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NEOFIELDS OF PRIME-POWER ORDER

E. C. JOBNSEN AND THOMAS STORER

In this paper we construct a large family of commutative
inverse property, cyclic (CIP) neofields of prime-power order.
Our purpose in doing so is to produce a class of algebraic
systems which shall be useful in certain combinatorial construc-
tions. One of these constructions is that of power-residue
difference sets in the additive loops of finite CIP neofields
which is a natural generalization of the corresponding con-
structions in the additive groups of finite fields. Another is
that of cyclic Steiner triple systems, i.e., Steiner triple systems
with a cyclic group of automorphisms sharply transitive on
elements, which we discuss in the last section of this paper.

CIP neofields may be thought of as a first generalization of finite
fields in that they share all of the familiar properties of the fields
with the possible exception of additive associativity. The present
approach, accordingly, is to begin with a finite field and modify the
additive structure thereon so as to preserve these properties. We
show that the number of nonisomorphic CIP neofields of prime-power
order v = p* goes to infinity with v and we exhibit proper (i.e., not
the field) CIP neofields for every prime-power order » = p* =11
(every CIP neofield of order v < 11 is a field). For p = 2 the latter
implies that there exists at least two nonisomorphic cyclic Steiner
triple systems of order 2 — 1 > 15. The constructions of power-
residue difference sets in finite CIP neofields appears in [5], the cor-
responding constructions in finite fields in [6], [9].

2. Preliminaries. A neofield of order v is a triple N, = (N,
+, >, where N is a set of v elements including 0 and 1, and + and
. are binary operations on N such that N(+) is a loop with identity
element 0, N*(-) (where N* = N — {0}) is a group with identity
element 1, and . is both left and right distributive over +. We
also write N, for N and N} for N*. It is easily verified that 0.2 =

=g-0 for every x¢ N,. The neofield N, is said to have the right
inverse property (RIP) if for each ye N, there is an element z¢ N,
such that (x + y) + 2z = « for all xe NV,, and to have the left inverse
property (LIP) if for each y € N, there is an element w € N, such that
w+ (¥ + ) =2 for all xe N,. If N, has both the RIP and LIP then
N, is called an inverse property (IP) neofield. It is readily verified
that in an RIP or LIP neofield N, every y < N, has a unique two-sided
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negative —ye€ N,. In fact, in the above definitions the elements z and
w are this element —y. In an RIP or LIP neofield N,, 2 + (—1)z =
X+ (=1)x=0=((—1)+ 12 = (—1)x + 2, hence the negative of z is
—x = (—1)x for every e N,. We call a neofield N, commutative
if N,(+) is commutative. The following result is probably known.

LEMMA 2.1. An IP neofield vs commutative.

Proof. Let N, be an IP neofield and let z, ye N, with  + y ==z.
By the RIP we have © = (z + y) + (—¥) = 2z + (—v), by the LIP this
becomes (—2) + © =(—=2) + (# + (—y)) = —y, and by the RIP again
we obtain —z2=((—2)+«) + (—2)=(—y) + (—2) or (—-1)z=(—-1)y +
(=1)z = (—=1)(y + x). Since —1ec N* we obtain 2z =y + . Hence
¢ +y =1y + x and we see that N, is commutative.

We call a neofield N, cyclic when N}(-) is cyclic. Let N, be a
cyclic neofield. A presentation of N, based on the set N is the
expression of N in terms of a multiplicative generator a, N = {0, 1,
a, a’, «++, a" % where o’ ' =1, together with a function 7: N— N,
called the presentation function, which is related to the addition in
N, by 1 +2 = T() for all xe N. In a cyclic neofield the element
1 has a unique two-sided negative —1 where —1 =1 if » is even
and —1 =a”? if v is odd ([7], p. 49, Theorem II2). Using the
presentation of a cyclic neofield N, we can construct the addition
table N, for N,(+). We choose the natural order 0,1, a a* «--, a"*
for the first row and first column of Nv. Then the second row of
N, consists of the elements T©) =1, TQ), T(a), T(@®, +++, T(a""® in
this order. By the distributive laws we have

21 aoa+a=al+ae)=aTw@"); 0r,s<v—2,

hence the table N, is completely determined by its first and second
rows. A cyclic neofield N, is thus completely determined by its pre-
sentation; henceforth, we shall give a presentation of N, in terms
of the first two rows of N,. Note, however, that an abstract cyclic
neofield of order v may have more than one presentation. For ex-
ample, the unique finite field of order 7 has the presentations

