ON THE NIELSEN NUMBER OF A FIBER MAP

Dennis McGavran and Jingyal Pak
ON THE NIELSEN NUMBER OF A FIBER MAP
DENNIS McGAVRAN AND JINGYAL Pak

Suppose \(\mathcal{F} = \{E, \pi, B, F\} \) is a fiber space such that \(0 \to \pi_1(F) \to \pi_0(E) \to \pi_0(B) \to 0 \) is exact. Suppose also that the above fundamental groups are abelian. If \(f: E \to E \) is a fiber preserving map such that \(f_\ast(\alpha) = \alpha \) if and only if \(\alpha = 0 \), then it is shown that \(N(f) = N(f') \cdot N(f_h) \) where \(N(h) \) is the Reidemeister number of the map \(h \).

A product formula for the Nielsen number of a fiber map which holds under certain conditions was introduced by R. Brown. Let \(\mathcal{F} = \{E, \pi, L, (p, q), s^1\} \) be a principal \(s^1 \)-bundle over the lens space \(L(p, q) \), where \(\mathcal{F} \) is determined by \([f_\ast] \in [L(p, q), \pi^0] \simeq H^1(L(p, q), \mathbb{Z}) \simeq \mathbb{Z}_p \). Let \(f: E \to E \) be a fiber preserving map such that \(f_\ast(1) = c_1, f_\ast(\bar{1}_p) = \bar{c}_1 \), where \(1 \) generates \(\pi_1(s^1) \simeq \mathbb{Z} \) and \(\bar{1}_p \) generates \(\pi_1(L(p, q)) \simeq \mathbb{Z}_p \). Then the Nielsen numbers of the maps involved satisfy

\[
N(f) = N(f_h) \cdot (d, 1 - c_1, s),
\]

where \(d = (j, p) \) and \(s = j/p(c_1 - c_\bar{1}) \).

I. Introduction. Let \(\mathcal{F} = \{E, \pi, B, F\} \) be a fiber space. Any fiber preserving map \(f: E \to E \) induces maps \(f^\ast: B \to B \), and, for each \(b \in B \), \(f^\ast: \pi_1(B) \to \pi_1(B) \), where \(\pi_1(B) \simeq F \). The map \(f \) will be called a fiber map (or bundle map if \(\mathcal{F} \) is a bundle).

Let \(N(g) \) denote the Nielsen number of a map \(g \). The Nielsen number, \(N(g) \), serves as a lower bound on the number of fixed points of a map homotopic to \(g \), and under certain hypotheses, there exists a map homotopic to \(g \) with exactly \(N(g) \) fixed points. R. Brown and E. Fadell ([2] and [3]) proved the following:

Theorem. Let \(\mathcal{F} = \{E, \pi, B, F\} \) be a locally trivial fiber space, where \(E, B, \) and \(F \) are connected finite polyhedra. Let \(f: E \to E \) be a fiber map. If one of the following conditions holds:

(i) \(\pi_1(B) = \pi_2(B) = 0 \).

(ii) \(\pi_1(F) = 0 \).

(iii) \(\mathcal{F} \) is trivial and either \(\pi_1(B) = 0 \) or \(f = f' \times f \), for all \(b \in B \) then \(N(f) = N(f') \cdot N(f_b) \) for all \(b \in B \).

These strong restrictions on the spaces involved eliminate some interesting fiber spaces. For example, any circle bundle over \(B \) with \(\pi_1(B) \neq 0 \) is excluded. Furthermore, if \(\pi_1(B) = \pi_2(B) = 0 \), then the total space \(E \) is \(B \times S^1 \).

This paper has two objectives. The first is to try to generalize
the above result to the case of a bundle \(\mathcal{T} = (E, \pi, B, F) \) where \(\pi_1(B) \) is a nontrivial abelian group, and \(\pi_2(B) = 0 \). The second is to investigate the relationships between the Nielsen numbers of the maps \(f, f', \) and \(f_b \) for particular circle bundles.

In this paper all spaces are path-connected.

