator S on a Banach space (X, v) is called a scalar operator
r

if there exists a spectral measure E{ ) such that S — \ zdE(z).

COROLLARY 2.10. If X is reflexive then every normal operator
is a scalar operator.

Proof. This follows from a theorem of Berkson [6, p. 79] and
Corollaries 2.7 and 2.9.

3* Adjoint abelian operators* Stampfli [9] defines an operator
on a Banach space to be adjoint abelian if there is a s.i.p. compatible
with the norm such that [Ax, y] — [x, Ay] for every x, y in the space.

DEFINITION 3.1. An operator A on a s.i.p.s (X, [ , •]) is said to
be adjoint abelian if and only if [Ax, y] = [x, Ay] for all x,yeX.

The above definition differs from that of Stampfli in that it is
defined relative to a given s.i.p. The following example shows, in
contrast to the situation for Hermitian operators, that an operator
may be adjoint abelian with respect to one s.i.p. but not with respect
to another, even though both are compatible with the norm. This
ambiguity does not occur in the case of a smooth Banach space which
has a unique s.i.p. compatible with the given norm.

EXAMPLE 3.1.1. Let X be a two dimensional complex space with
the l°° norm. Let λ be chosen with 0 < λ < l . Let φλ denote the
map defined on X into X* by

Φχ(y) =

((yly 0) if I y1 \ > \ y2 \

0,y2) if \vΛ< lifcl

[ (\yίf (1 - λ)^2) if I Vl
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It is easy to verify that II ̂ αCl/) Ik = IMI- and φλy(y) = \\y\\l. Hence
we may define, for each λ, a s.i.p. on X by [x, y]x = φχy(x) such that

[x, y]λ is compatible with || H*,. Let A = L Λ . It is clear that
\Ax, y]λ = [x, Ay]λ for all choices of x, y if and only if λ = 1/2. Hence
A is adjoint abelian relative to [ , ]λ for λ = 1/2 but not adjoint
abelian relative to [ , ]x for λ ^ 1/2.

We now wish to characterize adjoint abelian operators in a
manner similar to that for Hermitian operators. We shall assume
here that the Banach space is an î -sum of separable Hubert spaces,
where l<p<ooypφ2 and the Hubert spaces may be of varying
dimension finite or infinite.

In this case, the semi-inner product is given by

(3.1.2) [*,Vl=Σ<*,tt>

where x — Σ χu V = Σ Vi a n d v is the norm on X.

THEOREM 3.2. Let X be an lp-sum of Hubert spaces Xt where
1<P<°°,P^2, with norm v and semi-inner product given by
(3.1.2). An operator AΦQ on Xwith operator matrix representation
(Akj) is adjoint abelian if and only if the following conditions are
satisfied:

(3.2.1) Akj — 0 if Xk and X5 have different dimension.

(3.2.2) For each k, there exists one and only one j such that Ak3 Φ 0.

(3.2.3) If Akj Φ 0, then Akj = A%.

(3.2.4) There is a constant λ > 0 such that if Ak3 Φ 0, then Ak3 = XBk3-
where Bk3 is an isometry.1

Proof. We first prove that the conditions (3.2.1), (3.2.2), (3.2.3),
and (3.2.4) are sufficient for A to be adjoint abelian. Let x = ^xteX
and y = ^yte Xbe given. Since there is exactly one nonzero operator
per row and column (in the operator matrix) we obtain

(3.2.5) [Ax, y] = Σ <Akixif yk}\lyk 'f^
[v{y)Y 2

where j is the unique index corresponding to k guaranteed by (3.2.2).
On the other hand,

1 We are indebted to the referee for pointing out that Theorem 3.2 has been
proved for the case X = lp, 1 < p < oo, p Φ2, by Twum Owusu Ansah in his doctoral
dissertation, Hermitian operators of meromorphic type on Banach spaces, University
of Toronto, June, 1972.
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(3.2.6) [x, Ay] = Σ <x>, AkjVj)Σ

Since A3k = Akj we have (Akύx3'y yk) = (x3J A3kyk) for each pair k, j .
Furthermore,

ΓJJAfcrfΓ2

 = ΓJIM?"2.
L v{Ay) J L v(y) J

It follows that the sum (3.2.6) is a rearrangement of the sum (3.2.5)
and since each is absolutely convergent, we must have [Ax, y] = [x, Ay].