01l a a2a®ata® 01 a a®a®a*d’

and

la*a*a 0 a° a lata*a 0 & a®

Different presentations of a cyclic neofield N,, of course, correspond
to different definitions of addition on the set N. Finally, we call a
cyclic IP neofield a CIP neofield.
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3. Construction of a family of CIP neofields. Let F, = (F,
+, +> be the finite field of order v = p* = 11, p prime, @ = 1 integral,
with presentation given by F' = {0, 1, a, a? ---, a’ % and the presenta-
tion function T for which T(x) =1 + « for all e F. We define the
functions 7”7 and T, on F' as follows:

3.1) T@)=(-1)+2z, xweklF,
T(x), 2 =0, —1

(8.2) Ty(») = { @ .
W, otherwise ,

and define a new addition @ on F according to

¥y, yel,z =0

3.3 =
(33) v DY {xTo(x“y); z,yeF,x+0.

Also, we define
(3.4) Tix)= (1) Pz, xcF.

We note that F” = (F, 0, -> is also the field of order v = p* which,
as the image of the mapping 0—0, x —a™* for all x = 0 in F, is an
isomorph but not an automorph of F,(+, -). We let the corresponding
presentation of F' be given by F ={0,1,a,a} ---,a""%} and the
presentation function T,. We shall be concerned with compositions
of the functions T, 7", and T, on the set F. We need the following
two results for the neofield construction which is to follow.

LeEmMMA 3.1. For all xe F, (T"T,))(x) = .

Proof. We easily verify that T'T(0) =0 and T'T(—-1) = —1,
hence the lemma holds for # =0, —1. We now take z = 0, —1.
Then a straightforward computation yields 7T, (x) = — (1 + ).
Since —(1 + )™+ 0, —1, a second application of T"7T, yields (7' Ty)’(x) =
—(1 + »)2*. Finally, since —(1 + x)z™* = 0, —1, a third application
of T'T, yields (T"T,)’(x) = «; hence the lemma.

We now determine those z e F for which 7'7T\(x) = x.

LemMMA 3.2. We have (T'T)(x) = x (i.e., T(x) = To(x)) in the set
F, v = p% precisely when

(1) 2=0, —-1. (This includes 1 = —1 when p = 2.)

(2) p=38and x=1. (Here T(A) = —1.)

(3) p*=1(mod3) and x is a primitive cube root of unity in
F,. (Here T(x) = —a* is a primitive sixth root of unity in F, when
p # 2.)
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Proof. We already have (1) from the proof of the previous
lemma. When 1+ —1 v is odd and T"T,(1) =1 if and only if p =
char (F,) =8 and T(1) = —1. When a« # 0,1, —1 we have T'T\(x) =
o if and only if 1 + & + 2 = 0. Here x is a primitive cube root of
unity in F,, and 2® = 1 implies that 8|v — 1 or p* = 1 (mod 3). Also,
T(x) =1+ x = —a® satisfies (1 + ) — (1 + ) + 1 =0 and is thus a
primitive sixth root of unity in F, when p # 2.

COROLLARY 3.3. Let S = {xe F|(T'T)(x) # x}. Then S is parti-
tioned into triples {y, T'T\(y), (T"T,)*(y)}, whence |S| = 0 (mod 3).

Proof. The elements y, T"T,(y), and (1" T,)*(y) are distinct except
when y is one of the elements given in Lemma 3.2 and thus satisfies
T'T(y) = y. Hence S is partitioned into triples and |S| = 0 (mod 3).

We now change viewpoint and assume that N, = (F, B, ) is a
cyclic neofield of order v = p* with presentation given by F' and the
presentation function T, satisfying

(i) Ty # T and T, = T, on F,

(ii) for each ze F, either T, (x) = T(x) or T.(z) = Ty(x). We
inquire as to what other conditions 7', must satisfy on F. Immediate
restrictions are obtained in the following result.

LemmA 3.4. The function T, is bijective on F, and for all x, y €
F we must have

(1) T.(x)+*a,

(2) «T.(y) = T.(xy) for = = 1.
Furthermore, N, 1s commutative if and ornly if

(3) 2T, (27 = T,.(x) for all x + 0 in F.

