ON THE NORMAL SUBGROUPS OF INTEGRAL ORTHOGONAL GROUPS

DONALD GORDON JAMES
ON THE NORMAL SUBGROUPS OF INTEGRAL ORTHOGONAL GROUPS

D. G. JAMES

Let \(\mathcal{S} \) denote the spinorial kernel of an orthogonal group of an indefinite unimodular quadratic form over the integers in a global field. The normal subgroups of \(\mathcal{S} \) that arise from the local structure of \(\mathcal{S} \) are studied.

Let \(S \) be a Dedekind set of spots on a global field \(F \) with characteristic not two and \(\mathfrak{o} \) the ring of integers of \(F \) at \(S \). Let \(V \) be a finite dimensional quadratic space over \(F \) with dimension at least 5 and associated bilinear form \(B \) and quadratic form \(q \). The orthogonal group of \(V \) is

\[
O(V) = \{ \varphi \in \text{End}V | q(\varphi(x)) = q(x) \text{ for all } x \in V \}.
\]

Assume \(V \) supports a unimodular lattice \(M \) with orthogonal group \(O(M) = \{ \varphi \in O(V) | \varphi(M) = M \} \). At each spot \(p \in S \) we can localize and consider the orthogonal group \(O(M_p) \) of the isotropic unimodular lattice \(M_p \) over the ring of integers \(\mathfrak{o}_p \) in the local field \(F_p \). The subgroups of \(O(M_p) \) normalized by its commutator subgroup have been classified in [1, 2, 3]. We show here how this local structure can be injected into \(O(M) \) when \(S \) is an indefinite set of spots for \(V \). A rich structure of normal subgroups of the spinorial kernel of \(O(M) \) is then provided by the local behaviour at the dyadic spots. Most of our terminology and notation is taken from O'Meara [4].

1. \(\mathcal{S} \)-invariant sublattices of \(M \). \(M_s \) is split by a hyperbolic plane \(H_s \) at each spot \(p \in S \). Write \(M_s = H_s \perp K_s \) and \(H_s = \mathfrak{o}_s u_s + \mathfrak{o}_s v_s \) where \(B_s(u_s, v_s) = 1 \) and \(q_s(u_s) = q_s(v_s) = 0 \). In [2] it is shown that \(\mathcal{S}_p \), the group generated by the Siegel transformations \(E(u_s, x_s) \) and \(E(v_s, x_s) \), is equal to the spinorial kernel of \(O(M_s) \). Define

\[
\mathcal{S}_p = \{ \varphi \in O(M) | \varphi_s \in \mathcal{S}_p \text{ for all } \varphi_s \in \mathcal{S}_s \}.
\]

Note that \(\mathcal{S}_p \) is defined if \(\dim V \geq 5 \), even when \(V \) is anisotropic. In fact, using the global square theorem [4, 65:15] and [2, Theorem 2.9], it is easily seen that \(\mathcal{S}_p \) is the spinorial kernel of \(O(M) \).

A sublattice \(P \) of \(M \) is called \(\mathcal{S} \)-invariant if \(\varphi(P) = P \) for all \(\varphi \in \mathcal{S} \). Let \(M_s \) denote the lattice

\[
M_s = \{ x \in M | q(x) \in \mathfrak{o} \}
\]

with dual lattice

107
Define an ideal $a(P)$ in \mathfrak{o} by

$$a(P) = \sum_{r \in P} B(r, M_\ast).$$

Then

$$a(P)^{-1} P \subseteq M^\ast.$$

Lemma 1.1. Let P be sublattice of M and

$$M_\ast \subseteq a(P)^{-1} P \subseteq M^\ast.$$

Then P is \mathfrak{g}-invariant.

Proof. Locally, P is \mathfrak{g}_r-invariant [2, Theorem 3.1] since $(M_\ast)_e = (M_e)_s$, $a(P)_e = a(P)_s$ and

$$(M_e)_s = a(P_s)^{-1} P_s \subseteq (M_e)^\ast.$$ Take $\varphi \in \mathfrak{g}$ and let $\varphi(P) = Q$. Then $\varphi_s \in \mathfrak{g}_s$ and

$$P_s = \varphi_s(P_s) = \varphi(P)_s = Q_s$$

for all $s \in S$. Hence $P = Q$ by [4, 81E].