II. Some general results. The reader may refer to [1] and [2] for definitions and details concerning the Nielsen number \(N(f) \), Reidemeister number \(R(f) \), and Jiang subgroup \(T(f) \) of a map \(f: X \to X \).

We will be particularly interested in the Reidemeister number. It serves as an upper bound on \(N(f) \) and in many cases \(R(f) = N(f) \). Let \(h: G \to G \) be a homomorphism where \(G \) is an abelian group. It is shown in [1] that \(R(h) = |\text{coker } (1 - h)| \) (| | means the order of a group). The Reidemeister number of a map \(f: X \to X \) is defined to be the Reidemeister number of the induced homomorphism \(f_\# : \pi_1(X) \to \pi_1(X) \). Now let \(\mathcal{T} \) be a fiber space. Let \(F_b = \pi^{-1}(b) \). If \(w: I \to B \) is such that \(w(0) = b \) and \(w(1) = b' \), we may translate \(F_{b'} \) along the path \(w \) to \(F_b \) (see [6]). This gives a homeomorphism \(\bar{w}: F_{b'} \to F_b \).

Given a fiber map \(f: E \to E \), we have the natural map \(f_b : F_b \to F_{f(b)} \), the restriction of \(f \) to \(F_b \). Then by definition \(f_b = \bar{w} \circ f'_b \). For more details on \(f_b : F_b \to F_b \) readers are referred to [2].

Suppose \(\mathcal{T} \) is a fiber space and \(w \) is a loop based at \(b \). Then we have \(\bar{w}: \pi^{-1}(b) \to \pi^{-1}(b) \). The fiber space \(\mathcal{T} \) is said to be orientable if the induced homomorphism \(\bar{w}_* : H_*(\pi^{-1}(b), z) \to H_*(\pi^{-1}(b), z) \) is the identity homomorphism for every loop \(w \) based at \(b \). It is shown in [2] that if \(\mathcal{T} \) is orientable and if the Jiang subgroup \(T(p^{-1}(b), e_b) = \pi_1(p^{-1}(b), e_b) \) for a fixed \(b \in B \) then the Nielsen number of \(f_b \) is independent of the choice of path from \(f'(b) \) to \(b \). Furthermore, the Nielsen number \(N(f_b) \) is independent of the choice of \(b \in B \).

Lemma 1. Let \(\mathcal{T} \) be a fiber space with \(\pi_1(F), \pi_1(E), \) and \(\pi_1(B) \) abelian. Suppose \(f: E \to E \) is a fiber map. Then the following diagram commutes:

\[
\begin{array}{ccc}
\pi_1(F_b) & \xrightarrow{i_b} & \pi_1(E) \\
\downarrow{1-f_b} & & \downarrow{1-f} \\
\pi_1(F_b) & \xrightarrow{i_b} & \pi_1(E).
\end{array}
\]

Proof. First, by [6], the map \(\bar{w} \) is homotopic in \(E \) to the identity map on \(F_{f'(b)} \). Hence we have

\[
i_2(1 - f_b)(\alpha) = i_2[\alpha - (\bar{w} \circ f'_b)(\alpha)] = i_2(\alpha) - i_2(\bar{w} \circ f'_b)(\alpha) = i_2(\alpha) - (i_2 \circ f'_b)(\alpha) = i_2(\alpha) - (f_b \circ i_b)(\alpha) = (1 - f_b) \circ i_b(\alpha).
\]
Lemma 2 [4]. Suppose we have the following commutative diagram of modules, where the rows are exact:

\[
\begin{array}{ccc}
0 & \longrightarrow & A' \\
\downarrow & & \downarrow \\
0 & \longrightarrow & A
\end{array}
\]

\[
\begin{array}{ccc}
0 & \longrightarrow & B' \\
\downarrow & & \downarrow \\
0 & \longrightarrow & B
\end{array}
\]

\[
\begin{array}{ccc}
\longrightarrow & & \\
\downarrow & & \downarrow \\
C' & \longrightarrow & C
\end{array}
\]

