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Let (J, Σ, μ) be a totally <7-finite measure space and let
M{Δ) be the set of all complex-valued //-measurable functions
on Δ. This paper is concerned with determining whether
certain classes of normed Kothe spaces (Banach function spaces)
are intermediate spaces of L1=L1(i«) and Loo—Looiμ). It is proven
that Lx Π Loo and Lλ + LM are associate Orlicz spaces and that
for every nontrivial Young's function φ there is an equivalent
Young's function φx such that the Orlicz space LMΦl is an inter-
mediate space of Lx and L^. The notion of a universal Kδthe
space is presented and it is proven that if A is a universal
Kδthe space then L 1 ΠLooC^cLi + LM. Furthermore, if A
is normed, in particular A — Lp, then there is an equivalent
universally rearrangement invariant norm ρλ for which LPl

is an intermediate space of Lx and L^.

1Φ Introduction* Let Xι and X2 be two Banach spaces contained
in a linear Hausdorff space Y such that the injection of Xι(i — 1,
2) into Y is continuous. Denote the norm of X{ by || \\t. The space
X1 Π X2 is the set of all elements which are in both X1 and X2, and
the space X, + X2 is the set of all feY of the form / = f, + f2

with fι e X, and f2 e X2. The spaces Xι Π X2 and Xx + X2 are Banach
spaces under the norms | | / |U i n χ 2 =max{ | |/ | | 1 , | | / | | J and | |/| |χ ι + Z a =
inf{||/1 | |1 + | [ / 2 | | 2 : / - / 1 + / 2,/ ί6X i} (see [1, p. 165, Prop. 3.2.1]).
A Banach space XaY satisfying Xι n X* c X c X L + X2 and ||/| |χ1 +χ2

^ ll/llx ^ II f\\Zl(\x2 i s called an intermediate space of XL and X2.
Much work has been done on intermediate spaces and the related

topic of interpolation theory. (See [1], [2], [12].) In particular, it has
been shown that the Lebesgue spaces Lp and the Lorentz spaces Lpq

([6] and [7]) are intermediate spaces of Lx and L^. In this paper
we investigate what other classes of normed Kothe spaces are inter-
mediate spaces of Lx and Lw. In §7 we introduce the notion of a
universal Kothe space, which we prove to be equivalent to Luxem-
burg's notion of a universally rearrangement invariant Kδthe space
[9J. We have been able to show that if A is a universal Kδthe space,
then hι n £« c A c Lx + !/„,. Furthermore, if A is normed, in particular
A = Lp, then there is an equivalent norm pί which is universally
rearrangement invariant and LPl is an intermediate space of Lx and L^.

Section 2 contains preliminaries and §3 deals with Orlicz spaces.
We show that Lx n L^ and Lγ + L^ are Orlicz spaces and prove that
they are associate Orlicz spaces. It is shown that for any nontrivial
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Young's function Π, there is an equivalent Young's function Πι such
that LMΠl is an intermediate space of Lx and L^. This means that
Lλ D L^ and Lγ + L^ are the smallest and the largest Orlicz spaces,
respectively. Section 4 deals with the monotonic rearrangement of
a measurable function. Sections 5 and 6 deal with universal and
universally rearrangement invariant function norms.

2* Preliminaries* Let (Δ, Σ, μ) be a tf-finite measure space where
Δ is a point set, Σ is a σ-algebra of measurable sets, and μ is a
totally σ-finite measure. Let M+ be the set of all nonnegative μ-
measurable functions on Δ. We allow that a function can assume
the value + °o at some or all points xe Δ.

A mapping p on M+ to the extended reals is called a function
norm if p satisfies the following conditions for all / and g in M+:

( i ) p(f) ^ 0 and ρ(f) = 0 if and only if / = 0 a.e. (almost
everywhere).

(ii) p(af) = ap(f) for α ^ 0.
( i i i ) p(f + g)^ p(f) + p{g).
(iv) /(#) ^ #(#) a.e. implies ρ(f) ^ |θ(0).

In addition, we assume that p satisfies:
(v) (Fatou property) f0, flf e M+ and fn f /0 (pointwise a.e.)

implies p(fn) ] p(f0).
(vi) (Saturated) there are no sets Ee Σ such that ρ(χB) = oo for

every measurable B czE with μ(Z?) > 0 (χs is the characteristic function
for the set B).

The domain of definition of p is extended to Jlί= M(Δ, μ), the
set of all complex-valued, ^-measurable functions on Δ, by defining
p(f) = p(\f\) for feM. We denote by Lp = LP(Δ, Σ, μ) the set of
all / G M satisfying p(f) < oo. If we assume //-almost equal functions
are identified in the usual way, the spaces Lp are complete normed
linear spaces. Such spaces are commonly called normed Kothe spaces
or Banach function spaces. (For theory of normed Kothe spaces
see [10].) Examples of normed Kothe spaces are Orlicz spaces, the
spaces of Ellis and Halperin [3], and the Lorentz spaces [6, 7].