Next suppose that A is adjoint abelian on X. Let fc, j be given
positive integers and xk e Xk, y3 e X3. Since A is adjoint abelian we
must have [Axk, y3] = [xkf Ay3] and [Ay3f xk] = [yh Axk]. From these
equalities we obtain

(3.2.7) (A3kxky y3} = <%, Akjy3} ^fJ^vZ and

(3.2.8) (Ak3yh xk} = (yh

If we take complex conjugates in (3.2.8) and substitute into
(3.2.7) we obtain

(3.2.9) <Ajkxk, yj} = <Ajkxk, y

Suppose there exists xk e Xk and positive integer n such that

(3.2.10) Ankxk Φ 0 and A3kxk Φ 0 .

If there exists y3 e X3 such that (A3kxk, y>) Φ 0 it follows from
(3.2.9) and the fact that p Φ 2, that \\Ak3y31| = v(Ay3) and || Ajkxk || —
v(Axk). Since v(Axk) = (Σ» II Amfca;Λ||p)1/p, we must have Awfc% = 0 for
all m Φ j which contradicts (3.2.10). Hence (Ajkxki y3} = 0 for all
y3-eXj which implies that Ajkxk = 0, again contradicting (3.2.10).
Therefore, if xk e Xkf and n is given we must have

(3.2.11) Ankxk — 0 or A3kxk = 0. Thus if Ajk Φ 0, there exists xke Xk

such that Aift% Φ 0. By (3.2.11) ^.wjfc% = 0. If Ank Φ 0, then by
(3.2.11) there exists yk e Xk such that A3kyk = 0. If we let zk - xk +
2/A, then AΛfcί5Λ = A , Λ + ,̂,̂ 7/̂  = A ^ ^ Φ 0 and Aifc«fc = Ajkxk + Aifeτ/fc =
-Â ajjfe Φ 0. Hence we have Ankzk Φ 0 which contradicts (3.2.11). We
conclude that

(3.2.12) if A3k Φ 0, then Ank = 0 for all n φ j .

A similar argument would show that if Ak3 Φ 0, then Akn = 0 f or
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all n Φ j .
This information, together with (3.2.7) implies that if Ajk Φ 0,

then

(3.2.13) (Ajkxk, yj) = (xk, AkjVj> for all xkeXk, yjeXj.

Next we show that there exists λ > 0 such that
(3.2.14) v(Ay) = Xv{y) for all yeX. To see this, let x = Σ xi9 y =
be elements of x, then

(3.2.15) 0 = [A*, y] - [*, Ay] =

where we have used (3.2.13) and the fact that the sums can be
rearranged. By choosing appropriate x/s, we can show that for each k,

' _ \\ASkyk\r* _ o when A Φ 0

MA)r> - ° w h e n Aki φ °
Hence for any A: such that i / ^ o we have

(3 2 16) K̂ -2/) = HΛ ̂ fell .
»(y) II Mil

From this we may conclude that v(Ay)/v(y) is constant. To see this
let y, z be nonzero elements of X. Then there exist integers k, n
such that yk and sΛ are not zero. Let

λ = v{Ay) = \\Ajkyk\\ , = v{Az) = \\Amnzn\\

>Kv) II M i l »(*) ll«.ll
If A: ̂  n, let w = yk + zn. By (3.2.16), we conclude that

_ \\Ajkyk\\ _\\Amnzn\\

II M i l I I * . II
and hence λ = σ. A similar argument for the case k = n also gives
λ = σ. Therefore, v(Ay)/v(y) = constant for all y Φ 0. In fact,
v(Ay)/v(y) = yo(A) whenever # ^ 0 and this proves (3.2.14).

Again from (3.2.16) we have

(3.2.17) IIΛ ̂ J I =λ | | i fc | | for all ^ e l k . It is clear from (3.2.14)
that every row and column in (Akj) must have at least one nonzero
entry. This fact together with (3.2.12) establishes (3.2.2).

Suppose now that Xk and Xό have different dimensions and
without loss of generality, suppose dini (Xk) < dim (X, ). Then AkJ

cannot be one-to-one as a map from X3 to Xk, which contradicts the
fact that [|| Akίxs\\ =λ| |a? J || if Akj Φ 0. We conclude that Akj = 0
which establishes (3.2.1).
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If Akj Φ 0, then Xk and Xs are essentially the same space and
(3.2.3) follows from (3.2.13).

