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Let (4, 2, ) be a totally o-finite measure space and let
M(4) be the set of all complex-valued z-measurable functions
on 4. This paper is concerned with determining whether
certain classes of normed Kothe spaces (Banach function spaces)
are intermediate spaces of L, =L,(#) and L.=L.(¢). It is proven
that L, N L., and L, + L., are associate Orlicz spaces and that
for every nontrivial Young’s function @ there is an equivalent
Young’s function @; such that the Orlicz space Lyg, is an inter-
mediate space of L, and L.. The notion of a universal Kothe
space is presented and it is proven that if 4 is a universal
Kéthe space then L, L.c Ac L, + L,. Furthermore, if 4
is normed, in particular 4 = L,, then there is an equivalent
universally rearrangement invariant norm p, for which L,,
is an intermediate space of L, and L..

1. Introduction. Let X, and X, be two Banach spaces contained
in a linear Hausdorff space Y such that the injection of X,(7 =1,
2) into Y is continuous. Denote the norm of X; by ||-|;. The space
X, N X, is the set of all elements which are in both X, and X,, and
the space X, + X, is the set of all fe Y of the form f = f, + f;
with f,e X, and f,€ X,. The spaces X, N X, and X, + X, are Banach
spaces under the norms || f||x,nx, = max {|[f|l, || fll} and || f|lz+x, =
mE{l| fill, + | fellet £ = f1 + fo i€ X3} (see [1, p. 165, Prop. 3.2.1]).
A Banach space X C Y satisfying X, N X,c Xc X, + X, and || f|lx,+x,
S Fllx =1l fllxyox, is called an intermediate space of X, and X,.

Much work has been done on intermediate spaces and the related
topic of interpolation theory. (See [1], [2], [12].) In particular, it has
been shown that the Lebesgue spaces L, and the Lorentz spaces L,
(6] and [7]) are intermediate spaces of L, and L.. In this paper
we investigate what other classes of normed Kothe spaces are inter-
mediate spaces of L, and L.. In §7 we introduce the notion of a
universal Kothe space, which we prove to be equivalent to Luxem-
burg’s notion of a universally rearrangement invariant Kothe space
[9]. We have been able to show that if 4 is a universal Kothe space,
thenL,NnL.cAdc L, + L,. Furthermore, if 4 is normed, in particular
4 =L, then there is an equivalent norm p, which is universally
rearrangement invariant and L, is an intermediate space of L, and L...

Section 2 contains preliminaries and §3 deals with Orlicz spaces.
We show that L,n L. and L, + L. are Orlicz spaces and prove that
they are associate Orlicz spaces. It is shown that for any nontrivial
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Young’s function 77, there is an equivalent Young’s function /I, such
that L,y is an intermediate space of L, and L,. This means that
L. NL, and L, + L_ are the smallest and the largest Orlicz spaces,
respectively. Section 4 deals with the monotonic rearrangement of
a measurable function. Sections 5 and 6 deal with universal and
universally rearrangement invariant function norms.

2. Preliminaries. Let (4, 3, ) be a o-finite measure space where
4 is a point set, ¥ is a o-algebra of measurable sets, and ¢ is a
totally o-finite measure. Let M* be the set of all nonnegative -
measurable functions on 4. We allow that a function can assume
the value + « at some or all points z¢€ 4. '

A mapping 0 on M* to the extended reals is called a function
norm if o satisfies the following conditions for all f and g in M*:

(i) o(f) =0 and po(f) =0 if and only if f =0 a.e. (almost
everywhere).

(ii) p(af) = ap(f) for a = 0.

(i) o(f + 9) = p(f) + o(9).

(iv) f(x) = 9(x) a.e. implies o(f) =< p(9).

In addition, we assume that p satisfies:

(v) (Fatou property) fo fi, -+ € M"and f,1 f, (pointwise a.e.)
implies o(f.) 1 0(f0).

(vi) (Saturated) there are no sets E'€ X such that o()z) = oo for
every measurable B < E with ¢(B) > 0 (x5 is the characteristic function
for the set B).

The domain of definition of o is extended to M = M(4, ), the
set of all complex-valued, p-measurable functions on 4, by defining
o(f) = p(lf|) for fe M. We denote by L, = L,(4, 2, tf) the set of
all f e M satisfying o(f) < «~. If we assume p-almost equal functions
are identified in the usual way, the spaces L, are complete normed
linear spaces. Such spaces are commonly called normed Kothe spaces
or Banach function spaces. (For theory of normed Kothe spaces
see [10].) Examples of normed Kothe spaces are Orlicz spaces, the
spaces of Ellis and Halperin [3], and the Lorentz spaces [6, 7].