Theorem 1.2. Let S be an indefinite set of spots for V and assume $\dim V \geq 7$ if $[\mathfrak{o} : \mathfrak{p}] = 2$ at any dyadic spot. Then a sublattice P of M is \mathfrak{g}-invariant if and only if

$$M_\ast \subseteq a(P)^{-1} P \subseteq M^\ast.$$

Proof. We need only show that if P is \mathfrak{g}-invariant, then $(M_\ast)_e \subseteq a(P_\ast)^{-1} P_\ast$ for all $s \in S$. Fix $s \in S$ and take $\theta_s \in \mathfrak{g}_s$. By the strong approximation theorem for rotations [4, 104: 4], there exists $\varphi \in \mathfrak{O}(V)$ such that $||\varphi - \theta_s||_s < \varepsilon$ and $||\varphi||_q = 1$ for $q \neq s$. Then $\varphi \in \mathfrak{O}(M)$ and, since \mathfrak{g} is the spinorial kernel, $\varphi \in \mathfrak{g}_s$. Hence $\varphi(P) = P$. By making ε sufficiently small, we may assume $(\varphi_\ast - \theta_\ast)(P_\ast) \subseteq P_\ast$. Thus $\theta_\ast(P_\ast) = P_\ast$ for all $\theta_s \in \mathfrak{g}_s$. Hence P_\ast is \mathfrak{g}_s-invariant and by [2, Theorem 3.1] it follows that $a(P_\ast)(M_\ast)_e \subseteq P_\ast$.

Theorem 1.3. For each dyadic spot s assume given an \mathfrak{o}_s-lattice J_s with $(M_\ast)_e \subseteq J_s \subseteq (M_s)^\ast$. Then there exists an \mathfrak{o}-lattice P such that $P_s = J_s$ at each dyadic spot and $M_\ast \subseteq P \subseteq M^\ast$.

Proof. This follows immediately from [4, 81:14] since $(M_\ast)_e = (M_\ast)^\ast = M_\ast$ at all nondyadic spots.
REMARK 1.4. If 2 is unramified, the lattices satisfying \((M_2)^* \subseteq P \subseteq (M_2)^*\) were determined in [1]. When 2 ramifies the number of such lattices proliferates (even for the gaussian integers, there are lattices \(M\) having more than 20 such \(P\)).

2. Normal subgroups of \(\mathcal{E}\). Let \(\mathcal{E}\) be an indexing set such that \(M_\xi, \xi \in \mathcal{E}\), gives all the lattices on \(V\) such that
\[
M_\xi \subseteq M_\xi^*.
\]

Let \(a\) be an ideal in \(\mathcal{O}\) such that \(aM_\xi \subseteq M_\xi\). Then \(aM_\xi \subseteq (M_\xi)^*\) and we define \(\mathcal{E}_\xi(a^*, M_\xi^*)\) as in [2] as the normal subgroup of \(\mathcal{E}_\xi\) generated by all isometries of the form \(\theta_\xi E(u_\xi, v_\xi)\theta_\xi^{-1}\) or \(\theta_\xi E(v_\xi, u_\xi)\theta_\xi^{-1}\) where \(\theta_\xi \in \mathcal{E}_\xi\) and \(x_\xi \in K_\xi \cap aM_\xi^*\). Define
\[
\mathcal{E}(aM_\xi) = \{\varphi \in \mathcal{E} | \varphi_\xi \in \mathcal{E}_\xi(a^*, M_\xi^*) \text{ for all } \varphi_\xi \}\]
and
\[
\mathcal{F}(aM_\xi) = \{\varphi \in \mathcal{E} | [\varphi, \mathcal{E}] \subseteq \mathcal{E}(aM_\xi)\}.
\]

Then \(\mathcal{E}(aM_\xi) \subseteq \mathcal{F}(aM_\xi)\) and any subgroup \(\mathcal{N}\) of \(\mathcal{E}\) such that \(\mathcal{E}(aM_\xi) \subseteq \mathcal{N} \subseteq \mathcal{F}(aM_\xi)\) is a normal subgroup of \(\mathcal{E}\).