The associate norm pf of any function norm p is defined by

ρ\f) = sup 11 \fg\dμ: ρ(g) ^

The associate space, denoted (Lp)' or Lp,, is defined to be Lp, — {/ e
M: ρ\f) < oo}. The associate norm ρf has the Fatou property (even
if p did not) and hence is a normed Kothe space. (For the details
see [10].)

Let (Δ, Σ, μ) be as outlined earlier, and let Δn be a fixed incre-
asing sequence of sets of finite measure whose union is Δ. Let Ω =
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\f: \\fχ*n\dμ < oo for all n\ be the space of locally integrable func-

tion on Δ. For any subset ΓaΩ we define the Kothe space Λ(Γ)

associated with Γ to be Λ = Λ(Γ) = j / e Ω: f \fg\dμ < oo for all #e

-Γk The associate Kothe space Af is defined to be Λ' — Λ(/f(Γ)) =

\geΩ:\ \gf\dμ < oo for all / e Λ(Γ)\. Notice that our normed Kothe

space Lp is also a Kothe space (since p is assumed to saturated).
Endow the space M(Δ, μ) with the topology of convergence in

measure on sets of finite measure. Then M becomes a linear Hausdorff
space and the injection of Lp into M is continuous. Thus we have
established the framework necessary to consider Lp as an intermediate
space of L1 and L^.

Let μ{Δ) < oo. Then L^ = L, n L^ c Lp c A + L^ = L, if and
only if ^(χ^) < oo and p'{χΔ) < oo. Furthermore, there is an equiv-
alent norm which makes this embedding norm-reducing (Theorem
6.4). For this reason, we will proceed under the assumption that
μ(Δ) = oo.

Finally, we given a representation of the Lι + L^ norm which
we will denote by || ||+.

T H E O R E M 2 . 1 . Let feL. + L^ and let s = s u p {ί: μ{\f\^t}^ 1}.

Then

11/11+ = β + ( (\f\-8)dμ.
J{[f\>s}

A proof can be derived from Butzer and Berens [1, pp. 185-186].

3* Orlicz spaces as intermediate spaces* For basic Orlicz space
theory, the reader is referred to [5], [8], or [15].

Let Φ: [0, oo)—>[0, oo) and Ψ: [0, °°)—•[(), oo) be complementary
Young's functions. Hence Φ and Ψ are increasing, absolutely con-
tinuous on the sets where they are finite, and convex. Let

= inf [k > 0: \φ(\f\/k)dμ ^

The Orlicz space LMΦ is the set of all complex-valued, /^-measurable
functions satisfying | | / | U Φ < °°. Hence the Orlicz space LMΦ is a
normed Kothe space and, as such, it satisfies the properties stated in
§2. In particular we can form the associate norm, denoted || \\Ψi

<a n d t h e a s s o c i a t e s p a c e LΨ = {g: \\g\\Ψ
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We will denote t h e Lt n L^ norm by || |ln

THEOREM 3.1. (a) If Π is a (nontrίvial) Young's function, then
Lx Π L^ c LMΠ. (b) Lγ n £« ίβ cm OrZΐcz space. In- particular there
is a Young's function Ψ such that | | / | | n = \\f\\Mψfor aM f$M.

Proof Consider the Orlicz space given by Ψ(u) = u for 0 ^ u ^ 1
and ?F(̂ ) = °o for 1 < u.

From Theorem 3.1 we see that Lx n £«> is the smallest Orlicz space.
Let Ψ be as defined in the proof of Theorem 3.1. Let Φ be the

complementary Young's function of Ψ. One can check that Φ(u) = 0
for 0 g u ^ 1 and Φ(w) = u — 1 for 1 <: u.

LEMMA 3.2. LMΦ, (Lt n ί/oo)', α r̂f Lί + L^ αM consist of the same
functions.

It is not true that || ||+ = || H^. For example let (Δ, Σ, μ) be
[0, oo) with Lebesgue measure and let / = 10χ((U/2j + 5χ[lf8]. Then
11/IU* ^ 5 but H/II+ = 15/2. However, the following is true.

THEOREM 3.3. (a) For any f e Lλ + £«,, we have \\f\\Φ = | | / | | + .
(b) Lx + L^ is an Orlicz space; in particular (Lί + L^, || ||+) = {Lφy

Proof Let / e L, + L^ and g e LMΨ = Lx n I/.,. Then by Theorem

2.1 we get J | / | ( g / | k | | n ) ^ ^ II/II+. Hence

II/IU =

To show the reverse inequality let / e Lx with / ^ 0 and s =
sup {ί: μ{f ^ ί} ^ 1}. Furthermore assume that / is a simple function
(i.e., / is a linear combination of characteristic functions of sets of
finite measure). Because / is simple, one can show that μ{f > s} <J 1,
μ{f ^ s) ^ 1, and μ{f = s} ^ 0. Now define α: J -> [0, oo) by α(x) =
1 if x e {/ > s}, α(ί») = (1 - μ{f>s})/μ{f = s} if a? e {/ - s} and α(α?) -
0 otherwise. Then | | α | | n = 1 and

\\fa\dμ=8 + \ (f-8)dμ = \\f\\+.