The associate norm o' of any function norm p is defined by

o'(f) = sup{| | Faldre pto) 1}

The associate space, denoted (L,) or L,, is defined to be L, = {f e
M: 0'(f) < «}. The associate norm o’ has the Fatou property (even
if p did not) and hence is a normed Kothe space. (For the details
see [10].)

Let (4, 2, ¢1) be as outlined earlier, and let 4, be a fixed incre-
asing sequence of sets of finite measure whose union is 4. Let 2 =
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{ S S| fAs,ldpe < oo for all 'n} be the space of locally integrable func-
tion on 4. For any subset I"'c Q2 we define the Kothe space A(I")
associated with I" to be 4 = A(I') = { fe o g | fgldp < o for all ge

4

l"}. The assoctate Kothe space A’ is defined to be A’ = A(A(I)) =

{ge Q: S lgfldp < o forall fe A(l’)}. Notice that our normed Kothe
4

space L, is also a Kothe space (since o is assumed to saturated).

Endow the space M(4, pt) with the topology of convergence in
measure on sets of finite measure. Then M becomes a linear Hausdorff
space and the injection of L, into M is continuous. Thus we have
established the framework necessary to consider L, as an intermediate
space of L, and L.

Let p(4) < . Then L,=L nL.cL,cL,+ L,=1L, if and
only if o(y,) < = and p'(Y) < . Furthermore, there is an equiv-
alent norm which makes this embedding norm-reducing (Theorem
6.4). For this reason, we will proceed wunder the assumption that
H(d) = .

Finally, we given a representation of the L, + L_ norm which
we will denote by || |+.

THEOREM 2.1. Let fe L, + L, and let s = sup {t: ¢f| | = t} = 1}.
Then

Nl =8+ g >s)(Ifl — s)dp .

{ir1

A proof can be derived from Butzer and Berens [1, pp. 185-186].

3. Orlicz spaces as intermediate spaces. For basic Orlicz space
theory, the reader is referred to [5], [8], or [15].

Let @:[0, o) — [0, =) and 7:[0, <) — [0, <) be complementary
Young’s functions. Hence @ and ¥ are increasing, absolutely con-
tinuous on the sets where they are finite, and convex. Let

£ lhe = inf & > 0: | 00 710 < 1} .

The Orlicz space Ly, is the set of all complex-valued, p-measurable
functions satisfying || fllus < «=. Hence the Orlicz space Ly, is a
normed Kothe space and, as such, it satisfies the properties stated in
§2. In particular we can form the associate norm, denoted || - ||,

171l = sup{{ | 7ol e llglle = 1},

and the associate space Ly = {g: ||9|lr < co}.
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We will denote the L, N L. norm by [|-]|,.

THEOREM 3.1. (a) If II is a (nontrivial) Young’s function, then
LNL.cLyz. (b) LN L, %s an Orlicz space. In particular there
18 @ Young’s function ¥ such that || f||n = || f|lue for all fe M.

Proof. Consider the Orlicz space given by ¥(u) =u for 0 <u =1
and ¥(u) = « for 1 < u.

From Theorem 3.1 we see that L, N L., is the smallest Orlicz space.

Let ¥ be as defined in the proof of Theorem 3.1. Let @ be the
complementary Young’s function of . One can check that @(u) =0
for 0<u=<1and &u)=u —1 for 1 < u.

LEMMA 38.2. Ly, (L,n L.), and L, + L. all consist of the same
functions.

It is not true that ||-||. = ||+ |lxe- For example let (4, 2, 1) be
[0, ) with Lebesgue measure and let f = 10).z + BYns- Then
1 £ llxe <5 but || f|]+ = 15/2. However, the following is true.

THEOREM 38.3. (a) For any fe L, + L., we have || fllo = ||.f ]+
(b) L, + L. is an Orlicz space; in particular (L, + L., ||-[l+) = (L,

I+ llo)-

Proof. Let feL, + L_and g€ Ly, = L, N L,. Then by Theorem
2.1 we get || £1@/lgll)dx < [|£]l,. Hence

171l = sup {{I£@/llI) |dg: g€ Lue} <1151 -

To show the reverse inequality let fe L, with f =0 and s =
sup {t: #{f =t} = 1}. Furthermore assume that f is a simple function
(i.e., f is a linear combination of characteristic functions of sets of
finite measure). Because f is simple, one can show that p#{f > s} <1,
t{f =s) =1, and p{f =s} = 0. Now define a: 4 — [0, =) by a(z) =
1if ze{f >s}, al) =1 — p{f>s)/pu{f =s} if ze{f =5} and a(z) =
0 otherwise. Then ||«||, =1 and

[lraldp=s+{ (f—adp=17l..