We also define the local group \(\mathcal{F}_\xi(a^*, M_\xi^*)\) by
\[
\mathcal{F}_\xi(a^*, M_\xi^*) = \{\varphi_\xi \in \mathcal{E}_\xi | [\varphi_\xi, \mathcal{E}_\xi] \subseteq \mathcal{E}_\xi(a^*, M_\xi^*)\}.
\]

Note that this definition is more restrictive than that in [2] where \(\varphi_\xi\) was taken in \(O(M_\xi)\), not \(\mathcal{E}_\xi\).

THEOREM 2.1. Let \(S\) be an indefinite set of spots for \(V\) and \(\dim V \geq 5\). Then for any ideal \(a \neq (0)\) with \(aM_\xi \subseteq M_\xi\),
\[
\mathcal{F}(aM_\xi)/\mathcal{E}(aM_\xi) \cong \prod_{p\mid a} \mathcal{F}_\xi(a^*, M_\xi^*)/\mathcal{E}_\xi(a^*, M_\xi^*)\).
\]

Proof. Observe first that for \(p \mid a\) we have
\[
\mathcal{E}_\xi(a^*, M_\xi^*) = \mathcal{E}_\xi = \mathcal{F}_\xi(a^*, M_\xi^*)\.
\]

Define a mapping
\[
\Gamma: \mathcal{F}(aM_\xi) \longrightarrow \prod_{p\mid a} \mathcal{F}_\xi(a^*, M_\xi^*)/\mathcal{E}_\xi(a^*, M_\xi^*)
\]
by sending \(\varphi \in \mathcal{F}(aM_\xi)\) into \((\cdots, \varphi_p, \cdots)_{p \mid a}\) where \(\varphi_p\) denotes the coset determined by \(\varphi_\xi\) in \(\mathcal{F}_\xi(a^*, M_\xi^*)/\mathcal{E}_\xi(a^*, M_\xi^*)\). It is necessary to show that \(\Gamma\) is well-defined, namely \(\varphi_\xi \in \mathcal{F}_\xi(a^*, M_\xi^*)\) for each \(p \mid a\). Let
ψ ∈ ℋ and take θ ∈ ℋ such that ||ψ⁻¹θ − I||₀ < ε. Then [φ, θ] is in \(\mathcal{F}(aM_\ell) \) and hence \([φ, θ]\) is in \(\mathcal{H}_s(a,M_\ell) \). For sufficiently small ε, it follows from Corollary 3.3 that \(ψ⁻¹θ \) is in \(\mathcal{H}_s(a,M_\ell) \) and hence \([φ, ψ]\) is in \(\mathcal{H}_s(a_\ell,M_\ell) \). Thus \(Γ' \) is a well-defined group homomorphism.

φ is in the kernel of \(Γ' \) if and only if \(φ = ψ⁻¹θ \) for each \(\ell | a \). But φ ∈ \(\mathcal{E}_r(a_\ell,M_\ell) \) for each \(\ell | a \). Hence the kernel of \(Γ' \) is \(\mathcal{F}(aM_\ell) \).

It remains to show that \(Γ' \) is surjective. For each \(\ell | a \) fix \(ψ \) in \(\mathcal{F}(a_\ell,M_\ell) \). By the strong approximation theorem, there exists \(θ ∈ \mathcal{H}_s(a,M_\ell) \) such that

\[
||ψ⁻¹φ − I||_0 < ε \quad \text{for} \quad \ell | a.
\]

It now suffices to show \(φ ∈ \mathcal{F}(aM_\ell) \), for if \(ε \) is sufficiently small, \(ψ⁻¹φ \) is in \(\mathcal{F}(a_\ell,M_\ell) \) by Corollary 3.3 and hence \(ψ \) and \(φ \) determine the same coset in \(\mathcal{F}(a_\ell,M_\ell)/\mathcal{E}_s(a_\ell,M_\ell) \). We must show \([φ_\ell, θ_\ell] \) is in \(\mathcal{E}_s(a_\ell,M_\ell) \) for any \(θ \in \mathcal{H}_s \) and all \(\ell | a \). For \(\ell | a \) this is trivial. For \(\ell | a \) and \(ε \) sufficiently small, \(χ_\ell = ψ⁻¹φ \) is in \(\mathcal{E}_s(a_\ell,M_\ell) \) and hence

\[
[φ_\ell, θ_\ell] = [ψ⁻¹φ_\ell, θ_\ell] = [ψ_\ell, χ_\ell, θ_\ell⁻¹] [χ_\ell, θ_\ell]
\]

is in \(\mathcal{E}_s(a_\ell,M_\ell) \). This completes the proof.