Proof. That T, is bijective and satisfies (1) and (2) is obvious.
In N, we automatically have x 50 =08 « for all xz€ F. Suppose
x, y€ F where 2 = 0 = y. Then

By =018y =y@y HT(ey™)™)

and yBr=yA Bay") =yT,(vy™"). Hence x By =y B« if and only
if ay™)T((wy™") = Ty(vy™"). Let z=xy'. As x and y run over
N} ¢o does z, and as z runs over N} all pairs «, y € N} are obtained.
Hence, N, is commutative if and only if 27,(z7") = T,(2) for all z +
0 in F, which is (3).

For ye S = {xe F|T'Ty(x) #+ x} we define the orbit of y to be the
set 0(y) = {y, T'Ty(y), (T"T))"(y)}. A simple computation shows that
o) = {y, (=1)/T(y), (—1)/T,(y)}. We now show that T, is identically
T or T, on the orbits in S.
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LEMMA 3.5. If T, agrees with T (or T,) at ye S, then T, agrees
with T (or T,) on 6(y).

Proof. We first note that for ye S, the two sets
T(6®) = {T@w), T(T"T)(w), T(T"To) W)}
and
T(0(v) = {Tow), T(T'T)(v), T(T" To)*()}
are equal, since
Ti(y) = T(T"To)(w), T(T"T)w) = T(T"To)*(v) »

and T(T'T)(y) = T(T'T)'(y) = T(y). Suppose T,(y) = T(y). If
T (T'T)"(y) = T(T'To)*(y) then T, (T'T)*(y) = T(y), contrary to the
fact that T, is injective. Hence T (T'T)Xy) = T(T"T,)*(y). Further,
if T,(T'"T)(y) = T(T"T)(y) then T (T"T)y) = T(T"T,)(y), again con-
trary to T, being injective. Hence T, (T'T)(y) = T(T'T,)(y). Thus,
if T, agrees with T at y € S then T, agrees with T on 6(y). Similarly,
if T agrees with T, at ye S then T, agrees with T, on 4(y).

When N, is commutative the condition 7(x™") = T(z) (or xTy(z™") =
T\(x)) effects a further agreement of 7', and T (or 7,) on the orbits
in S.

LEmMmA 3.6. Suppose N, is commutative. If T, agrees with T
(or T;) at ye S, then T, agrees with T (or T,) on 0(y) U 0(y™"). Thus,
the orbits in S are paired except when 1€ S. In the latter case (1)
18 patred with itself.

Proof. Suppose T.(y) = T(y). Then, by Lemma 3.5, T, agrees
with 7 on 6(y). Since N, is commutative we have, by Lemma 3.4(3),
that yT,.(y™") = T.(y), whence yT, . (y™") = T(y) = yTly™) or T . (y™") =
T(y™"). Again, by Lemma 3.5, T, agrees with 7 on 6(y~'). Hence
T, agrees with T on d(y) Ud(y™). Now, 6(y) = 6(y™") if and only if
one of y =y, y=TT(y") = —1/Ty™), or

Yy=(T"T) W) = (=1/T(y™)
holds.

Case 1. y =y™'. Here y* =1, hence y = 1 since —1¢ S, whence
0(y) = 6(1).

Case 2. y =(-1)/T(y™). Here y = —1/1 +y™) = (—=y)/(y + 1)
or ¥y = —2, whence 4(y) = {—2,1, —27'} = 4(1).
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Case 3. y =(—1)/T(y™"). Here y =(—~y)l+y )= —y—1 or
y = —27', whence 0(y) = {—27", —2, 1} = 0(1).
Clearly, when 1€ S, 6(1) is paired with itself. A similar argument
goes through when T, (y) = T,(y).

We now show that if N, is commutative then it inherits the IP
from the field. Since N, is cyclic —1 is also the negative of 1 in N,(E);
whence, —y = (—1)y is the negative of y in N,(H) for every y€ N,.

LEMMA 38.7. If N, is commutative, then N, is an IP neofield.