Therefore, || f||. = Slfal dre < ||flle by Holders inequality [8, p. 7]
and we have shown the equality for any simple function. Since both
[|+ ||+ and ||« ||, have the Fatou property, it is an easy matter to extend
the result to an arbitrary fe L, + L..
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Combining Theorem 3.1 and Theorem 3.3, we can say L,,; < (L, N
L) = L, + L_ for any Young’s function 7. Hence L, + L. is the
largest Orlicz space and we have

LnNnNL.cLy;cL, + L.

An element Be X is called an atom if Ae X and AcC B implies
MA) =0 or (A) = p(B). If we restrict ourselves to the case that
(4, Z, 1) is nonatomic (i.e., has no atoms), then G. G. Gould [4] and
Luxemburg and Zaanen [11] have obtained some results similar to
ours. If g has no atoms, then define the function norm [|-||; as

15 1lo = sup {{ 171 dp: pB) = 1} .

It was shown by Luxemburg and Zaanen and by Gould that for fe
L+ L, || flls =lfll+- This is also mentioned by Butzer and Berens
[1, p. 183]. Luxemburg and Zaanen have shown that the associate
space of (L, + L., || - ||s) is the space (L, N L., || - ||n). One might hope
that for each fe L, + L. there exists a set E, such that #(E;) =1

and || fll: = Iflle = I |f|dp. This is true for simple function, but

it is not true for gerfleral functions as is shown by the following
example.

Let (4, 2, p) be [0, ) with Lebesgue measure and let f(t) =
A = 1/)%1,e)» Using Theorem 2.1 || fllz = ||f|l+ =1. For any EC

[0, =) such that (E) = 1 it follows that § If1dt <1 =7l
E

Let us return to the question of whether all Orlicz spaces are
intermediate spaces of L, and L.. It is easy to see that there are
many spaces whose embeddings are not norm-reducing (e.g. L,
where L,, = L, N L.). But we prove the following.

THEOREM 3.4. Ewery Orlicz space Ly; has an equivalent Orlicz
worm ||+ ||yn, for which it becomes an intermediate space of L, and
L..

Proof. Let ¥ and @ denote the Young’s functions for L,N L.,
and L, + L_, respectively. Let I be a nontrivial Young’s function.
It may happen that there exists u,(u < u, < o) such that II(w) =0
for v < u, and II(u) = « for w > u,. In this case L,; = L as sets,
80 ||+ |lxz is equivalent with the L_ norm. In all other cases, there
is a %, >0 such that 0 < II(u,) < . Now define I7, and II, by
I (w) = II(w,w)/(u,) for w =0 and I7,(u) = IT,(u) for 0 <u <1 and
II(w) = 2II,(u) — 1 for 1 < u. Notice that I7, is continuous, convex,
II(u) =0 for all w, I7,(0) =0, and I7,(1) = 1. This means that /7, is
continuous, convex, I7,(v) = 0 for all u, 17,(0) = 0 all and 77,(1) = 1.
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Thus 17, is a Young’s function [8, p. 38, Remark (1)].

Because 17, is convex and I7,(1) = 1, we have I7,(u) = u for u =
1;s0 II(u) = 2u — 1 for u = 1. Therefore, 20(u) = 2u — 2 < I (u) <
co = ¥(u) for w = 1. Now for 0 < u <1, we have

20(u) = 0 = I1(w) = II(wuo)/ 11 (w,)

<M_=u=qr(u),

T II(w)
Hence for all w = 0, 20(u) < IT,(w) < ¥(u). This means that
WAl =0 lle < 211 e < WS llaem, S WS llaw = 1F Ml -

Next we will show that L, and L,y consist of the same func-
tions which means that || - ||,z and || - ||z, are equivalent. First notice
that I7,(w) < IT(w) < 2I1(w) for all 4 = 0. From which it follows that
Szz(lfl/k)d;e < oo if and only ifgﬂl([ FIk)dp < oo. Therefore, f € Lux
if and only if fe€ Ly,

What about the space L;? Let 2 be the complementary Young’s
function for 7I. Let £, be given by Theorem 3.4. Then the associate
norm of || ||yo, denoted by ||-||;, will make L, an intermediate space
of L, and L.,.

4. Monotonic rearrangement. Let f € M(4, f), then the mono-
tonic rearrangement of f is the function f*: [0, <) — [0, =] defined by

fH@) =inf {y = 0: pf| f(2)| >y} = 8} .