Remark 2.2. We restricted ourselves to Dedekind domains coming from global fields so that the strong approximation theorem for rotations could be used. If, however, we assume \(M \) has hyperbolic rank at least one, so that globally \(M = H \perp K \) with \(H = nu + ov \) a hyperbolic plane and \(K \) is free, a strong approximation theorem can still be established for any Dedekind domain. Define all \(\mathcal{H}_s \) with respect to the localization of \(H \). Then, from [2, Theorem 2.9], any \(θ_\ell \) in the spinorial kernel is of the form

\[
θ_\ell = \prod_{i=1}^{n(\ell)} E(u, x_i(\ell))E(v, y_i(\ell))
\]

with \(x_i(\ell) \) and \(y_i(\ell) \) in \((K_\ell)_s \). By approximating to the coefficients of \(x_i(\ell) \) and \(y_i(\ell) \) in the Dedekind domain \(o \), we can approximate to \(θ_\ell \) by an isometry in \(O(M) \) for a finite number of \(\ell \).

3. The structure of \(\mathcal{F}(a_\ell,M_\ell)/\mathcal{E}_s(a_\ell,M_\ell) \). We close with some comments on the structure of the abelian group \(\mathcal{F}(a_\ell,M_\ell)/\mathcal{E}_s(a_\ell,M_\ell) \). For simplicity, since only the local situation is considered in this section, the suffix \(\ell \) is dropped and we write \(o \) for \(o_\ell \), \(M \) for \(M_\ell \), \(V \) for \(V_\ell \), and so on.

For \(ξ ∈ \mathcal{E}_s \), let

\[
M^ξ = \{ x ∈ V \mid B(x, M_\ell) ⊆ o \}
\]
be the dual lattice of \(M_\xi \). Write \(M_\ast = H \perp K_\ast \) and \(M_\xi = H \perp K_\xi \). Then \(K_\ast \subseteq K_\xi \) and we can choose a basis \(x_1, \ldots, x_n \) for \(K_\ast \) such that

\[
K_\ast = ax_1 + \cdots + ax_n
\]

and

\[
K_\xi = p^{-k_1}x_1 + \cdots + p^{-k_n}x_n
\]

with the integers \(k_i \) invariants for \(K_\ast, K_\xi \) and

\[
0 \leq k_1 \leq k_2 \leq \cdots \leq k_n.
\]

Let \(y_1, \ldots, y_n \) be the dual basis of \(x_1, \ldots, x_n \). Then

\[
K_\ast = oy_1 + \cdots + oy_n
\]

and

\[
K_\xi = p^{k_1}y_1 + \cdots + p^{k_n}y_n.
\]

For each \(1 \leq i \leq n \), define

\[
K_{\xi(i)} = K_\ast + p^iK_\xi
\]

\[
= ax_1 + \cdots + ax_i + p^{k_i-k_{i+1}}x_{i+1} + \cdots + p^{k_i-k_n}x_n
\]

and let \(K_{\xi(i)} \), \(1 \leq i \leq n \), be the dual lattices. Write \(M_{\xi(i)} = H \perp K_{\xi(i)} \) and \(M_\xi = H \perp K_\xi \). Then

\[
M_\xi \supseteq M_{\xi(1)} \supseteq M_{\xi(2)} \supseteq \cdots \supseteq M_{\xi(n)} = M_\ast
\]

and

\[
M_\xi \supseteq M_{\xi(1)} \supseteq M_{\xi(2)} \supseteq \cdots \supseteq M_{\xi(n)} = M_\ast.
\]