Proof. Since N, is assumed to be commutative, we only need to
prove that N, has the LIP. Now (—y) B (y H0) =0 for all yeF
and (—0) B (0 8 #) = & for all xe F, hence we are left with proving
(—y)BE@BEBEx)=2 for all ££0=y. Now, (—y)BWHz) = if
and only if (-1)B A Haxy™") =2y’ or T.T.(xy™") =xy~', where
T, is defined by T.(w) =(—1) Bw for all weF. Let z=uay™"
As z and y run over N} so does 2z, and as 2z runs over N} every
pair x, ye N* is obtained. Hence N, has the IP if and only if
T.T2) =z for all z==0 in N,. If T'T(2) =z then T.(?) = T(z) =
Ti(z), and regardless of whether T agrees with 7" or 7, on T,.(?)
we have T4 T,(2) = 2. Otherwise, T"T\(z) + z and z has an orbit 6(z) =
{z, (=1)/T(2), (—1)/T\(2)}. Forsuchz (-1)BBAHE2)=01H2)H(-1) =
QB2 B (-1)/A82) or TiT,(2) = T,(R)T«((—1)/T(#)), and, by
Lemma 3.5 and the commutativity and IP of F,(+) and F"(€D), we
have

T T, (2) = TRT(—D/T@) = T'TR) =z if Tu(2) = T(2)
e iTo(z)To((_l) Ty) = TiTo(2) = 2 it Ty(2) = To(2) .

Hence T.7T,(z) =z for all z+ 0 in N, whence N, has the IP, as was
to be shown.

We now have enough information on the neofield N, = {(F, H, >
obtained from F, and F" according to (i) and (ii) to give a construction
of CIP neofields for every prime-power order v = p* = 11.

THEOREM 8.8. Let F, =<F, +, > and F° ={F, &}, >, F = {0,
La a ---, a2, a0 =1, be two copies of the finite field of order
v = 11 with presentation functions T and T,, respectively, where T, is
related to T by

T(x), x =0, —1
(3.5) T)=1{ 5 _
T(;c—)’ x+#0, —1.

Let T, be any mapping on F satisfying
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(@ T,=Tand T, =T, on F,
(b) for each xeF, either T.(x) = T(x) or T.(x)=
(3.6) Ty(@) ,
(¢) if T, agrees with T (or T,) at € S, then T, agrees
with T (or Ty) on 6(x) U 6(x™) .

Then T, is the presentation function for a CIP neofield N, = (F, B, ).

Proof. Let N,(E) be the groupoid on F defined by

Y, =0
®1 vEY= 2T (x7'y), x# 0
forall x, ye F. Now, by (8.7, 0By =y and ¢ 20 =2zT,(0) = 2T(0) =
2T,(0) =2-1 = x for all z, y € V,; hence 0 is the identity element in N,(H)
and 0 commutes with every element in N,. Let 2+ 0 in N, and
suppose that T.(x) = T(»). Then, by (3.6)(c), T.(x™") = T(x™"), hence
T (™) = aT(x™") = T(w) = Tulz). If T.(x) = Tyx) we again obtain
2T (x™") = T.(2). By the proof of (8) of Lemma 3.4, this implies that
N,(&H) is commutative. Now, 0 @ & = b has the unique solution z =
for any be N,. By 8.7), aE % =10 for a, be N,, a = 0, has a unique
solution ze N, if and only if T.(a"'z) = a™'d has, that is, if and
only if T, is bijective on N,. Suppose for w, ze N,, w + 2, we have
T.(w) = T.(2). Now T, agrees with one of T and T, at w and, since
both T and T, are bijective, T, must agree with the other at z. We
may assume that T.(w) = T(w) and T,(2) = Ty(z). Then T\(z) = T(w)
or T"Ty(z) = w # 2, hence z has an orbit 4(z) and we 0(z). By (3.6)
(c) this means that 7', agrees with 7, at w, whence T(w) = T (w) =
T.(z) = T(z), which contradicts the fact that T, is bijective. Hence,
T, is bijective on N, and, by the commutativity of N,(H), B a =
o B2 =>b always has a unique solution ze N, for every choice of
elements a, be N,. Hence N,(H) is a commutative loop. Now, for
any w=+ 0,2, ye€ N, we have, by (38.7), that 0-(xB»)=0=0-2F
0-y and

wey=w-0Bw-y =w-xHw-vy, z=0

w-(zBy) = _ ~
wexT (xy) = wa T, (we) (wy)) = we Bwy, v+0,

hence, since N,(-) is commutative, £ is both left and right distribu-
tive over -. Thus N,(H, -) is a cyclic commutative neofield. By
(3.6) (a) and (b), N, satisfies the implicit conditions of Lemma 3.7,
hence N, = (F, &, -) is a CIP neofield with presentation function 7.