Then there is an exact sequence

\[
0 \longrightarrow \ker \alpha \overset{\mu_*}{\longrightarrow} \ker \beta \overset{\varepsilon_*}{\longrightarrow} \ker \gamma \\
\overset{\omega}{\longrightarrow} \coker \alpha \overset{\mu'_*}{\longrightarrow} \coker \beta \overset{\varepsilon'_*}{\longrightarrow} \coker \gamma \longrightarrow 0 .
\]

The homomorphisms \(\mu_* \) and \(\varepsilon_* \) are restrictions of \(\mu \) and \(\varepsilon \), and \(\mu'_* \) and \(\varepsilon'_* \) are induced by \(\mu' \) and \(\varepsilon' \) on quotients. The connecting homomorphism \(\omega : \ker \gamma \to \coker \alpha \) is defined as follows. Let \(c \in \ker \gamma \), choose \(b \in B \) with \(\varepsilon b = c \). Since \(\varepsilon' \beta b = \gamma \varepsilon b = \gamma c = 0 \) there exists \(a' \in A' \) with \(\beta b = \mu a' \). Define \(\omega(c) = [a'] \), the coset of \(a' \) in \(\coker \alpha \). Then \(\omega \) is a well-defined homomorphism. See [4, p. 99] for the proof of the lemma.

Theorem 3. Suppose \(\mathcal{F} = \{E, \pi, B, F\} \) is a fiber space such that

\[
0 \longrightarrow \pi_1(F) \overset{i_*}{\longrightarrow} \pi_1(E) \overset{\pi_*}{\longrightarrow} \pi_1(B) \longrightarrow 0
\]

is an exact sequence of abelian groups. Suppose \(f : E \to E \) is a fiber map and \(w : I \to B \) is a path from \(b \) to \(f'(b) \). Then we have the following exact sequence:

\[
0 \longrightarrow \ker (1 - f_{sb}) \longrightarrow \ker (1 - f_s) \longrightarrow \ker (1 - f') \\
\longrightarrow \coker (1 - f_{sb}) \longrightarrow \coker (1 - f_s) \longrightarrow \coker (1 - f') \longrightarrow 0 .
\]

Proof. The fiber map induces the following commutative diagram:

\[
\begin{array}{ccc}
0 & \longrightarrow & \pi_1(F') \\
\downarrow & & \downarrow \\
0 & \longrightarrow & \pi_1(F)
\end{array}
\]

\[
\begin{array}{ccc}
\overset{i_*}{\longrightarrow} & \pi_1(E) \overset{\pi_*}{\longrightarrow} \pi_1(B) \longrightarrow 0 \\
\downarrow (1-f_{sb}) & \downarrow (1-f_s) & \downarrow (1-f'_s) \\
\overset{i_*}{\longrightarrow} & \pi_1(E) \overset{\pi_*}{\longrightarrow} \pi_1(B) \longrightarrow 0
\end{array}
\]

Now the result becomes a simple application of Lemmas 1 and 2.

Corollary 4. \(\ker (1 - f_{sb}) \) is independent of \(w \) and \(b \).

Proof. \(\ker (1 - f_{sb}) \) is isomorphic to the kernel of the map \(\ker (1 - f_s) \overset{\pi_*}{\longrightarrow} \ker (1 - f'_s) \). But this map is the restriction of \(\pi_* : \pi_1(E) \to \pi_1(B) \), which is independent of \(w \) and \(b \).
Suppose \(h: G \to G \) is a homomorphism of abelian groups. We will say that \(h \) satisfies Condition A if \(h(\alpha) = \alpha \) if and only if \(\alpha = 0 \).

Theorem 5. Suppose \(\mathcal{F} \) is a fiber space satisfying the hypotheses of Theorem 3. Suppose \(f: E \to E \) is a fiber map such that \(f' \) satisfies Condition A. Then \(R(f) = R(f') \cdot R(f_b) \) for all \(b \in B \).