Finally, if Akj Φ 0, then (3.2.17) implies that λ " 1 ^ is an isometry.

REMARK 3.3. The conclusion of Theorem 3.2 holds for operators
on a Banach space X as described in § 2 with some additional assump-
tions on the αfc's which occur in the representation of the s.i.p. as
given in 2.5. Those conditions are:

( i ) ak(x)a,j(x) = 1 if and only if ak(x) = a,(x) == 1.
(ii) ak(x) = 1 if and only if aό{x) = 0 for j Φ k.
(iii) ak(x) = aj(y) implies \\xk\\/v(x) = \\yj\\/v(y).

REMARK 3.4. Let X be an lp sum of a sequence of Hubert
spaces {XJ where 1 < p < oo and p Φ 2 and let H be the l2 sum of
these spaces. If A is an operator which is adjoint abelian on X and
if A is defined on H then A is Hermitian on H.

REMARK 3.5. If no two X/s have the same dimension, then an
adjoint abelian operator on X has a diagonal matrix representation
and therefore is Hermitian by Theorem 2.6.

If, for example, X is the lv sum of a one dimensional and a two
dimensional space, then every adjoint abelian operator is Hermitian,
but not conversely.

/I 0 0\ (1 0 0\
Thus I 0 0 i 1 is adjoint abelian on that space while 0 0 i/2 I

\0 - i O / \0 -</2 0/
is Hermitian but not adjoint abelian.

If instead we take X = X1 + X2 as the ϊp sum of two 2-dimen-
/0 0 - i 0\

sional Hubert spaces where p Φ 2, then j . 9 Q 11 is an adjoint
\0 -i 0 0/

abelian operator which is not Hermitian. (Here we are considering
the matrices as representing an operator relative to the natural
coordinate basis vectors.)

It is of some interest perphaps to consider spaces on which the
classes of Hermitian and adjoint abelian operators coincide. This
happens, of course, on Hubert spaces. The next theorem shows that
this cannot happen on non-Hilbert spaces which are isomorphic to
Hubert spaces. In particular, the two classes are always distinct on
finite dimensional spaces.

Let (X, [ , ]) be a semi-inner product space. The algebra of
bounded operators on X will be denoted by B(X). H(X) and A(X)
will denote the Hermitian and adjoint abelian operators respectively.
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THEOREM 3.6. Let (X, v) be a Banach space which is isomorphic
to Hubert space. If there is a s.i.p. [ , •] on X, compatible with v,
for which A(X) = H(X) then (X, v) is isometric with Hilbert space.

Proof. Suppose [ , •] is a s.i.p. on X compatible with v for
which A{X) = H{X). Let Te H(X). Then Te A{X) and by Lemma 2
of [8] T2eH(X). By Theorem 3 page 59 of [3], J = H(X) + iH(X)
is a Banach* algebra and furthermore it follows from Theorem 5
page 78 of [3] that J is a B* algebra.

Since X is isomorphic to Hilbert space, there is an inner product
< , •> defined on X which induces an equivalent norm. Define
S - {Te B(X): (Tx, y) = <α?, Ty} for every x, y}. Let C = S + iS.
Then C is a B* algebra with respect to the involution defined by
(Tx, y) = (x, Ty) and C contains the identity. Again by Theorem 5
page 78 of [3] C a J. But C = B(X). Hence by Theorem 6 page 78
of [3] X is a Hilbert space.

4* Spaces with hyperorthogonal bases and the class SΊ A
sequence {et) in a complex Banach space (X, v) is called a Schauder
basis if for every x e X there is a unique sequence {a%) of scalars
such that x = Σ #*#*• Associated with the sequence {ej is the sequence
{et} in the dual space X* defined by e*{e3) = δi3 for each pair i, j of
positive integers. Thus e*(x) = at and α? = Σ β*(a?)βiβ A basis is
sometimes indicated by writing the pair ({ej, {e*}). A basis is shrink-
ing if {ef} is a basis for X* and normal if v(ex) = v*(e*) = 1 for each
i where v, v* denote the norm on X and the dual norm on X* re-
spectively. The basis {ej is said to be hyperorthogonal if v(Σ oεtet) =
*>(Σ 10Ci I et) for each a? = Σi <̂ î 6 X [8. p. 558], If, for x = Σ ^ ^
we let I a? I = Σ I ai I ei> then the above is expressed by saying v(x) =
v(| a; I) for each x G X. It may be readily shown that in this case v
is monotone relative to {ej; that is if |α<| ^ |/9έ| for each i and
Σ / 5 ^ G X , then v ( Σ ̂ , ) ^ v ( Σ Aβ,) [8. p. 558].