For F, and F of order v = p* <9 we have [S|/3 <2, and so
condition (8.6) (a) cannot be satisfied. For » = 11 and 13 we have
|S|/3 =3 and 6(1) is paired with itself. Here, fixing T, = T (or T,)
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on S—0d(1)and T, = T, (or T) on 4(1) yields what we shall call a special
CIP neofield. We remark that special CIP neofields exist for every
order v = p* = 11 where p # 2, 3. The construction produces non-
special CIP neofields for every order v = p* > 16. At this point we
do not know whether this construction produces neofields which are
not isomorphs of the corresponding field. This question is taken up
in the next section.

4. Proper CIP neofields. A neofield is called proper if it is
not a field. It is natural to inquire as to which of the CIP neofields
constructed by Theorem 3.8 are proper and how many nonisomorphic
proper CIP neofields are obtained. So far we do not have the complete
answer to these questions; however, we can obtain some information
of value. Let @ denote the Euler phi-function. We need the follow-
ing preliminary result.

LEemMmA 4.1. A cyclic neofield N, = {N, +, :>, N=1{0,1, a, @ -+,
a’"?%, of order v > 1 has at most (v — 1) presentations based on the
set N.

Proof. Let T, be the presentation function for N = (N, &, -),
where N” is isomorphic to N,. Let ¥ denote the isomorphism from
N, onto N”. Then ¥ induces an isomorphism from N}(+) onto N."*(-).
In terms of the generator a of N(-) we have ¥:a —a" where a" is
a generator of N.”*(-). Since |N®*(-)| = v — 1 we must have ged (7,
v —1) =1. Since ¥ is completely determined by its effect on a
multiplicative generator, the number of different presentations of N,
on the set N is at most the number of different integers »,1 <7 <
v — 1 such that ged (r, v — 1) = 1, which is (v — 1).

THEOREM 4.2. The number of nonisomorphic CIP neofields of
order v = p* constructed by Theorem 3.8 goes to infinity with v.

Proof. In the construction of Theorem 3.8, let w denote the
number of elements x such that T"T(x) # « and xz ¢ 6(1) if (1) exists.
Then u/6 is the number of orbit pairs 6(x) U 6(z™") on which a choice
of either T or T, can be made. If 6(1) exists then the total number
of neofield presentations constructed is 2+ — 2 and if 6(1) does
not exist, this number is 2*° — 2. Now, the value of u is 3* — 3 =
v—38ifp=38 2 —4=v—4if p=2 and p*=1(mod3), p* — 7 =
v—Tif p#2and p*=1(mod3),2*—2=v—2if p=2 and p* =
2(mod 3), and p* — 5 =v — 5 if p = 2 and p* = 2 (mod 3). Since 6(1)
exists only for p # 2, 3, the resulting number of neofield presentations
is, respectively, 207/ — 2, 2046 _ g 20-n/6 _ 9 20-2li _2 and 202,
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Now, by Lemma 4.1, a given neofield of order » can occur among
these presentations at most @(v — 1) times, hence the construction
yields at least

2(11—7)/6 _ 2 2(11—1‘)/6 . 2
(v — 1) v—1

nonisomorphic neofields of order », where » = —1,1,2 3, or 4. In
any of these cases we clearly have

. (v—r)[6 __
lim _2—2 =
v p — 1

oo,

hence the theorem.

In the case of a field F, of order v = p* the number of different
presentations given by the various isomorphisms ¥,:a—a", ged (7,
v—1) =1, is a~'¢(p* — 1) since the mappings ¥,i:a —a?, 1 =1,2, 3, - -+,
«, are all automorphisms and automorphisms preserve presentations.
The number of presentations of neofields of order v = p* construec-
ted by Theorem 3.8 is larger than a ‘¢(p* — 1) — 2 for all p* =11
except 11, 18, and 17 and for these orders the theorem constructs
proper neofields by inspection. Hence, for all orders » = 11, proper
CIP neofields are constructed by Theorem 3.8. In the following
theorems we give actual constructions of proper CIP neofields for
each order » = p* = 11, divided into the three cases where p > 7,
p=3,5 7 and p = 2. The three analyses are rather distinct; each
is based on particular properties of the case involved.