Therefore, | | / | |+ = ^\fa\dμ ^ | | / | | # by Holders inequality [8, p. 7]
and we have shown the equality for any simple function. Since both
|| 11+ a n ( i II II* have the Fatou property, it is an easy matter to extend
the result to an arbitrary / e Lx + L^.
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Combining Theorem 3.1 and Theorem 3.3, we can say LMΠ c (Lx n
L J ' = Lγ + L^ for any Young's function 77. Hence Lι + L^ is the
largest Orlicz space and we have

An element B e Σ is called an atom if A e Σ and AczB implies
μ(A) — 0 or (̂̂ 4) = μ(B). If we restrict ourselves to the case that
(Δ, Σ, μ) is nonatomic (i.e., has no atoms), then G. G. Gould [4] and
Luxemburg and Zaanen [11] have obtained some results similar to
ours. If μ has no atoms, then define the function norm || \\G as

= l ί .

It was shown by Luxemburg and Zaanen and by Gould that for / e
LL + L^, ||/\\G = II/H+. This is also mentioned by Butzer and Berens
[1, p. 183]. Luxemburg and Zaanen have shown that the associate
space of (Lx + L^, || ||ff) is the space (Lx n !>«>, II Iln) One might hope
that for each / e LL + L^ there exists a set Ef such that μ(Ef) = 1

and II/H+ = \\f\\G = ί \f\dμ. This is true for simple function, but
jEf

it is not true for general functions as is shown by the following
example.

Let (Δ, Σ, μ) be [0, oo) with Lebesgue measure and let f(t) =
(1 - l/ί)χCi..,. Using Theorem 2.1 | | / | | σ - | | / | |+ = 1. For any Ed
[0, oo) such that μ(E) = 1 it follows that ( \f\dt < 1 = | | / | | + .

JE

Let us return to the question of whether all Orlicz spaces are
intermediate spaces of Lt and L^. It is easy to see that there are
many spaces whose embeddings are not norm-reducing (e.g. LM2Ψ,
where LMΨ = 1^0 ^O. But we prove the following.

THEOREM 3.4. Every Orlicz space LMΠ has an equivalent Orlicz
norm || H*^ for which it becomes an intermediate space of Lx and

Proof. Let Ψ and Φ denote the Young's functions for Lx Π IΌ*
and Lx + L^, respectively. Let Π be a nontrivial Young's function.
It may happen that there exists uQ(u < uQ < oo) such that Π(u) = 0
for u ^ u0 and Π(u) — oo for u > u0. In this case LMΠ = L^ as sets,
so || \\MΠ is equivalent with the L^ norm. In all other cases, there
is a u0 > 0 such that 0 < Π(u0) < oo. Now define Π2 and Π1 by
Π2(u) = Π(uou)/Π(uo) for u ^ 0 and Π^u) = Π2(u) for 0 ^ u £ 1 and
Πγ{v) = 2Π2(u) — 1 for 1 ^ u. Notice that Π2 is continuous, convex,
Π2(u) ^ 0 for all u, 772(0) = 0, and 772(1) = 1. This means that Πx is
continuous, convex, Π^u) ^ 0 for all u, 17^0) = 0 all and 11,(1) = 1.
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Thus Uγ is a Young's function [8, p. 38, Remark (1)J.
Because 772 is convex and Π2(ϊ) = 1, we have Π2(u) ^ u for u Ξ>

1; so Π^u) ^ 2u - 1 for u ^ 1. Therefore, 2Φ(w) = 2u - 2 ^ 77^) ^
OD = ?F(t6) for u ^ 1. Now for 0 ĝ  w <; 1, we have

= 0 ^ 77^) = Π(uuQ)/Π(u0)

^ uΠ(u0) = ^ ψ(u)

Hence for all w ^ 0, 2Φ(^) ̂  77^^) ^ f(^). This means that

H/ll+ - H/iu ̂  2 H/iu ^ II/IU, ̂  II/IU - ll/lln.
Next we will show that L^ z and LMΠl consist of the same func-

tions which means that \\*\\Mπ and || (1^^ are equivalent. First notice
that Π2(u) ^ Π^u) ^ 2Π2(u) for all u ^ 0. From which it follows that
\π(\f\Ik)dμ < oo if and only iΛπ^f^dμ < oo. Therefore, / e LMΠ

if and only if / e LMΠl.
What about the space LΠ1 Let β be the complementary Young's

function for 77. Let Ωγ be given by Theorem 3.4. Then the associate
norm of || ||3fj3l denoted by || |U2 will make Lπ an intermediate space
of Li and L^.

4* Monotonic rearrangements Let / 6 M(Δ, μ), then the mono-
tonic rearrangement of / is the function /*: [0, ©o)—> [0, <»] defined by

/ * ( ί ) = i n f {y ^ 0 : μ{\f(x)\ >y}^t}.