Let f and g belong to M(4, ¢£). Then f and g are called equimea-
surable whenever g{] f(z)| > r} = pf|g(x)| > 7} forall» = 0. If fand
g are equimeasurable we write f ~ g. Notice that f ~ g if and only
if f* = g*. Since p{| f(x)| > r} = m{f*(t) > r} for all », we will say that
S and f* are equimeasurable even though they are defined on different
measure spaces. Hence f* is the unique, nonnegative, monotonic
nonincreasing, right-continuous function on [0, «) which is equimea-
surable with f. For properties of the montonic rearrangement refer
to [9] and [14].

The following lemma, whose proof is straightforward, has several
important consequences.

LEMMA 4.1. Let II be any Young’s function and let f be p-
measurable. Then SAH(] Fde =g I(F*)dt .
0

COROLLARY 4.2. Let II be a Young’s function and let f and g
belong to M(L).
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(1) WSz = WS * Macar-
(ii) If f ~ g, then || fllun = ||glxn-
(iii) If feL,n L, and g ~ f, then ge L, N L.

iv) lIflls= ”f*”Ll([o,eo))ﬂLw([O,ee))'

Now we are able to quickly prove a result which is stated by
Butzer and Berens [1, p. 184, Prop. 3.3.7].

THEOREM 4.3. Let fe M(), then || £, = glf*(t)dt.
0

Proof. From Corollary 4.2, we know that || f ||, = || f*|l.. So we
will show that |[f*|. = g f*@t)dt. Since f* is a monotonic decreasing
0

function, we know that {f* > s.} [0, 1) c{f* = s.}. So by Theorem
2.1

1 1 1
1F 1l = s + Sf*dt - gsf‘dt - Sf*dt :
0 0 0
This representation of ||-||. allows us to make the following
statement about general Kothe spaces.

COROLLARY 4.4. Let A be a Kothe space and let A* be the set of
all monotonic rearrangements of functions in A and let A be the
Kothe dual of A. Then the following are equivalent:

(i) L) L) c4C L) + L.(1).

(ii) ({1* U 4™y c L(m) + L_(m).

(iii) Sof*(t)dt < oo for all fe(dU ).

(iv) S:f*(t)dt < oo for all fe(AUA) for any r > 0.

5. Rearrangement invariant KOthe spaces.

DEFINITION 5.1. A Kothe space 4 is called rearrangement in-
vartant if f€ 4 and ¢ equimeasurable with f implies g€ 4.

(ii) A function norm p is called rearrangement invariant if f €
L, and g equimeasurable with f implies o(f) = po(9).

Notice that if p is a rearrangement invariant function norm, then
L, is a rearrangement invariant Kothe space. However, a normed
Kothe space may be rearrangement invariant but not norm rearrange-
ment invariant. Most of the well-known examples of normed Kothe
spaces are rearrangement invariant. Included are the L, spaces 1=p=
o), Orlicz spaces and Lorentz spaces L,,. Furthermore, given any
Young’s function I7 and any f e M(%) we have that || f|lxy = ||/ |lun
(Corollary 4.2).
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DEFINITION 5.2. A function norm X\ defined on M([0, =), m) is
called universal if for each totally o-finite measure space (4, 2, #) the
functional o defined on M(4, ) by o(f) = Mf*) is a function norm.
In this case we say that o is induced by \.

Not every function norm on M([0, o), m) is universal. Consider
A defined on M([0, ), m) by MF) = |/ Lol + 1/ %umllr Let (S,
v) be a totally o-finite measure space with sets A, B, and C such that
v(4) = 1/4, v(B) = 1/2, and v(C) = 3/4. Let f =5y + 3x4 and g =
4yc.. Then po(f) + p(9) = 25/4 < 17/2 = o(f + g) which means p is
not a function norm. Therefore, A is not universal.

Next we state a theorem that was proven by Silverman [14] and
that has proven very useful for us.

LEmMA 5.3. (Silverman). If (4, &) has no atoms and if f,ge
M(p), tkeng Frg*dt = oo if and only ifSAl Frgldp = oo for some f'~ f.

The theory of rearrangement invariant function norms has re-
ceived some attention, most notably from Luxemburg [9]. However,
each time the setting has been somewhat more restrictive than ours.
Hence several cases of Lemma 5.4 and Theorem 5.5 are known. See
[9] and [13].