Let JV denote the set of positive integers or the set {1, 2, 3, , n)
for some ^. We now define an equivalence relation on N in a way
suggested by Schneider and Turner [7].

DEFINITION 4.1. If i,jeN we say i is equivalent to j relative
to the norm v and the hyperorthogonal basis {βj for X if [ at |

2 +
I ocά |

2 = I βi |2 + I βj |2 a n d \ak\= \βk\ for kΦi, j i m p l y t h a t v ( Σ ockek) =
v ( Σ M ) . In this case we write i ^ j .

It has been shown that "~" defines an equivalence relation on
JV where JV is finite [7], and the proof is exactly the same in case
N is infinite. We now show that this equivalence relation gives rise
to a decomposition of the space in the sense of 2.4.
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For the remainder of this section, {eτ) will denote a normalized
(i.e., v{e%) — 1 for each i) hyperorthogonal basis for the Banach space
X with norm v. The sets Nl9 Nz, will denote the equivalence
classes in N determined by the equivalence relation of 4.1. We
will treat the Nt's as if there are infinitely many of them and each
Nt is infinite. The necessary adjustments in finite cases are obvious.
The elements of Nk are denoted by pku pk2, in increasing order.
If x = Σ «iβ, and Σ I <*t Γ < °°, we write || x || = ( Σ I cct \ψ\

LEMMA 4.2. Let X, v, {ej, Nlf N2t be as described above. Then
there exists a sequence of subspaces {Xτ) of X, each being isometric
with l2, and a sequence space (E, μ) such that ({XJ, (E, μ)) is an
H-decomposition of X.

Proof For each positive integer i let Xt denote the closed linear
span of the basis vectors {ePik: pike Nt}. If x = ^ockekeX9 let xt =
Σfc aPik

ePik- Then xte Xt and it is readily shown that x = Σ t ^ F ° r

if ε > 0 is given, choose n0 such that v (Σk^n ockek) < β for n ^ nQ.
Choose k0 so large that {1, 2, , nQ} c \Jί<ko Nt. Then v (Σ^^k %) ^
v (Σj^k oίfiϊ) < £ for k ^ kQ. Thus the sequence of subspaces {a J is
a decomposition of X.

Let xι = x — a?lβ Since p1 2 — p n , we have

v(x) = φ1 + (I aPll |2 + I aPl2 \ψ\n + Σ ^ ^ J .

By induction it follows that for every n, k ^ 3.

(4.2.1) v(x) = v(V + ( ± I α , i t | 2) 1 ' 2

e, i i + Σ α,14β,lfc)
k=l k>n

By the monotone property of v we must have

v(χ) ^ y((Σ I aflk \yι\j = ( Σ I aPιt I2)1'2

for each n. We conclude that Σί* I «j>l41
2 < °° li x = xu then

= ||a?i|| and it is obvious that Xx is isometric with l2. Since
nocPιkePlk)-^Oas»-*w we may conclude from

(4.2.1) that

(4.2.2) v(x)=(xί + \\xι\\ePiί).

By exactly the same arguments, we may show by induction that
if r is a positive integer and xr — xr~x — xr,

(4.2.3) Φ ) = y ( » τ + ΣII**l l«w).
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Since

v( Σ II % II ePkι) = v( Σ xk), Σ II % || ePkί e X
k — r k=r 1

and by the monotone property of v together with the fact that
v(xr) ~• 0 we conclude that

(4.2.4) v(x) = v ( Σ II Xi II ePiι) .
1

Let E be the space of all scalar sequences {at} such that Σ octe9il

 e -X"
and define μ on £7 by μ(fe}) = v(Σtf tePίl). ^he natural unit vector
basis {ut} where ut = (0, 0, , 0, l<th, 0, ) is hyperorthogonal and
μ(u{) = 1 for each i. Moreover, {|| xi ||} e £7 for each #e X and u(α>) =
i"({|| χi II}) by (4.2.4). Therefore, the sequence of subspaces {XJ together
with the sequence space (E, μ) forms an ίf-decomposition of X.