THEOREM 4.3. Let v = p* = 11 where p > 7. Then 2¢ 6(1) and
any weofield N, of order v constructed by Theorem 3.8 with T, =T
on 0Q1) and T, = T, on 6(2) has the property that

4.1) 13deda)+-01m)adal)

and is, hence, not the field of order v.

Proof. We note that F, & F,. = F, and that for xc F, 2¢ F, if
and only if A(x) < F,. Since p = 2, 8, 6(1) exists and 6(1) = {1, —27,
—2}; hence 2e¢4(1) iff 5=0 or 4 =0, 1.e., p =2 or p =5. Thus,
choosing T, = T on 6(1) and T, = T, on 6(2),

llEdml) = T,7,T.Q) = T,T,7Q1) = T*<—32—>

and

ABNBUE=0810)1A81) = T.0)T.1) = TA)TL) =4.
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If T.2/3) = T(2/3) = 5/3 then T,(2/3) = 4 implies that 7 =0, and if
T.(2/3) = T,(2/3) = 2/5 then T,(2/3) = 4 implies that 2=0 or 3 =0,
all of which are contradictions. Hence T,(2/3) # 4, which is (4.1).

THEOREM 4.4. Let v = p* > 11 where p = 8,5, or 7. Let xc F,
where ¢ F, and o+ —1+1vV —1, 2+ 2(-1+15), & #27(—-3 %
V'5), % 27(—8 £ 1V —=3), in case any of these elements exist in F,
and are not in F,. Then T(x)¢ 0(x) U 0(x™"), and any neofield N, of
order v constructed by Theorem 3.8 with T, = T on 6(1) U 6(x) U 6(z™")
and T, = T, on 0(T(x)) U 6((T(x))™") has the property that

(4.2) 1B\ -1@ml)Be

and 1is, hence, not the field of order w.

Proof. We first note that the element x must be different from
at most p + 8 elements of F,. Since the minimal values of 3¢ 57,
and 7 are 27, 25, and 49 and p + 8 < 15, such an element x exists.
Since T(x)¢ F, we have T(x)¢ 6(1). Furthermore, T(z)c 0(x) U 6(x™")
implies that either xze F, or « is one of the first six forbidden values.
Thus, choosing T, = T on (1) U 6(x) U 8(z™*) and T, = T, on 6(T(x)) U
((T(z))™),

180182 =T.Tr) = T,T(x) = (x + (= + 2)~*
and
1a)Ez2=28H0EBH) =208 @ 'H2™)
=T, (' TA)) = 2T,.(227") .
If T,2x™") = T(227") = 1 + 22" then 27.(22™") = (¢ + 1)(z + 2)~' implies
that 2 + 32z + 3 = 0 or = is one of the last two forbidden values,
and if 7,227 = T,(22™") = 2(x + 2)~* then 27,2z = ( + D)(z + 2)*

implies that x =1, both of which are contradictions. Hence (x +
D@ + 2)7' 5= 2T, (2¢7"), which is (4.2).

THEOREM 4.5. Let v =2*> 11 and let x be any element in F,
which is not im the largest of the subfields F, F, or F, contained
wn F,. Then x*¢ 6(x) U 0(x™") and any neofield N, of order v constructed
by Theorem 3.8 with T, = T on 0(x) Ub8(z™") and T, = T, on 6(z%) U
8(x7%) has the property that

(4.3) @Bl @E~ oD (S )

and s, hence, not the field of order v.

Proof. Since x is not in any subfield F,, F,, or F; of F,, x satisfies
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no cubic or lower degree equation over F,. If a*efd(x) Ud(x™) = {x,
—1+a, QA+, —ol + 2, —1 + x)}, this condition is
clearly violated. Thus, choosing 7, = T on 6(x) Ud(x™") and T, = T,
on f(x%) U 0(x™),

EH=2"B0AHz) =2*T.(*T,.(x)
=T (T (x)) = 2*T (&7 + ©7?)

and
emAA2 =T, @' T(2)) = 2T, (@ ' T(x*)) = 2T, (x@ + 297 .