LEMMA 5.4. If (4, 2, 1) is monatomic, then for any f, g€ M(L)
we have g fro*dt = sup{S | fo'ldp: g ~ g} .
0 4

Proof. Because of Lemma 5.3 we can assume that ‘”f *g*dt < oo,

Further, without loss of generality we may assume tha% f, g€ M*(p).
Let ¢ = 32 a;),, be a simple function in M*(#) where a, > a, >
e > Ay > Apy =0 and A4, = A\(Ur 4). Let ge M*(#) be arbi-
trary. Then ¢g* e M*(]0, «)), so for each pair of integers {n, k) such
that 0 < k < 2% let

E,p={tel0, «): k/2* < g*(t) = (k + 1)/2")

and
By = [0, )\ (U Bu)
Set

Vo = 5 (62 r, s -
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Then {y,}:_, is as a sequence of simple functions such that 4} { ¢*. Notice
that for a fixed =, the sets {E,, ;}i’; are disjoint sets and each E, ,
is the disjoint union of a finite number of sets {E, .., ,},F_Fﬂ 4+ Hence,
since (4, #) has no atoms, by induction we can define the sets E,,
in 4 such that

(1) E, . nE,, is empty for k, # k..

(2) ME,) = m(E,y).

(3) (AN B,,) = m(Af 0 B, ).

(4) #(Enl,kl N Enz,kz) = m(Enl.kl N Enz,kz)’

Next we define the simple functions +,: 4 — [0, =) by

T = 3 (K215,

Because of the properties of the sets {£,,), one can show that v,
and +, are equimeasurable for all » and that {J,(x)};-, is an increasing

sequence for each x € 4. Also S P At = g P*qdt since (A, N E,, k) =
m(A# N E,,). Let §(x) = lim,._. J.(x). Then §* = lim, 4} = lim, v} =
g*, so § and ¢ are equimeasurable and § pgapr = S P*g*dt.
4 0

Hence the equation is true for arbitrary g and simple functions
®. The extension to arbitrary functions follows easily.

The next result was also stated by Luxemburg [9]. A proof
follows from Lemma 5.4.

THEOREM 5.5. Let (4, 1) be a nonatomic measure space and let
o be a function norm defined on M(y).

(1) If p is rearrangement invariant, them 0 is rearrangement
mvariant.

(ii) p s rearrangement invariant if and only if

o(f) = sup {S:f *grdt: p'(9) = 1} .

A vpartition P = {E;}7., in 4 is defined to a finite disjoint collection
of sets of positive measure. Define the average function of f € M(t)
with respect to P to be

fo=3(\ sanmE) s, -
i=1 Ej
A function norm o defined on M() is said to satisfy Property (J) if
for each partition P and any fe L, we have o(f;) < o(f). This is
similar to the levelling length property introduced by Ellis and Halperin
[3].

Let R be the set of all nonnegative, monotonic nonincreasing,
right-continuous functions defined on [0, ). Then the monotonic
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rearrangement of any measurable function belonging to M() is con-
tained in R. Also g* =g for any g€ R.

The next result is stated in terms of the levelling length property
by Luxemburg ([9, p. 132]).

THEOREM 5.6. Let (4, tt) be non-atomic and let p be a rearrange-
ment invariant function norm on M(L). Then p has property (J).

Proof. Let fe M*(#) and let P = {E;};, be a partition in 4.
Let b; = ( fay/t(E; )) Renumber the E;, if necessary, so that b, >

E;

. =b,. Set E,., =AU~ E; and b,., = 0; hence
n+1
fi= ng bixE;
where
Bf = Wi v) = | 5 4B, 33 1)

with the understanding that y, = 0 and y,,, = .
Define the function %: [0, ) — [0, ) by

h(t) = J; (fXE,-)*(t — Yi-)Ae;(@)
The collection P’ = {E}};., is a partition in [0, ), and

|, = 15
HE)

. j“‘E"’(fxE,.)*(t)dt
Z 0

TAT T mED = &

For each z such that y;_, < x < y; we know that

(1) . noar={ nawae={ riod

Yj—1
since h is nondecreasing on Ef. Let @ = 32 a0 > @ >+ >
Om > Amyr = 0, Apyy = [0, 0)\U™, 4,) be a simple function in R (the set
of monotonic rearrangements). Then by Hardy’s theorem (Luxem-
burg [9, p. 34]) we have

S hedt = S Frodt .
Ej Ej
Forl<j=n+1,set 9; = PYz;. Sinceh and @ are nonincreasing

on E}f we know that (A)z)*(t) = h(t + y;-) and P}(@) = P(t + yi-)-
Hence
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Sj(f Xe)*Prdt = S:(th;.)*cp;‘dt = SE{thdt .