COROLLARY 4.3. If i ~ j for all i, j then X is isometric with
Hilbert space.

REMARK. If the basis for (X, v) is also shrinking then it can be
shown that i ~j for v implies i ~ j relative to v*. Furthermore, it
follows that (X*, y*) has an iϊ-decomposition consisting of the sub-
spaces {Xi}. The associated sequence space is a subspace of (E*, v*).

COROLLARY 4.4. Let (X, v) and ({XJ, (E, μ)) be as in Lemma
4.2. Then no pair of distinct integers iy j can be equivalent
relative to μ.

Proof. Suppose there exist positive integers i, j such that i ~ j
relative to j«. It is straightforward to verify that if n e Nt and
m e Nj then m ~ n relative to v. But this contradicts the fact that

We now wish to show that if a Banach space (X, v) has an
iϊ-decomposition ({XJ, (E, μ)) then the existence of a sufficiently

s.i.p. on the sequence space implies that there is a sufficiently
s.i.p. on X. First we clarify what we mean by a sufficiently
semi-inner product on a Banach sequence space (E, μ) with

absolute norm μ.

DEFINITION 4.5. We will call a s.i.p. [ , ] on (E, μ) sufficiently
Zp-like if there exists a sequence of nonnegative real-valued functions
{αj defined on X such that:

(4.5.1) ak(a) = ak(β) for each k if | α, | = | βt \ for each i,
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(4.5.2) ak(Xa) = ak(a) for every scalar λ Φ 0 and positive integer k,

(4.5.3) For every pair of positive integers k Φ j there exist scalars
ak, (Xj such that ak{a) = aj{ά) Φ 0 whenever

(k) (j)

a = (0, 0 ak, 0.0., ah O ) ,

(4.5.4) For every pair of positive integers k Φ j , there exists aeE
with ak Φ 0, oij Φ 0 such that ak(a) Φ a^a),

(4.5.5) [a, β] - ΣatβMβ)

REMARK. An example of a Banach sequence space with absolute
norm which possesses a sufficiently ^-like s.i.p. is lv 1 ̂  p < °o (p Φ 2).

In this case [α, /9] = Σ ^

LEMMA 4.6. Let (X, v) be a Banach space with an H-decomposition
({Xi\, (E, μ)). If (E, μ) possesses a sufficiently lp-like semi-inner
product then (X, v) possesses a sufficiently lp-like semi-inner product.

Proof. Given a = {αj, β = {βτ) e E, let [a, β] = Σ (*tβMβ) r e P r e "
sent a sufficiently i^-like s.i.p. on E. We first show that the s.i.p.
on E yields a s.i.p. on X. Let x = Σ #*, ?/ = Σ ^ be elements of X,
then α = {|| χt ||}, /? - {|| yt \\) e E. We define [x, y] - Σ <*<, ^>^(ί/)
where At(y) — a^β). I t is obvious that [ , •] is linear in the first
argument and [x, x] = v2(x). Furthermore,

I [x, v] i2 = I Σ <*« vάMv) I2 ^ ( Σ I I ^ IIII yt

= I [α, iβ] I2 ̂  M

Thus, [ , •] is a s.i.p. on X compatible with v. We now proceed to
show that the s.i.p. is sufficiently l^-like in the sense of 2.5.

It is obvious that (2.5.1), (2.5.2), (2.5.5) hold. To see that (2.5.3)
holds, let kΦj be given. There exists a sequence a = (0, 0, , ak, 0, ,
ajf 0, 0)e E such that ak(a) = a^a). Let xk, x3- be nonzero elements
of Xk and Xs respectively. Define z — ak(xk/\\ xk II) + CCJ(XJ/\\ xs | |). Then
Ak(z) = αifc(α) = Aj(z). A similar argument proves (2.5.4) and this
completes the proof of the lemma.

THEOREM 4.7. Let (X, v) be a Banach space with a normalized
hyper orthogonal basis. Then X has a sufficiently lv-like semi-inner
product which is compatible with the norm.