Proof. We have \((1 - f'_i)(\alpha) = 0\) if and only if \(f'_i(\alpha) = \alpha \) if and only if \(\alpha = 0 \). Therefore, \(1 - f'_i \) is injective and we have the following exact sequence:

\[
0 \to \text{coker } (1 - f_{i_b}) \to \text{coker } (1 - f_i) \to \text{coker } (1 - f'_i) \to 0 .
\]

The theorem follows from the properties of \(R(f) \).

Corollary 6. Under the hypotheses of Theorem 5 \(R(f_b) \) is independent of \(w \) and \(b \).

Proof. This follows since both \(R(f) \) and \(R(f') \) are independent of \(w \) and \(b \).

Example 1. Let \(\mathcal{F} \) be a principal \(T^k \)-bundle over a \((2n + 1)\)-dimensional lens space \(L(p) \), \(p \equiv 1 \). We know from [5] that \(L = L(d) \times T^k \) where \(d \) divides \(p \). Let \(f: E \to E \) be a bundle map. It follows easily from results in [1] that \(N(f_i) = R(f_i) \). It is also shown in [1] that \(N(f'_n) = R(f'_n) \) for \(n = 1 \), and the proof can be easily generalized to higher dimensions. Furthermore, by showing that \(T(f) = \pi_1(L(d) \times T^k) \), where \(T(f) \) is the Jiang subgroup of \(f \), one can show that \(N(f) = R(f) \). Now such a bundle satisfies the hypothesis of Theorem 3. Hence, if \(f'_i: \pi_1(L(p)) \to \pi_1(L(p)) \) satisfies the hypothesis of Theorem 5, we have \(N(f) = N(f'_n) \cdot N(f_i) \) for all \(b \in B \).

Example 2. If \(G \) is a compact connected semi-simple Lie group, then \(\mathcal{F} = \{E, \pi, G, S^i\} \) satisfies the hypothesis of Theorem 3. If \(f: E \to E \) is a fiber map then \(N(f) = N(f'_n) \cdot N(f_i) \) follows from [3] since the second integral cohomology group of \(G \) vanishes. Assume \(N(f'_n) \neq 0 \neq N(f_i) \). Then since \(G \) and \(S^i \) are H-spaces \(T(f') = \pi_1(G) \) and \(T(f_i) = \pi_1(S^i) \); and we have \(N(f'_n) = R(f'_n) \) and \(N(f_i) = R(f_i) \). It follows that \(R(f) = R(f'_n) \cdot R(f_i) \) independent of Condition A.

Lemma 7. Suppose \(h: Z_p \to Z_p \) is such that \(h(\overline{l}) = \overline{m} \). Then Condition A holds iff \((1 - m, p) = 1 \).

Proof. Suppose \((1 - m, p) = 1 \). If \(h(\overline{n}) = \overline{m\overline{n}} = \overline{n}, 1 \leq n < p \), then \(mn \equiv n \pmod{p} \). Hence \(p \) divides \((1 - m)n\), which is impossible if \((1 - m, p) = 1 \).
Now suppose \(h(\alpha) = \alpha \) iff \(\alpha = 0 \). Suppose \((1 - m, p) = d\). Let \(1 - m = c \cdot d, \ p = c \cdot d\). Then \(h(\bar{e}_2) = \bar{m} \cdot \bar{e}_2\). Now

\[
mc_2 - c_2 = c_2(m - 1) = -c_2c_1d = -c_1p.
\]

Thus \(h(\bar{e}_2) = \bar{e}_2 \) and \(d = 1 \).

EXAMPLE 1 (con't). We have \(\pi_1(L(p)) \cong \mathbb{Z}_p \). Suppose \(f'_*(\bar{l}) = \bar{m} \). Then \(N(f') = (1 - m, p) \). Hence Theorem 5 is applicable if and only if \(N(f') = 1 \).