Because (4, ) is nonatomic, foreachj =1, 2, --+, n + 1 we can define
a function $;: E; — [0, o) which is equimeasurable with ¢;. Since @;
is simple, we have seen in the proof of Lemma 5.4 that there exist
functions f;: E; — [0, «)(1 < j < n + 1) such that f; is equimeasurable

with /75, and | Fipide =\ (F1:) @)t Let

o ntl n+1l
P = §¢jxgj and f, = 3 fiXs, -
Then f, is equimeasurable with f and

[foarz3 "Gy oratz 5| rieat = | rieat.

Hence

S:f*@dt = sup {Sdlfﬂ?'ld#: P~ @} > Sdflcﬁd,u > S:f;gpdt .

Now let ge R be arbitrary, then there exists a sequence of simple
functions ®, such that ¢, 1 ¢ a.e. on [0, ). Then ®, can be chosen
to lie in R for each k. Since p is rearrangement invariant

o(fr) = sup {lim S:f PPt e, 19 and  p'(9) = 1}
< sup {lim g:f P dt: P, 19 and p'(9) = 1} = o(f) .

Therefore p has property (J).
We will give an example at the end of this section to show that
a universal function norm does not necessarily have property (J).
Let I" be any nontrivial subset of R. Define the functional ¥ =
Fr. on M(4, ) by F(f) = sup {S f*hdt: he F}. Then F' is a function
0

norm with the Fatou property.

THEOREM 5.7. (a) If N is a rearrangement function norm omn
M([0, <)), them N is universal.

(b) Let p be a function morm defined on M(4, tt) which 1is
induced by a universal fumction morm \. Then for each f e M(4, )
we have 0'(f) = sup {S F*hdt: he R and Mh) < 1} .

(¢) If ) is rearrangement invariant on M([0, «)), then \ 1is
universal; moreover, if o(f) = M f*), then o'(f) = N(f*).

Proof. To prove (a) let I" = {g*: M (9) < 1}. Then for fe M([0,
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=)) we have F(f) = Mf) which means \ is universal.

In the proof of (b) we may assume that ) is rearrangement
invariant and by Theorem 5.6 A\ has property (J).
It is not hard to see that

0'(f) < sup {S:f*hdt: heR and Mh) < 1} .

Now we will show the reverse inequality for simple functions. Assume
P = 3%, a4 is a simple function in M*(4, ¢) where a, > a,> -+ >
@, > 0 and the A4, are mutually disjoint. Then ¢* = 3\., a,Y; where
m(4}) = (A;). Let ge R and define §: 4 — [0, ) by

7=3 (ngdt/m(A:))xu :

Then §* = g, where P is the partition {A}}7, in [0, ). Soif AMg) =
1, by property (J), o(@) = M3*) = Mgr) = Mg) = 1. Also

Sﬁ)ﬁd# = S:¢*gdt
which means

sup {S:sv*gdt: ge R, \(W) =1} < sup {§A¢hdy: he M(4, 1), o(h) = 1}
= 0'(P) .

Therefore, (b) is true for every simple function in M(4, ¢) and the
extension to arbitrary functions follows from the Fatou property.

We conclude this section with the following example. Let .# =
{L}z, be the partition of [0, ) with I, = [¢ — 1,4). For any fe
M*([0, «)) define f_. to be the average function f_, = 3.2, (SI f dt)x,i.
Some of the properties of f_. are '

(i) f-=01if and only if f =0 a.e. on [0, ).

(ii) (afr) =alf).

(i) (f+9-=7-+9g.

(v) If f.1f, then (f.)-1f..

Define the functional )\, on M*([0, «)) by N(f) =||f-|l.. Then
N, is a function norm with the Fatou property.

N, 18 untversal. Notice that A, is universal if and only if (\).(f) =
N(f*) is a function norm. For any f e M([0, «)), f* € R which means

that | f*d¢ = | f*dtforalli =1,2, --.. Hence (\)u(f) = S Frdt =
1 Iy I; M

g F*dt = || fllz,+z.. Therefore, (\,). is a function norm which makes
0

A\, universal.
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N, 18 not rearrangement imvariant and in fact L, is not even
rearrangement invariant. Let f = 32, %X 1. Then
i=

No(f) = sup {SI,.fdt} = 1.

Let {4,}:, be the subsets of [0, «) defined by A, = [3Niz} 1/k, -1 1/k).
Define f, = 332, 4x4,. Then f and f, are equimeasurable but \(f,) =
. Hence L, is not rearrangement invariant.

N\, does mot have property (J). Let P = {[1/2, 2)} and let ¢ =
6Xusey + 4xpa.  Then @p = (14/3)X1s0s and M(Pp) = 14/3. But M(P)=
4. Thus M(®) < M(®p) which means A, does not have property (J).