Let / and g belong to M(A, μ). Then / and g are called equimea-
surable whenever μ{\f(x)\ > r) = μ{|#(α;)| > }̂ for all r S 0. If / and
# are equimeasurable we write f ~ g. Notice that / ~ g if and only
if /* = gr*. Since μ{| /(α?) | > r} = m{f*(t) > r) for all r, we will say that
/ and /* are equimeasurable even though they are defined on different
measure spaces. Hence /* is the unique, nonnegative, monotonic
nonincreasing, right-continuous function on [0, °o) which is equimea-
surable with / . For properties of the montonic rearrangement refer
to [9] and [14].

The following lemma, whose proof is straightforward, has several
important consequences.

LEMMA 4.1. Let 77 be any Young's function and let f be μ-

measurable. Then [ Π(\f\)dμ = [~Π(f*)dt .
JΔ Jo

COROLLARY 4.2. Let Π be a Young's function and let f and g
belong to M(μ).
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(i) II/IUHI/ΊU
( ϋ ) If f~9, then \\f\\MΠ = \\g\\MΠ.
(iii) If f e Lλ n L^ and g ~ f, then ge L1d !/«,.

11/11+ — ll/*IU1([o,o0))ni0β([o,oo))

Now we are able to quickly prove a result which is stated by
Butzer and Berens [1, p. 184, Prop. 3.3.7].

THEOREM 4.3. Let feM(μ), then \\f\\+ = Ϋf*(t)dt .
Jo

Proof. From Corollary 4.2, we know that | | / | | + = | | / * | | + . So we

will show that | | /* | |+ = t f*(t)dt. Since /* is a monotonic decreasing

function, we know that {/* > sf.} c [0,1) c {/* ^ sf*}. So by Theorem
2.1

11/11+ = */* + \'f*dt - [sf*dt = [f*dt.
Jo Jo Jo

This representation of || ||+ allows us to make the following
statement about general Kothe spaces.

COROLLARY 4.4. Let A be a Kothe space and let Λ* be the set of
all monotonic rearrangements of functions in A and let A' be the
Kothe dual of A. Then the following are equivalent:

( i ) Lx(μ) Π Lm{μ) a Ac Lλ(μ) + LJfr).
(ii) {A* U A'*) c L^m) + L^m).
(iii) [f*(t)dt < oo for all fe(AΌ A').

Jo

(iv) \rf*(t)dt < oo for all fe(A[j Af) for any r > 0.
Jo

5* Rearrangement invariant Kothe spaces*

DEFINITION 5.1. A Kothe space A is called rearrangement in-
variant if feA and g equimeasurable with / implies geA.

(ii) A function norm p is called rearrangement invariant if / e
Lp and g equimeasurable with / implies p(f) = p(g).

Notice that if p is a rearrangement invariant function norm, then
LP is a rearrangement invariant Kothe space. However, a normed
Kδthe space may be rearrangement invariant but not norm rearrange-
ment invariant. Most of the well-known examples of normed Kothe
spaces are rearrangement invariant. Included are the Lp spaces (1 ̂ p <£
oo), Orlicz spaces and Lorentz spaces Lpq. Furthermore, given any
Young's function Π and any fe M(μ) we have that | | / | | M = ||/*|U/7
(Corollary 4.2).
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DEFINITION 5.2. A function norm λ defined on M([0, co), m) is
called universal if for each totally σ-finite measure space {Δ, Σ, μ) the
functional p defined on M{Δf μ) by p(f) = λ(/*) is a function norm.
In this case we say that p is induced by λ.

Not every function norm on M([0, co), m) is universal. Consider
λ defined on M([0, <*>), m) by λ(/) = \\fxiM\l + WfXii.-Λ\~ Let (S,
v) be a totally σ-finite measure space with sets A, B, and C such that
v(A) - 1/4, v(β) - 1/2, and v(C) = 3/4. Let / = 5χB + 3χ4 and sr =
4χσ. Then ^(/) + ^ ) = 25/4 < 17/2 = p(f + g) which means p is
not a function norm. Therefore, λ is not universal.

Next we state a theorem that was proven by Silver man [14] and
that has proven very useful for us.

LEMMA 5.3. (Silverman). If (Δ, μ) has no atoms and if f,ge
f*g*dt = co if and only if\\f'g\dμ = <χ> for some f'~ f.

o }Δ

The theory of rearrangement invariant function norms has re-
ceived some attention, most notably from Luxemburg [9]. However,
each time the setting has been somewhat more restrictive than ours.
Hence several cases of Lemma 5.4 and Theorem 5.5 are known. See
[9] and [13].

LEMMA 5.4. If (Δ, Σ, μ) is nonatomic, then for any f,ge M(μ)
f*g*dt = sup U \fg'\dμ: g' ~ g\ .