It T (" +o =Tl +2) =0+ +1 and 2T, (@ + 29)7") =
T + 237" = + *(1 + 2°) 7 then *T, (v " + 27%) = T (x(1 + 2%)7)
implies that 2>+« + 1 = 0, a contradiction. If

T+ 2 =T+ =2+ a + 1
and 2T, (x(1 + 2°)™") = aTy(z( + 2®)™) = 2°(1 + 2 + 2°)" then
T (7 4 27 = aT(@d + 29)7)

implies that «* + 1 = 0, another contradiction. If 2*7T. (27 + 27%) =
BT + 27 = (@ + 2)Q + 2 + 2 and 2T, (@ + ) = s T(x1 +
)™ =2 + 21 + 297" then #*T(z™ + ¢7%) = &7 (L + %)) implies
that 2* + 2z + 1 = 0, also a contradiction. Finally, if 2*T (¢ + %) =
2T + o) =@ + )1+ 2+ )" and 2T (21 + 2°)7") = e Ty(x(L +
) =a(1 + @ + 257" then #*T, (v + 27 = T, (¢l + 2*7") implies
that ¢ = 0, again a contradiction. Hence &*T, (x™" + 272 = aT.(2(1 +
2%)7") which establishes (4.3).

It is natural to inquire as to the orders for which CIP neofields
exist. The order need not be a prime-power as the following pre-
sentation for the lone CIP neofield of order 14 shows:

\ € 01a aa® a*a® a® o a®a® o ata?

\ T,x) | 10a*ad a®a o a®a®a®ala® o o

Recently, John R. Doner has obtained CIP neofields for all orders v > 2
satisfying v = 0, 6, 12, 15, 18, 21 (mod 24) and v = 10 and has shown
that no CIP neofields exist for these forbidden orders. Hughes [4]
had earlier shown that the orders v = 0, 6, 12, 18 (mod 24) were for-
bidden, and the authors, among perhaps others, had earlier observed
that order » = 10 is also forbidden.

5. Cyclic Steiner triple systems. A Steiner triple system of
order n, S(n), is an arrangement of a set of n elements into triples
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such that every pair of elements occur together in precisely one triple.
A necessary and sufficient condition that an S(n) exist is that n =
1, 3(mod 6). An S(n) is called cyclic if it has a cyclic group of auto-
morphisms which is sharply transitive on the elements. For an
excellent historical discussion and introduction to the literature on
Steiner triple systems in general and cyclic Steiner triple systems
in particular, the reader is referred to the first section of Doyen [3].
Here we note that a cyclic Steiner triple system S(z) is known to
exist for all orders n = 1, 3 (mod 6) except » =9 [8]. Now, a CIP
neofield N, =1{0,1, a, a*, ---, a" % of order v = 2* has the property
that x + 2 =0 or —2x = 2 for all xe NNV,, and so if =, ¥, z€ N, satisfy
*+y==z2 then also y + o =z, +2=2+x=y, and y +z=2+
y = ®. This means that N,(+) is a totally symmetric loop. The set
of elements N = N, — {0} formed into the triples {2, y, 2} where
® + y =z thus yields a Steiner triple system S(n) of order »n =
v — 1 [2]. Furthermore, the right regular representation of N}(-)
is a cyclic group of automorphisms of N,(+), hence also of S(n),
which is sharply transitive on the elements of S(n). Hence, a CIP
neofield of order v = 2* = 4 naturally yields a cyclic Steiner triple
system of order » = v — 1. Now, CIP neofields of order v = 2* with
nonisomorphic additive loops yield nonisomorphic cyclic Steiner triple
systems of order n = 2% — 1, and by Theorem 4.5 there exists both
the field of order v and a proper CIP neofield of order v for every
order v = 2* > 16. Hence, we obtain the following result, which is
a more specific version of a theorem of Assmus and Mattson [1].

THEOREM 5.1. There exists at least two monisomorphic cyclic
Steiner triple systems for each order n = 2* — 1 > 15.

Although the number of nonisomorphic CIP neofields of order
v = 2% goes to infinity with v, we cannot immediately conclude from
this that the number of nonisomorphic cyclic Steiner triple systems
of order v — 1 does the same, since we must ascertain the number
of nonisomorphic additive loops among the nonisomorphic CIP neofields
of order v. By further investigation, however, the authors have
determined that this number does go to infinity with v. This will
be presented in a subsequent paper.
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