III. A general solution to Example 1. Let \(\mathcal{F} = (E, \pi, (L(p, q), s^1) \) be a principal \(s^1 \)-bundle over a 3-dimensional lens space \(L(p, q) \). If \(\mathcal{F} \) is induced by \(\bar{f}_* \in [L(p, q), CP^\infty] \cong H^1(L(p, q), \mathbb{Z}) \cong \mathbb{Z}_p \), then \(E \cong L(d, q) \times s^1 \), where \(d = (j, p) \) (see [7]). Let \(j = j'd, \ p = p'd \).

THEOREM 8. Let \(\mathcal{F} \) be as above and \(f: E \to E \) a fiber map such that, for a particular choice of \(b \in B \) and \(w \), \(f_*(1) = c \cdot s_1 \) and \(f'_*(\bar{l}_p) = \bar{c}_1 \), where 1 generates \(\pi_1(s^1) \cong \mathbb{Z} \) and \(\bar{l}_p \) generates \(\pi_1(L(p, q)) \cong \mathbb{Z}_p \). Let \(s = j/p(c_1 - c_2) \). Then

\[
N(f) = N(f'_*) \cdot (d, 1 - c_1, s).
\]

Proof. We first examine the structure of \(L(d, q) \times s^1 \) as an \(s^1 \)-bundle over \(L(p, q) \) (see [7]). \(L(p, q) \) and \(L(d, q) \) are obtained from \(s^1 \) as the orbit space of a free \(\mathbb{Z}_p \)-action and \(\mathbb{Z}_f \)-action, respectively. Given \((r_1, \theta), (r_2, \theta_2) \in s^1 \), let \(\langle (r_1, \theta), (r_2, \theta_2) \rangle \) represent its equivalence class as an element in \(L(p, q) \). In \(L(d, q) \times I, I = [0, 2\pi] \), identify \(\{\langle (r_1, \theta), (r_2, \theta_2) \rangle, 2\pi\} \) with \(\{\langle (r_1, \theta_1 + j\nu), \theta_2 + j(\nu), 0\rangle, 0 \} \) to obtain \(E \), where \(\nu = 2\pi/p \). Define \(h: E \to L(d, q) \times S^1 \) by

\[
h(\langle (r_1, \theta), (r_2, \theta_2), \nu, t \rangle) = \left\{ \left(r_1, \theta_1 + \frac{t}{2\pi} j\nu, r_2, \theta_2 + \frac{t}{2\pi} j(\nu), t \right) \right\}.
\]

Then \(h \) is a homeomorphism. Let \(\pi_1(L(d, q) \times S^1) \) be generated by \((\bar{l}_d, 0) \) and \((0, 1) \). Then \(\langle (\bar{l}_d, 0), (0, 0) \rangle \) is represented by the loop \(\bar{\sigma}_1 = \langle (1, t(2\pi/d)), (0, 0) \rangle \), \(0 \leq t \leq 1 \), and \((0, 1) \) is represented by \(\bar{\sigma}_2 = \langle (1, 0), (0, 0) \rangle, t \), \(0 \leq t \leq 2\pi \). Then in \(E \), \(\sigma_1 = \langle (1, t(2\pi/d)), (0, 0) \rangle \) and \(\sigma_2 = \langle (1, -t/(2\pi))j\nu), (0, 0) \rangle, t \rangle \) represent \(\langle (l_d, 0) \) and \((0, 1) \) respectively. \(\bar{l}_p \) is represented by the loop \(\gamma = \langle (1, tv), (0, 0) \rangle \leq t \leq 1 \). Now the projection map \(\pi: E \to L(p, q) \) is given by

\[
\pi(\langle (r_1, \theta), (r_2, \theta_2) \rangle, \nu, t) = \langle (r_1, \theta), (r_2, \theta_2) \rangle.
\]

We have

\[
\pi \circ \sigma_1 = \left\langle \left(1, \frac{t2\pi}{d} \right), (0, 0) \right\rangle \leq t \leq 1 = \langle (1, tp\nu), (0, 0) \rangle.
\]
Hence
\[\pi_\delta(l, 0) = \bar{p}' . \]
Also
\[\pi_\sigma \sigma_\delta = \left\{ \left(1, -\frac{t}{2\pi} j'v \right), (0, 0) \right\} \quad 0 \leq t \leq 2\pi \]
so
\[\pi_\delta(0, 1) = -\bar{j}' . \]