Define congruence subgroups by

\[
O(\alpha M_\xi) = \{ \varphi \in \mathcal{G} | \varphi(r) \equiv r \mod \alpha M_\xi \text{ for all } r \in M_\ast \},
\]

\[
O(\alpha M_\xi)^i = \{ \varphi \in O(\alpha M_\xi) | \varphi(r) \equiv r \mod 2^i \alpha^{-1} p^{-k_i} M_{\xi(i)} \text{ for all } r \in 2^i M_{\xi(i)} \}
\]

for \(1 \leq i \leq n \), and

\[
O(\alpha M_\xi)^* = \bigcap_{i=1}^n O(\alpha M_\xi)^i.
\]

Since \(p^i M_\xi \subseteq M_{\xi(i)} \), \(1 \leq i \leq n \), it can be checked that

\[
\mathcal{G}(\alpha M_\xi) \subseteq O(\alpha M_\xi)^* \subseteq O(\alpha M_\xi) \subseteq \mathcal{F}(\alpha M_\xi)
\]

provided that \(a_\varphi(M_\xi) \subseteq 0 \).
THEOREM 3.1. For \(a \leq 4p \), the subgroup \(O(\alpha M) \) is generated by \(\mathcal{E}(\alpha M) \) and the isometries \(\Phi(\varepsilon) \) with \(\varepsilon \equiv 1 \mod a \).

Proof. The isometries \(\Phi(\varepsilon) \) are defined in [2]. Let \(\varphi \in O(\alpha M) \); changing \(\varphi \) by the given isometries, we will reduce it to the identity mapping. Assume for some \(m \leq n \) that \(\varphi(y_j) = y_j, \ 1 \leq j \leq m - 1 \), (consider \(\varphi \in O(V) \)). Let

\[
\varphi(u + y_m) = \varepsilon u + \beta v + y_m + \sum_{i=1}^{n} \alpha_i x_i .
\]

Since \(\varphi(y_j) = y_j \), it follows that \(\alpha_j = 0 \) for \(1 \leq j \leq m - 1 \). For \(j \geq m \), \(u + y_m \in M^{(j)} \) and hence \(\alpha_j x_j \in \alpha \overline{p}^{-kj} M_{(ij)} \). Thus \(\alpha_j \in \alpha \overline{p}^{-kj} \), so that \(\alpha_j x_j \in aM, \ m \leq j \leq n \), and hence \(s = \sum_{i=1}^{n} \alpha_i x_i \) is in \(aM \). Now let

\[
\psi = E(u, -x_m)E(u, (1 - \varepsilon)x_m)E(v, \varepsilon^{-1}s)E(u, x_m) .
\]

If \(\psi \) is generated by the given isometries, so is \(\varphi \) (since \(\varepsilon - 1 \in \alpha \overline{p}^{-kn} \)). Since now \(\psi(y_j) = y_j \) for \(1 \leq j \leq m \), the proof is concluded by induction.

Remark 3.2. The assumption \(a \leq 4p \) in the theorem is used to ensure \(\alpha \overline{p}^{-kj} \leq p \) (in particular \(\varepsilon \) is now a unit). When \(4o \leq a \), more care is needed (see [3, Tables I, II]).

Corollary 3.3. \(O(4aM) \subseteq \mathcal{E}(aM) \) when \(a \leq p \).

Proof. We need only show \(\Phi(\varepsilon) \in \mathcal{E}(aM) \) when \(\varepsilon \equiv 1 \mod 4a \). By Hensel’s lemma \(\varepsilon = \eta^2 \) with \(\eta \equiv 1 \mod a \). Now \(\Phi(\eta^2) \) is in \(\mathcal{E}(aM) \) by [2, Proposition 1.2].

Corollary 3.4. \(O(aM) = \mathcal{E}(aM) \) when \(p \) is nondyadic.

Proof. For nondyadic \(p \), \(M_i = M = M^* = M_n \). Clearly \(O(aM) = \mathcal{E} \) by the definition of \(O(aM) \). If \(a \leq p \), then \(\varepsilon \equiv 1 \mod a \) and by Hensel’s lemma \(\varepsilon = \eta^2 \) with \(\eta \equiv 1 \mod a \). Again, \(\Phi(\varepsilon) \) is in \(\mathcal{E}(aM) \).