0 V J Δ )

S oo

f*g*dt < oo.
0

Further, without loss of generality we may assume that /, ge M+(μ).
Let φ = ΣΓ=V a^. be a simple function in M+(μ) where a^> a^>
• > am > αm + 1 = 0 and Am+1 - Δ\(\jT=i Λ ) . Let geM+(μ) be arbi-
trary. Then g* e M+([0, co)), so for each pair of integers (n, k} such
that 0 ^ k ^ 22n let

En,k = {te [0, co): k/2* < g*(t) ^

and

Set
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Then {ψn}n=i is as a sequence of simple functions such that φi\g*. Notice
that for a fixed nQ the sets {EnQ, k}t2l are disjoint sets and each EH)k

is the disjoint union of a finite number of sets {Eno+1>j}j£Fn r Hence,
since {Δ, μ) has no atoms, by induction we can define the sets EUtk

in Δ such that
(1) EnQ>kl n EnQ>k2 is e m p t y for k, Φ k2.
( 2 ) μ(En,k) = m(En,k).

( 3) μ{Aι n £*.*) = m(At Π En,k).
( 4 ) M ^ Π #.2,*2) - m(E%vkι Π ^ . 2 , f c 2 ) .
Next we define the simple functions ψn: Δ —> [0, °o) by

t = Σ Wte, t .
fc = 0

Because of the properties of the sets {En>k}, one can show that ψn

and ψn are equimeasurable for all n and that {^(#)};Ui is an increasing

sequence for each x e Δ. Also I φψndμ = \ φ*ψndt since μ(Ai Π En>k) =

m(A? n J& ,*). Let g(x) = \imn^ψn(x). Then g* = limΛ t * = KmΛf J =

^*, so g and r̂ are equimeasurable and \ φgdμ = I φ*g*dt.
JJ JO

Hence the equation is true for arbitrary g and simple functions
9>. The extension to arbitrary functions follows easily.

The next result was also stated by Luxemburg [9]. A proof
follows from Lemma 5.4.

THEOREM 5.5. Let (Δ, μ) be a nonatomic measure space and let
p be a function norm defined on M(μ).

( i ) If p is rearrangement invariant, then // is rearrangement
invariant.

(ii) p is rearrangement invariant if and only if

p{f) = sup {\~f*ΰ*dt: p\g) £

A partition P = {2Sy}*=i in Δ is defined to a finite disjoint collection
of sets of positive measure. Define the average function of / € M(μ)
with respect to P to be

= t(\ fdμ/μ(Ed))χEj.
3 = 1 XJEj I °

A function norm p defined on M(μ) is said to satisfy Property (J) if
for each partition P and any / e Lp, we have ρ(fP) ^ p(f). This is
similar to the levelling length property introduced by Ellis and Halperin
[3]

Let R be the set of all nonnegative, monotonic nonincreasing,
right-continuous functions defined on [0, °o). Then the monotonic
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rearrangement of any measurable function belonging to M(μ) is con-
tained in R. Also g* = g for any g e R.

The next result is stated in terms of the levelling length property
by Luxemburg ([9, p. 132]).

THEOREM 5.6. Let (J, μ) be non-atomic and let p be a rearrange-
ment invariant function norm on M(μ). Then p has property (J).

Proof. Let / e M+(μ) and let P = {Ejft^ be a partition in A.

Let bj — ί \ fdμjμ(E3)\ Renumber the Eif if necessary, so that bt ;>

b2 ^ ^ bl Set En+ί = J\U?=i Ej and &w+1 = 0; hence

where

, Σ μ(Eιή

with the understanding that 2/0 = 0 and yn+ι = 00.
Define the function fe: [0, 00)—»[0, 00) by

h(t) = ±(fχEjnt - y^)χφ) .

The collection P' = {E*}*^ is a partition in [0, 00), and

For each α such that y^x ^ x ^ yj we know that

( 1 ) Γ A(ί)dt ^ Γ hP,(t)dt = Γ /ί(ί)dίί
J^ _i Jvj-i Jyj-1

since λ is nondecreasing on Ef. Let ?> = ΣS^ίZ^iί^i > 2̂ > # >
am > am+1 = 0, Am+1 = [0, oo)\UΓ=i Λ) be a simple function in R (the set
of monotonic rearrangements). Then by Hardy's theorem (Luxem-
burg [9, p. 34]) we have

f hφdt = \ Jfφdt

For 1 <£ j ^ n + 1, set ^ = ΦXiή Since Λ and ?> are nonincreasing
on Ef we know that {hχE$*{t) = Λ(ί + y ^ ) and ?>;(ί) = φ(t + ^-0 .
Hence
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( (fXEj)*(P*dt = \ (hχ^φfdt = [ hψdt .
Jo J Jo JEj