One fiber in \(E \) consists of
\[\bigcup_{0 \leq t \leq 2\pi} \left\{ \left(1, n_j'v, (0, 0) \right), t \right\} . \]
Hence, in \(L(d, q) \times S' \), this fiber is
\[\bigcup_{0 \leq t \leq 2\pi} \left\{ \left(1, \left(n + \frac{t}{2\pi} \right) j'v, (0, 0) \right), t \right\} = \left\{ \left(1, n_j'v, (0, 0) \right), 2\pi \bar{j}' \right\} \]
where \(0 \leq \tau \leq p' \) and \(2\pi \bar{j}' \) represents the equivalence class of \(2\pi \tau (\text{mod} \ 2\pi) \). Hence \(\iota_\delta(1) = (j', p') \).

We have the following commutative diagram:
\[
\begin{array}{ccc}
0 & \longrightarrow & \pi_\delta(S') \xrightarrow{i_\delta} \pi_\delta(L(d, q) \times S') \xrightarrow{\pi_\delta} \pi_\delta(L(p, q)) \longrightarrow 0 \\
(1-f_\delta) & | & | \\
0 & \longrightarrow & \pi_\delta(S') \xrightarrow{i_\delta} \pi_\delta(L(d, q) \times S') \xrightarrow{\pi_\delta} \pi_\delta(L(p, q)) \longrightarrow 0 .
\end{array}
\]
We must compute the cokernel of \((1 - f_\delta) \) since \(N(f) = |\coker (1 - f_\delta)|. \)
Let
\[(1-f_\delta)(\bar{l}, 0) = (\bar{a}, 0) \quad (1-f_\delta)(0, 1) = (\bar{a}, u) . \]
Commutativity of the right hand square implies that \(a = 1 - c' \), while commutativity of the left hand square implies \(u = 1 - c' \). Now
\[(1-f_\delta) \circ \pi_\delta(0, 1) = -(1-c')j' \]
\[\pi_\delta(1-f_\delta)(0, 1) = p's - j'u = p's - j'(1-c) . \]
Hence
\[p's - j'(1-c) \equiv -(1-c)j'(\text{mod} \ p) . \]
Therefore,
\[j'(c_2 - c) + p's = kp . \]
We must have \(p' \mid j'(c_2 - c) \) so
\[s = kd + \frac{j'}{p'}(c_1 - c_2). \]

Hence we may assume
\[s = \frac{j'}{p'}(c_1 - c_2) = \frac{j}{p}(c_1 - c_2). \]

Therefore, \(\text{Im}(1 - f_d) \) is generated by \((1 - c_1, 0), (\bar{s}, 0), \) and \((0, 1 - c_2)\). Now the group \(\pi_1(L(d, q) \times S^1) \cong z_d \oplus z \), and the subgroup generated by \((1 - c_1, 0)\) and \((\bar{s}, 0)\) is the subgroup generated by \(((1 - c_1, s), 0)\). Consequently, the cokernel of \((1 - f_d) \) is isomorphic to \(z_d/(1 - c_1, s)z_d \oplus z/(1 - c_2)z \). Which, in turn, is isomorphic to \(z/(1 - c_2)z \). Therefore,
\[|\text{coker} (1 - f_d)| = N(f) = (d, 1 - c_1, s) \cdot |1 - c_2| = (d, 1 - c_1, s) \cdot N(f_d). \]

Note. (1) Since \(\mathcal{L} \) is orientable and \(T(\pi^{-1}(b), e_b) = \pi_1(\pi^{-1}(b), e_b) \), the above formula is independent of \(w \) and \(b \).

(2) In the above argument we could replace \(L(p, q) \) with the generalized lens space as in [5].

(3) If \(p \) is a prime the product formula follows from results of R. Brown and E. Fadell [3].