\; s not universal. One can show that \i(g9) = 3.2, [l9%s;ll.. Let
S =30 and g = 2Yyps5m- Then (\)u(f) + ()u(9) =5 < T = ()ulf +
¢) which means A\, is not universal.

6. Universally rearrangement invariant function norms. If
(4, 2, 1) is a o-finite measure space, then 4 can be written as the
union of a sequence of disjoint sets 4,, e, e, --- belonging to X such
that 4, is atom free and each ¢, is an atom of finite measure. Let
{B.}z. be a collection of disjoint intervals on the positive real axis
such that B; = [a;, ;] and b, — a;, = te)(t = 1,2, --+). Set 4, = 4, U
(U, B) and let (4, 3, #) be the direct sum of the measure space
(4, 2 0 4,, ¢) and the spaces (B;, m)(i =1, 2---). Then (4, 2, ) is
a nonatomic o-finite measure space with p,(4,) = ¢(4) = . Fur-
thermore, M(4, 2, t*) can be identified with a subset of M(4,, 2, tt),
in particular the set of all functions which are constant on the inter-
vals B,, We will say that (4, X, ) is embedded in (4,, X, t.).

The next definition is due to Luxemburg [9, p. 98].

DerINITION 6.1. Let (4, 2, #) be embedded in (4,, X, #t). Define
the transformation T,: M(4,, 1) — M(4, 1) by

Tu(f) = foa + 3 <§B fatm(B) Y1, -

A function norm o on M(4, 2, t) is said to be universally rearrange-
invariant whenever o(T.f,) = o(f) for all fe M*(4, ) and all f,¢
M(4,, 1) satisfying f, ~ f.

Notice that if (4, £) is non-atomic, then p is universally rearrange-
ment invariant if and only if p is rearrangement invariant.

Lemma 6.2 relates the subjects of the previous section to the
concept of universally rearrangement invariant (compare [9, p. 121,
Theorem 12.2]).

LEMMA 6.2. (a) Let p be a function morm defined on M(4, tt).
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Then the following are equivalent:
(i) o is induced by a universal function norm.
(ii) o is universally rearrangement invariant.

(i) o(f) = sup{g‘”f*g*dt: ,o'(g)§1} for all fe M*(4, 1.
(b) If o is universally rearrangement invariant, then o' s
universally rearrangement invariant.

We are now able to show that the function norms induced by a
universal function norm behave very much like the Orlicz norms with
respect to L, L, and L, + L_,. We will need to use a result of
Silverman [14, p. 230].

THEOREM 6.3. (Silverman). Let (4, £t) be nonatomic and let A be
a Kothe space in M(4, ). If A is rearrangement invariant then
LNL.,cAcL,+ L..

THEOREM 6.4. Let 0 be a universally rearrangement invariant
Sunction norm defined on M(4, tt). Then

a LnL,cL,cL,+ L,.

(b) there is an equivalent universally rearrangement invariant
Sfunction norm p, such that L, is an intermediate space of L, and L.

Proof. To prove (a) notice that since p is universally rearrange-
ment invariant, there exists a rearrangement invariant function norm
A defined on M([0, «)) such that o(f) = M(f*). N\ is rearrangement
invariant so by Theorem 6.3 we have LN L.cL, L,cL, + L..

1

Hence ||/ |l.z. = S f*dt < o for all fe(L,UL,). Soby Corollary

4.4 we know L, N Iolm cL,cL, + L..

To prove (b) let I = {g: p’(9) < 1} be the unit ball for L, and
let B, ={g:|lglln =1} and B, = {g:||g||]+ <1} be the unit balls for
L,n L, and L, + L, respectively. o’ is universally rearrangement
invariant which means L, N L,c L, c L, + L,. Hence there is a

constant ¢ such that (1/a)0’ <||: ||, i.e., Bacal'. Nowset I, =al N
B, and define p, by o,(f) = sup {S:f*g*dt: ge 1"1}. Lemma 6.2 says
that o, is universally rearrangement invariant. Because B, cI', C B,
we have |-l = 0. =]+ 1ln-

Now we will show that o, and p are equivalent. Notice that
apo(f) = sup {S f*g*dt: g e al'}. Hence p, < ap because I, Cal’. Since
L, cL, + L, there is a constant b, such that 1/b,||- ||+ < o’ (we may
choose b,, such that b, > 1/a). So I" < b,B, and thus al’Cab,B,. Let
b = ab,, then bI', = b(al’N B,) = bal’ N bB.. Notice that al’C bl
which means that (a/b)l"c I, or (a/b)p < p,. Hence p and p, are
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equivalent.