Because {Δ, μ) is nonatomic, for each j = 1, 2, , n + 1 we can define
a function ψά\ JEy—> [0, ©o) which is equimeasurable with φy. Since <̂ y

is simple, we have seen in the proof of Lemma 5.4 that there exist
functions fji Eά —* [0, °°)(1 ^ j ^ n + 1) such that /5 is equimeasurable

with fχE and ( / ^ ^ = Γ(/χ-)*(9>y)*dί. Let
J J ^ Jo 5

Ψ = ΈiΨiXBj and / x = Σ Λ
3 = 1 J 3 = 1

Then /j is equimeasurable with / and

^ Σ ["(fXB.yψfdt ^ Σ ( JtΉt = \~n<Pdt
j=l Jo J i=l JEj JO

Hence

V*^ί = sup

Now let ^ e R be arbitrary, then there exists a sequence of simple
functions φk such that φk \ g a.e. on [0, ©o). Then ^fc can be chosen
to lie in R for each /c. Since p is rearrangement invariant

= sup {lim jVί^ndί: 9> ί ίjr and '̂(flr) ^ l}

^ sup {lim J"/*9>»dί: ^ ΐ flr and ^ ' ( ^ ^ l} = />(/) -

Therefore p has property (J).
We will give an example at the end of this section to show that

a universal function norm does not necessarily have property (J).
Let Γ be any nontrivial subset of R. Define the functional F =

FΓ on M(A, μ) by F(f) = sup \\°°f*hdt: he r\. Then F is a function
ί Jo J

norm with the Fatou property.

THEOREM 5.7. (a) If λ is a rearrangement function norm on
M([0, co)), then λ is universal.

(b) Let p be a function norm defined on M(A, μ) which is
induced by a universal function norm λ. Then for each f € M(A, μ)

we have ρ\f) = sup iί f*hdt:heR and x(h) ^ l l .
(Jo j

(c) If X is rearrangement invariant on ikf([O, °o)), then λ' is
universal; moreover, if p(f) = λ(/*), then p'(f) = λ'(/*).

Proof To prove (a) let Γ = {̂ *: χ'(g) ^ 1}. Then for /eΛf([0,
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oo)) we have FΓ(f) = λ(/) which means λ is universal.

In the proof of (b) we may assume that λ is rearrangement
invariant and by Theorem 5.6 λ has property (J).

It is not hard to see that

p'if) ^ sup {Γ/*Λdί: h e R and X(h) ̂  lj .

Now we will show the reverse inequality for simple functions. Assume
φ = Σ?=i aiXAi is a simple function in M+(Δ, μ) where at > a2 > >
αn > 0 and the A< are mutually disjoint. Then φ* = Σ?*=i α ^ 4 where
m(A*) = μ(Ai). Let ^6 i2 and define #: J —> [0, oo) by

•M

α = V
if / 1

Then ^* = ^p where P is the partition {Af}U in [0, oo). So if X(g) ^
1, by property (J), p(g) = \(ff*) = \(gP) ^ Mg) ^ 1. Also

f φgdμ = [ φ*gdt
)Δ JO

which means

sup 11 φ*gdt: geR, X(h) ̂  l i ^ sup ί ί φhdμ: h e M(Δ, μ\ p(h) ^
Uo i \}A

Therefore, (b) is true for every simple function in M{Δ, μ) and the
extension to arbitrary functions follows from the Fatou property.

We conclude this section with the following example. Let ^ =
{/JΓ=i be the partition of [0, oo) with It = [i — 1, i). For any fe
M+([0, oo)) define f ^ to be the average function / ^ = Σΐ=ι ( j 7 / ^ ) χ v

Some of the properties of f ^ are
( i ) f^ = 0 if and only if / = 0 a.e. on [0, oo).
(ii) (afj=a(fj.
(iii) (/ + g)j? = fj, + g^r.

(iv) If / . ί /, then {fn)^ ί f^.
Define the functional λ0 on ikf+([O, oo)) by λo(/) = | |/^IU. Then

λ0 is a function norm with the Fatou property.
λ0 is universal. Notice that λ0 is universal if and only if (λo)m(/) =

λo(/*) is a function norm. For any / e M([0, oo)), /* e R which means

that ( f*dt ^ ( f*dt for allί = 1, 2, . Hence (λo)w(/) = ( f*dt =

f*dt = \\f\\Ll+L^ Therefore, (X0)m is a function norm which makes
0 -i °°

λ0 universal.
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λ0 is not rearrangement invariant and in fact Lχ0 is not even

rearrangement invariant. Let / = Σ£=i iXu,i+M) Then

χo(/) = sup jί fdtY = 1 .

Let {AJr=i be the subsets of [0, oo) defined by A, = [ Σ £ i 1/*, Σ U :

Define /Ί = ΣΓ=i ^Z^ Then / and f1 are equimeasurable but
oo. Hence LXo is not rearrangement invariant.

λ0 c?oβs not have property (/). Let P = {[1/2, 2)} and let <P =
6Z[I/I.D + 4%[i,2]. Then <?P - (14/3)χ[1/2,2) and X0(φP) = 14/3. But λo(9>) =
4. Thus λo(<p) < λo(φP) which means λ0 does not have property (J).