For dyadic \(p \), under the hypothesis of Theorem 3.1, \(O(aM)/\mathcal{E}(aM) \) is an abelian group with exponent dividing 2. We have indicated in [3, VI] how to find the cardinality of this quotient group (when 2 is unramified). For nondyadic \(p \) the group \(\mathcal{F}(aM)/O(aM) \) has either 1 or 2 elements, depending on whether \(-I\) is in \(\mathcal{E} \). For dyadic \(p \) some comments on the group are made in [3, VII]. The quotient group \(O(aM)/O(aM)^{\Phi} \) will now be determined explicitly in two special cases.

Example 3.5. Let \(M = H \perp N \perp \psi \) where \(q(N) \leq \psi \). Let \(h = \)
[(1 + ord 2)/2] so that
\[M_\ast = H \perp N \perp p^h w \quad \text{and} \quad M^\ast = H \perp N \perp p^{-h} w. \]
The \(\wp \)-invariant dual lattices are
\[M_t = H \perp N \perp p^{-h} w \quad \text{and} \quad M^t = H \perp N \perp p^h w \]
where \(-h \leq k \leq h\). We show, for \(\alpha \leq 2p^{k+1+h} \), that
\[O(\alpha M_t) = O(\alpha M_t)^\wp. \]
Let \(\varphi \in O(\alpha M_t) \). Then \(\varphi(w) = \varepsilon w + s \) where \(s \in \wp^{-h}(H \perp N) \). For all \(t \in H \perp N \), since \(\varphi(t) \equiv t \mod \alpha M_\ast \), it follows that \(B(s, t) \) is in \(\wp^{-h} \) and hence \(s \in \wp^{-h}(H \perp N) \). Now \(q(w) = q(\varphi(w)) \) gives
\[\varepsilon \equiv 1 \mod \alpha^2 p^{-2h}. \]
Consequently, \(\varphi(w) \equiv w \mod \wp^{-h} M_\ast \) and \(\varphi \in O(\alpha M_t)^\wp \).

Example 3.6. Let \(M = H \perp N \perp (o w + o z) \) where \(q(N) \leq \sigma \) and \(o w + o z = \langle A(1, 0) \rangle \). Let \(h = [(1 + \ord 2)/2] \) so that
\[M_\ast = H \perp N \perp (p^h w + o z) \quad \text{and} \quad M^\ast = H \perp N \perp (o w + p^{-h} z). \]
Fix \(0 \leq i, j \leq h \); then
\[M_t = H \perp N \perp (p^i w + p^{-i} z) \quad \text{and} \quad M^t = H \perp N \perp (p^j w + p^{-j} z) \]
are a pair of \(\wp \)-invariant lattices (but not all are of this form). If \(\alpha \leq 4p \),
\[O(\alpha M_t)/O(\alpha M_t)^\wp \cong \begin{cases} \alpha/p^{i+j} & \text{if} \ i + j \leq h \\ \alpha/p^{h-i-j} & \text{if} \ i + j \geq h \end{cases}. \]
We omit the computational details of the proof except to mention that representatives of the various cosets can be obtained from the isometry defined by
\[\psi_i(w) = \varepsilon^{-i} w + \frac{1}{2}(\varepsilon - \varepsilon^{-1}) z, \ \psi_i(z) = \varepsilon z \]
by suitably choosing the unit \(\varepsilon \).

References

2. ———, *Orthogonal groups of dyadic unimodular quadratic forms II*, to appear.

Received August 25, 1973. This research was partially supported by the National Science Foundation.