(4) Theorem 8 also indicates that a product theorem of the type obtained by R. Brown and E. Fadell is hard to expect in general.

Corollary 9. Let \(\mathcal{L} \) be as in Theorem 8. Suppose \(f: E \to E \) is a bundle map such that for some \(b \in L(p, q) \) \(f_b: \pi^{-1}(b) \to \pi^{-1}(b) \) is homotopic to a fixed-point free map. Then there exists a map \(g: E \to E \), homotopic to \(f \), which is fixed-point free.

Proof. Let \(\tilde{f}_b \) be the fixed-point free map on \(\pi^{-1}(b) \) which is homotopic to \(f_b \). Clearly \(N(\tilde{f}_b) = 0 \) and since the Nielsen number is a homotopy invariant, \(N(f_b) = 0 \). Thus from Theorem 8, \(N(f) = 0 \), and the corollary follows from the converse of the Lefschetz fixed-point theorem of F. Wecken [8].

References

Received August 29, 1973. Dennis McGavran was supported by a National Science Foundation traineeship. The authors thank the referee for his suggestions which have improved the present paper.

UNIVERSITY OF CONNECTICUT
AND
WAYNE STATE UNIVERSITY
David R. Adams, *On the exceptional sets for spaces of potentials* 1
Philip Bacon, *Axioms for the Čech cohomology of paracompacta* 7
Selwyn Ross Caradus, *Perturbation theory for generalized Fredholm operators* 11
Kuang-Ho Chen, *Phragmén-Lindelöf type theorems for a system of nonhomogeneous equations* .. 17
Frederick Knowles Dashiell, Jr., *Isomorphism problems for the Baire classes* 29
M. G. Deshpande and V. K. Deshpande, *Rings whose proper homomorphic images are right subdirectly irreducible* .. 45
Mary Rodriguez Embry, *Self adjoint strictly cyclic operator algebras* 53
Paul Erdős, *On the distribution of numbers of the form σ(n)/n and on some related questions* ... 59
Richard Joseph Fleming and James E. Jamison, *Hermitian and adjoint abelian operators on certain Banach spaces* 67
Stanley P. Gudder and L. Haskins, *The center of a poset* .. 85
Richard Howard Herman, *Automorphism groups of operator algebras* 91
Worthen N. Hunsacker and Somashekhar Amrith Naimpally, *Local compactness of families of continuous point-compact relations* 101
Donald Gordon James, *On the normal subgroups of integral orthogonal groups* 107
Eugene Carlyle Johnsen and Thomas Frederick Storer, *Combinatorial structures in loops. II. Commutative inverse property cyclic neofields of prime-power order* .. 115
Ka-Sing Lau, *Extreme operators on Choquet simplexes* .. 129
Philip A. Leonard and Kenneth S. Williams, *The septic character of 2, 3, 5 and 7* 143
Dennis McGavran and Jingyal Pak, *On the Nielsen number of a fiber map* 149
Stuart Edward Mills, *Normed Köthe spaces as intermediate spaces of L₁ and L∞* 157
Philip Olin, *Free products and elementary equivalence* .. 175
Louis Jackson Ratliff, Jr., *Locally quasi-unmixed Noetherian rings and ideals of the principal class* ... 185
Seiya Sasao, *Homotopy types of spherical fibre spaces over spheres* 207
Helga Schirmer, *Fixed point sets of polyhedra* ... 221
Kevin James Sharpe, *Compatible topologies and continuous irreducible representations* ... 227
Frank Siwiec, *On defining a space by a weak base* .. 233
James McLean Sloss, *Global reflection for a class of simple closed curves* 247
M. V. Subba Rao, *On two congruences for primality* ... 261
Raymond D. Terry, *Oscillatory properties of a delay differential equation of even order* ... 269
Joseph Dinneen Ward, *Chebyshev centers in spaces of continuous functions* 283
Robert Breckenridge Warfield, Jr., *The uniqueness of elongations of Abelian groups* 289
V. M. Warfield, *Existence and adjoint theorems for linear stochastic differential equations* ... 305