λ'o is not universal. One can show that X'0(g) = Σ£=i IkZiJU Let
/ - 3χ[Oil) and g = 2χ[1/2,3/2). Then (λj)m(/) + (λί)w(flr) - 5 < 7 = (λίU/ +
g) which means λj is not universal.

6* Universally rearrangement invariant function norms* If
(Δ, Σ, μ) is a σ-finite measure space, then Δ can be written as the
union of a sequence of disjoint sets Δo, eu e2, belonging to Σ such
that Δo is atom free and each et is an atom of finite measure. Let
{Bi}?=ι be a collection of disjoint intervals on the positive real axis
such that Bi — [aif bx\ and bt — α* = μ{eτ){i = 1, 2, •). Set Λ = ΔQ U
(UΓ=L -BO and let (Δίf Σlr μj be the direct sum of the measure space
(ΔQ, Σ n ΔQ, μ) and the spaces {Bu m){% = 1, 2 •)• Then (J l f Σu μ,) is
a nonatomic σ-finite measure space with μx{Δ^ — μ(Δ) = c>o. Fur-
thermore, Λf(Λ, I', /̂ ) can be identified with a subset of M(Δlf Σl9 μΐ),
in particular the set of all functions which are constant on the inter-
vals Bi. We will say that (Δ, Σ, μ) is embedded in (Δl9 Σl9 μλ).

The next definition is due to Luxemburg [9, p. 98].

DEFINITION 6.1. Let (Δ9 Σ, μ) be embedded in (Δu Σl9 μ,). Define
the transformation Tμ: M(Δlt μύ~+M(Δ9 μ) by

Tμ{f) = fU + Σ (\B fdt/m(Bήχei .

A function norm p on M(Δ, Σy μ) is said to be universally rearrange-
invariant whenever p(Tμfϊ) ;> p(f) for all feM+(Δ, μ) and all fte
M(ΔU μ,) satisfying fx - / .

Notice that if (Δ, μ) is non-atomic, then p is universally rearrange-
ment invariant if and only if p is rearrangement invariant.

Lemma 6.2 relates the subjects of the previous section to the
concept of universally rearrangement invariant (compare [9, p. 121,
Theorem 12.2]).

LEMMA 6.2. (a) Let p be a function norm defined on M(Δ, μ).
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Then the following are equivalent:
( i ) p is induced by a universal function norm.
(ii) p is universally rearrangement invariant.

(iii) p(f) = sup {\~f*9*dt: p\g) £ l} for all f e M+(A, μ).
(b) If p is universally rearrangement invariant, then p' is

universally rearrangement invariant.

We are now able to show that the function norms induced by a
universal function norm behave very much like the Orlicz norms with
respect to Lx π L^ and Lγ + L^. We will need to use a result of
Silverman [14, p. 230].

THEOREM 6.3. (Silverman). Let (A, μ) be nonatomic and let A be
a Kδthe space in M(A, μ). If A is rearrangement invariant then
L.nL^czAczL, + L^.

THEOREM 6.4. Let p be a universally rearrangement invariant
function norm defined on M(A, μ). Then

(a) L 1 n L β β c L / , c L 1 + Z^.
(b) there is an equivalent universally rearrangement invariant

function norm ft such that LPl is an intermediate space of Lι and L^.

Proof. To prove (a) notice that since p is universally rearrange-
ment invariant, there exists a rearrangement invariant function norm
λ defined on M([Q, oo)) such that p(f) = λ(/*). λ' is rearrangement
invariant so by Theorem 6.3 we have L^L^a Lh Lx, aL1 + LM.
Hence \\f\L+Loo = [f*dt < oo for all fe (LP U LP). So by Corollary

Jo

4.4 we know L 1 n L β , c L ί > c L 1 + £«,.
To prove (b) let Γ = {g: p'(g) ^ 1} be the unit ball for Lp, and

let Bπ = {g: \\g\\n ^ 1} and B+ = {g: \\g\\+ ^ 1} be the unit balls for
Li Π IΌO and Lγ + LM, respectively, p' is universally rearrangement
invariant which means L ^ I . c Lp, aL1 + L^. Hence there is a
constant a such that (l/a)p' ^ || | |n, i.e., B^ c αΓ. Now set Γ1 = aΓ Π
B+ and define ^ by ρ,(f) = s u p | l f*g*dt:geΓΛ. Lemma 6.2 says
that p1 is universally rearrangement invariant. Because JBn c Γ1 c £+
we have || ||+ ^ p, ^ || | |n.

Now we will show that pt and p are equivalent. Notice that
aρ(f) = sup I \ f*g*dt: g e aΓ\. Hence A ^ α/O because A c aΓ. Since

(Jo )

Lp, c A + L^, there is a constant &! such that 1/δJI ||+ ^ /o' (we may
choose blf such that &! > I/a). So JΓ c 6^+ and thus aΓ cab1B+. Let
6 = α&i, then 6/\ = b(aΓ n B+) = δαΓfl &5+. Notice that α Γ c δ Λ
which means that (a/b)Γ c ΓΊ or (α/&)|0 ^ ft. Hence jθ and ft are
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equivalent.