7. Universal and universally rearrangement invariant KOthe
spaces. The concepts of the previous sections of this paper can be
generalized to the general Kothe spaces.

DEFINITION 7.1. A Kothe space A(I") is called universal if
4= {feM(A, 1): S”f*g*dt < o for all ger} .

Hence the functions in a universal Kothe space are characterized
by the action of their monotonic rearrangements as was the case of
a normed Kothe space induced by a universal function norm.

The following concept is due to Luxemburg [9].

DEFINITION 7.2. A Kothe space 4 = A(I") defined on M(4, ) is
said to be wuniversally rearrangement invariant whenever f € 4
implies T,.f,€ A for all f,e M(4,, t) satisfying f, ~ f.

Observe that if (4, ¢) is nonatomic then 4 is universally rear-
rangement invariant if and only if 4 is rearrangement invariant.

LeMMA 7.3. Let A(I") be a Kothe space.

(a) 4 ts universal if and only if A is universally rearrangement
mvariant.

(b) If 4 is universal, then A’ is also universal.

Proof. Assume A(I") is universal. Let fe 4, f,€(4), and f, ~
f. Then for any g€ I” we have SdTﬂflgd/x = Sdflgdﬂ < S fro*dt < oo,
0

Therefore, A is universally rearrangement invariant.
Next assume that 4 is universally rearrangement invariant. Let

I = {f: S:f*g*dt < oo for allm g€ F}. Easily I cA. Suppose fe4
but f ¢ II. This means that\| f*g¥dt = o for some g,€ I". By Lemma
5.3 we know that there exis%s an f,e€ M(4,)) such thatSd F19,d, = oo
and f, ~ f. But LT,, f19.01 = Sdl 19,48, = oo which contrafliicts the fact

that 4 is universally rearrangement invariant. Therefore, Il = 4 and
A is universal.
The next result is an extension of Theorem 6.3.

THEOREM 7.4. If A(I') is a wuniversal Kothe space in M(4, 1),
then Lin L. cAc L, + L.

Proof. In [0, ) let I, = [0, ») and let 2(]0, «)) be the locally
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integrable functions in M([0, «)) with respect to {[,};,. Let I'* =
{g*:9e '} and I', = {he 2([0, «)): h*e I'*}. Form the Kothe space
A, = AT in M([0, ). If fed, and ge I, then S“ fg'dt < o for all
g’ ~ ¢9,. Hence S:of *9*dt < oo and therefore '

4, = { fe 2o, w)): S:f*h*dt < o for all hen}

which means 4, is rearrangement invariant. So L.([0, «)) N L.([0,

o)) C 4, < L([0, «)) + L_([0, )). This means that (4* U 4"*) < L([0,

o)) + L_([0, «)). Hence by Corollary 4.4 LN L.cAcL, + L..
Returning to normed Kothe spaces we are now able to prove

THEOREM 7.5. If L, is a universal Kothe space, then there is a
norm O, such that o and p, are equivalent and p, s universally
rearrangement invariant.

Proof. Define p, by o0.(f) = sup {S:f*g*dt: 09 = 1}. Easily o,

is universally rearrangement invariant. In order to show that p, and

© are equivalent, we will show that L, = L,. It is easy to show

that L, c L,. On the other hand, suppose f € L, and f ¢ L,. There

is a sequence of functions {g,} — L, such that g, =0, 0'(9.) =1, and

S fr*o*dt > n®. Let h, = 3}k g, /n*and b = X2, g./n*. Then p'(h) <

0

liminf >t_, 1/n%0'(9,) < #*/6. Since all the g, are nonnegative we know

that &, = g, for each k, which means rf*h*dt = “f*g,fdt> k*forall k=
© 0 0

1,2, ---. Therefore S f*h*dt = . But as before this contradicts
0

the fact that L, is universal. Therefore, L, = L, and we have com-
pleted the proof.

Theorem 7.5 was also given by Luxemburg [9] for his restricted
case.

Combining Theorem 7.4, Theorem 7.5, and Theorem 6.4(b) we have

THEOREM 7.6. If A is a universal Kothe space, then

LLOLwCACLl‘f"Lw.

Furthermore, if A is normed, i.e., A = L,, then there exists an equi-
valent universally rearrangement invariant norm p, such that || - ||, <

o = Il

We conclude with an example that shows that L, L. L, L, +
L., does not necessarily imply that L, is universal. Let (4, ) be
(— o0, ») with Lebesgue measure and let
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o(f) = I fhicwnllo + 1 A0 ]l: -
Clearly LN L.c L,c L, + L. but L, is not universal.
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