THE PENNSYLVANIA STATE UNIVERSITY
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On the exceptional sets for spaces of potentials</td>
<td>David R. Adams</td>
</tr>
<tr>
<td>7</td>
<td>Axioms for the Čech cohomology of paracompacts</td>
<td>Philip Bacon</td>
</tr>
<tr>
<td>11</td>
<td>Perturbation theory for generalized Fredholm operators</td>
<td>Selwyn Ross Caradus</td>
</tr>
<tr>
<td>17</td>
<td>Phragmén-Lindelöf type theorems for a system of nonhomogeneous equations</td>
<td>Kuang-Ho Chen</td>
</tr>
<tr>
<td>29</td>
<td>Isomorphism problems for the Baire classes</td>
<td>Frederick Knowles Dashiel, Jr.</td>
</tr>
<tr>
<td>45</td>
<td>Rings whose proper homomorphic images are right subdirectly irreducible</td>
<td>M. G. Deshpande and V. K. Deshpande</td>
</tr>
<tr>
<td>53</td>
<td>Self adjoint strictly cyclic operator algebras</td>
<td>Mary Rodriguez Embry</td>
</tr>
<tr>
<td>59</td>
<td>On the distribution of numbers of the form σ(n)/n and on some related questions</td>
<td>Paul Erdős</td>
</tr>
<tr>
<td>67</td>
<td>Hermitian and adjoint abelian operators on certain Banach spaces</td>
<td>Richard Joseph Fleming and James E. Jamison</td>
</tr>
<tr>
<td>85</td>
<td>The center of a poset</td>
<td>Stanley P. Gudder and L. Haskins</td>
</tr>
<tr>
<td>91</td>
<td>Automorphism groups of operator algebras</td>
<td>Richard Howard Herman</td>
</tr>
<tr>
<td>101</td>
<td>Local compactness of families of continuous point-compact relations</td>
<td>Worthen N. Hunsacker and Somashekhar Amrit Naimpally</td>
</tr>
<tr>
<td>115</td>
<td>Combinatorial structures in loops. II. Commutative inverse property cyclic neofields of prime-power order</td>
<td>Eugene Carlyle Johnsen and Thomas Frederick Storer</td>
</tr>
<tr>
<td>129</td>
<td>Extreme operators on Choquet simplexes</td>
<td>Ka-Sing Lau</td>
</tr>
<tr>
<td>143</td>
<td>The septic character of 2, 3, 5 and 7</td>
<td>Philip A. Leonard and Kenneth S. Williams</td>
</tr>
<tr>
<td>149</td>
<td>On the Nielsen number of a fiber map</td>
<td>Dennis McGavran and Jingyal Pak</td>
</tr>
<tr>
<td>157</td>
<td>Normed Köthe spaces as intermediate spaces of L_1 and L_∞</td>
<td>Stuart Edward Mills</td>
</tr>
<tr>
<td>175</td>
<td>Free products and elementary equivalence</td>
<td>Philip Olin</td>
</tr>
<tr>
<td>185</td>
<td>Locally quasi-unmixed Noetherian rings and ideals of the principal class</td>
<td>Louis Jackson Ratliff, Jr.</td>
</tr>
<tr>
<td>207</td>
<td>Homotopy types of spherical fibre spaces over spheres</td>
<td>Seiya Sasao</td>
</tr>
<tr>
<td>221</td>
<td>Fixed point sets of polyhedra</td>
<td>Helga Schirmer</td>
</tr>
<tr>
<td>227</td>
<td>Compatible topologies and continuous irreducible representations</td>
<td>Kevin James Sharpe</td>
</tr>
<tr>
<td>233</td>
<td>On defining a space by a weak base</td>
<td>Frank Siwiec</td>
</tr>
<tr>
<td>247</td>
<td>Global reflection for a class of simple closed curves</td>
<td>James McLean Sloss</td>
</tr>
<tr>
<td>261</td>
<td>On two congruences for primality</td>
<td>M. V. Subba Rao</td>
</tr>
<tr>
<td>269</td>
<td>Oscillatory properties of a delay differential equation of even order</td>
<td>Raymond D. Terry</td>
</tr>
<tr>
<td>283</td>
<td>Chebyshev centers in spaces of continuous functions</td>
<td>Joseph Dinneen Ward</td>
</tr>
<tr>
<td>289</td>
<td>The uniqueness of elongations of Abelian groups</td>
<td>Robert Breckenridge Warfield, Jr.</td>
</tr>
<tr>
<td>305</td>
<td>Existence and adjoint theorems for linear stochastic differential equations</td>
<td>V. M. Warfield</td>
</tr>
</tbody>
</table>