7* Universal and universally rearrangement invariant Kothe
spaces* The concepts of the previous sections of this paper can be
generalized to the general Kothe spaces.

DEFINITION 7.1. A Kothe space Λ{Γ) is called universal if

Δ = [feM(Δ, μ): ( ~ / V d ί < - for all ger

Hence the functions in a universal Kothe space are characterized
by the action of their monotonic rearrangements as was the case of
a normed Kothe space induced by a universal function norm.

The following concept is due to Luxemburg [9].

DEFINITION 7.2. A Kothe space A = Λ{Γ) defined on M(Δ, μ) is
said to be universally rearrangement invariant whenever / e A
implies Tμf1 e A for all ft e M(ΔU μt) satisfying f1 ~ / .

Observe that if {Δ, μ) is nonatomic then A is universally rear-
rangement invariant if and only if A is rearrangement invariant.

LEMMA 7.3. Let Λ(Γ) be a Kothe space.
(a) A is universal if and only if A is universally rearrangement

invariant.
(b) If A is universal, then A' is also universal.

Proof. Assume A{Γ) is universal. Let feA,fιe (4), and f1 ~

f. Then for any ge Γ we have ( Tμf,gdμ = ( ftfdμ ^ [~f*g*dt < <*>.
JΔ JΔ Jo

Therefore, A is universally rearrangement invariant.

Next assume that A is universally rearrangement invariant. Let

Π = \f: \~f*g*dt < oo for all ger\. Easily Π aA. Suppose feΛ
( J o roo )

but f &Π. This means that \ f*gtdt = oo for some g0 e Γ. By Lemma
Jo r

5.3 we know that there exists an / x e M(A^) such that \ fιgodμx = oo

S r J^i

Tμf^odμ = I f&odμ, — oo which contradicts the fact
that A is universally rearrangement invariant. Therefore, Π = A and
A is universal.

The next result is an extension of Theorem 6.3.
THEOREM 7.4. If Λ{Γ) is a universal Kothe space in M(Δ, μ),

then £ 1 Π i c o C 4 c L 1 + L^.

Proof. In [0, oo) let In - [0, n) and let Ω([0, oo)) be the locally
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integrable functions in M([0, oo)) with respect to {/.}?=i. Let Γ* =
{g*:geΓ} and Λ = {fee β([0, oo)): fe*€ Γ*}. Form the Kδthe space
Λ, = A(ΓJ in M([0, oo)). If fe Λ1 and ge Γ19 then Γ/ff'd* < °° f ° r all

!

oo JO

f*g*dt < co and therefore
0

Λ = {/ e β([0, oo)): Γ/*A*dί < °° for all A e

which means ΛtL is rearrangement invariant. So I>i([0, oo)) η ^([O,
oo)) c Λ c Lx([0, oo)) + ^([0, oo)). This means that (A* U A'*) c ^([0,
oo)) + Z f̂lO, oo)). Hence by Corollary 4.4 Lx n £ - a A c L x + 1^.

Returning to normed Kothe spaces we are now able to prove

THEOREM 7.5. If Lp is a universal Kothe space, then there is a
norm px such that p and p1 are equivalent and ρt is universally
rearrangement invariant.

Proof. Define p, by px(f) = sup JΓ/V<W: ρ\g) ^ l | . Easily ρλ

is universally rearrangement invariant. In order to show that px and
p are equivalent, we will show that LPί — L9. It is easy to show
that LPι dLp. On the other hand, suppose / e Lp and f ί LPl. There
is a sequence of functions {gn} c Lp, such that gn ^ 0, pf(gn) ^ 1, and

("/V<W > ^3 Let hk = Σ * β l ^ M 2 and Λ = Σ?-i ff M1- T h e n P\h) ^
Jo
lim inf Σί=i l/n2p'(gn) S ^V6 Since all the firw are nonnegative we know

f*h*dt^\ f*gtdt>kz ίoτ dλlk —
S o Jo

f*h*dt = oo. But as before this contradicts
0

the fact that Lp is universal. Therefore, LPl = L^ and we have com-
pleted the proof.

Theorem 7.5 was also given by Luxemburg [9] for his restricted
case.

Combining Theorem 7.4, Theorem 7.5, and Theorem 6.4(b) we have

THEOREM 7.6. If A is a universal Kothe space, then

L1nLooc:Ac:Lι + L^ .

Furthermore, if A is normed, i.e., A = Lp, then there exists an equi-
valent universally rearrangement invariant norm pt such that \\ | |+ <Ξ

We conclude with an example that shows that L 1 ni O oCL / ,cL 1 +
L^ does not necessarily imply that Lp is universal. Let (A, μ) be
(— oo, oo) with Lebesgue measure and let
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Clearly Lλ f] L^ c Lp c Lγ + L^ but Lp is not universal.
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