Proof. Since X has a hyperorthogonal basis, it follows from
Lemma 4.2 that X possesses an if-decomposition ({XJ, (E, μ)). By
Lemma 4.6 it is sufficient to prove that the sequence space (E, μ)
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has a sufficiently lp-lϊke s.i.p. compatible with μ.
In what follows, the dual of E will be denoted by E* and the

associated norm will be denoted by μ*. Since μ is absolute, μ* is
also absolute.

Let φ be a duality map φ: E—> E* with the properties

μ*(φ(a)) = μ{a), φ{a){a) = μ\a), and φ(Xά) = Xφ(a) .

A semi-inner product compatible with μ is given by

(4.7.1) [a, β] = φ{β){a). We proceed to show that this s.i.p. is suf-
ficiently lp-like in the sense of Definition 4.5.

Since E has a basis we can associate with the linear functional
φ{a) a sequence of scalars {φi(a)} such that for any βeE, Φ(a)(β) =
Σ βiφί{ά)- From the absoluteness of the norms μ and μ* we have
J"*({| Φ*(oO |}) = i"*({^(α)}) - μ(a). It follows that

<μ*({\Φ

From (4.7.2) we may conclude that 0i(α)α< — \Φi{cί)\\θίi\ and conse-
quently φiia)!^ is real for every ί such that ctt Φ 0. If we define,

iί cttΦO
(4.7.3)

0 if at — 0 then,

(4.7.4) \a, β] = Σ obφiiβ) = Σ cctβidiiβ) for any choice of a,βe E.
To show that this s.i.p. is sufficiently l^-like we must now verify
that the α/s satisfy the conditions of Definition 4.5.

It is obvious that (4.5.1), (4.5.2), and (4.5.5) hold. It follows from
Corollary 3.2 of [7] that given a pair of positive integers k, j there
exist positive scalars ak9 aά such that ak(a) = aό(a) if a = (0, 0, ak, 0, ajt

0, - . . ) . Thus, (4.5.3) is satisfied.
To show that (4.5.4) holds, let k, j , k Φ j be given and suppose

ak(a) = aό{a) for all ae E. Consider the subspace E% of E spanned
by {ulf u2, , un}, n ^ max {k, j}. A s.i.p. on En compatible with μn,
the norm μ restricted to En, is given by [a, β]n = Σ^A^ί/S). Let
B be the matrix (bpq) defined by bkj = i, bjk = — i and bpq = 0 for all
other choices of p, q. It is readily verified that B is Hermitian and
by the theorem of Schneider and Turner [7, Theorem 6.2] k ~ j
relative to μn. A limiting argument shows that k ~ j relative to μ
which contradicts Corollary 4.4. Hence there must exist ae E such
that ak{a) Φ a3{a) and the proof is complete.

As a consequence of Theorem 4.7 we know that any Banach
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space (X, v) which has a normalized hyperorthogonal basis is a member
of the class S* discussed in § 2. These results as applied to a Banach
space with a normalized hyperorthogonal basis are summarized in the
next theorem.

THEOREM 4.8. Let (X, v) be a Banach space with a normalized
hyperorthogonal basis. Then

( i ) there exists a sequence of subspaces {XJ, each a Hilbert
space, which decompose X.

(ii) every linear operator A on X may be represented by an
operator matrix (Ai0) where Atί: Xs —* X*.

(iii) an operator A = {Ai3) on X is Hermitian iff Akk is Her-
mitian on Xk for each k, Akj = 0 for k Φ j . Furthermore, the norm
of A is su pk\\Akk\\.

(iv) the product of two Hermitian operators is Hermitian if and
only if the operators commute.

(v) every power An of a Hermitian operator A is Hermitian.
(vi) an operator A = (Akj) is normal if and only if Akj = 0 for

k Φ j and Akk is a normal operator on the Hilbert space Xk.

EEMARKS. If A is regarded as an infinite matrix {ai3) of scalars,
and A is Hermitian on X, then

(i ) dis = an for each i, j .
(ii) aiS = 0 if i + j .

This extends the theorem of Schneider and Turner [7]. Also, our
results on Hermitian and normal operators are valid in any discrete
Banach function space with absolutely continuous norm and therefore
extend the results of Tarn in that we do not require symmetry of the
norm.
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