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It is shown that the free product operation on two
groupoids preserves both elementary equivalence and ele-
mentary subsystem. An example is given showing the above
results for semigroups false, thus answering in the negative
a question of Feferman and Vaught.

In their important paper [3], Feferman and Vaught show, as a
consequence of a stronger result, that many of the usual product
operations preserve elementary equivalence. For example, if 2, U,
B, B, are structures such that A, and B, have the same elementary
first order properties (denoted 2, = B,) and similarly 9, =3B, then
for the direct products we have 2, x %, = B, X B,. In the footnote
on page 76 of that paper they state that their methods do not apply
to free products or tensor products, and they ask if these two
operations preserve elementary equivalence. The answer is known
to be negative for tensor products (see [2], [4]). We show here
that for free products the answer is also negative for both elementary
equivalence and elementary subsystem. In our ecounterexample U,, %,
B, B, are semigroups, and the idea used is similar to the idea in
Example 1.3 of [5].

In that same footnote, Feferman and Vaught mention a method
due to Fraissé and later developed by Ehrenfeucht [1], and they ask
if this method might by applied to the problem of preserving ele-
mentary equivalence. We show here, using this method of games
of Fraissé-Ehrenfeucht, that the free product operation on groupoids
preserves both elementary equivalence and elementary subsystem.
A groupoid is simply a nonempty set with a binary function.

Also explicitly mentioned in that footnote is the question whether
free products of groups preserve elementary equivalence. We have
been unable to answer this question.

It should be noted that the definition of free produet depends
on the class of structures considered, so that if 9 and B are semi-
groups then their free product as semigroups is different from the
free product formed with them by thinking of them as groupoids.
At the end of the paper we attempt in a short space to give some
motivation for the example and the proof.

The results of this paper were announced in [6].

We denote the sentence @ being true in the model % by A= @.
If for every elementary first order sentence @ we have A= @ iff
BEP then A and B are said to be elementarily equivalent and
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we write 2 =B. If U is a submodel of B and if for every such @
with possibly constants from 2. we have U =@ if B=¢® then we
say 2 is an elementary subsystem of B and we write % <B. The
free product operation (over a given, understood class) is denoted
by *. For the result for groupoids we assume some familiarity
with the method of games (see [1] or [2]).

ExampLE. We consider the class of semigroups and now con-
struct semigroups U, A, B, B, such that Y, = B, A, = B, and yet
AN, « N, = B, «B,. In fact we will have A, = B, the trivial semigroup;
and 9, < B,, both being denumerably infinite.

Let B be the semigroup (B, -)» where B is the one-element set
{b} and b-b = b. Of course B <B. We will now define a semigroup
A =<4, ->. The generators of % will be the members (all distinct)
of the set G = {a.}ico U {¢i});, ;<. For each i <  let {Si};<. be a list
of all the subsets of G of cardinality 7. Let R be the following set
of relations:

(Goay=y-ci-alij<oyeS).

Then 2 is obtained by starting with the free semigroup on the set
G of generators and then introducing the relations in E.

Since the only relations which we have added to the free semi-
group on G are of a “commuting” nature and in particular introduce
no cancellation or reduction in the length of words, several proper-
ties follow. First, the indivisible members of 9 are exactly the
members of G; i.e., the formula ~(3x,)(3x,)(x, -2, = ), denoted by
J(x), is satisfied in 2 by, and only by, the members of G. Also,
every member of 9 is either indivisible or can be written as an
indivisible times some other element; i.e.,

AE (VYE)VER A =y V @Qw)y =z-w))] .
Let @,(x) denote the formula

(YY) - (Vu)@E)[¥ (@) A () A (AR(W(y) — 2 2y, = Y- 2+ 2))] .

The formula “says” of « that it is indivisible and for any w,, +--, 4,
there is an indivisible z such that, for each <, if y. is indivisible
then z.x-y, =v;-2-x. U was constructed in such a way that
A = P.(a,), the desired z being any ¢} where S} contains all the
indivisible y,’s. Furthermore, if g,, ¢;, 9:€ G then 9, 9. 9: = 95+ 9, 9,
in 9 iff this relation is already in R or g, =¢.=¢,. We omit a
proof of this; such a proof would first note that because there is
no cancellation involved in the relations in R, words of length other
then three could not be used to derive such a new relation, and then,
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by considering the various cases as to whether g, is some a, or some
¢i and so on, one could eliminate the different possibilities.

Hence for any g € G there is a positive integer m and g, +++,9,.€ G
such that for any ¢’ € G there is at least one 7, 1 < ¢ < m, such that
g-9-9,#49,-9-9. If g=a, then m =7+ 1 and g, +--, g, all dif-
ferent will suffice. But the set of formulas T = {®,(x)}.<. is finitely
satisfiable in 9 because, given any finite subset 7" of T, if n is the
largest integer such that ®,e T then clearly a, satisfies all the
members of 77.

By the Compactness Theorem for elementary first order logic
there is a semigroup 2 such that 2’ is denumerably infinite, 2" > 9,
and there is some @ e W’ such that for each n < w, W' = 9,(@).

We will now show that B+2 and B+’ are not elementarily
equivalent and hence B = 2 is not an elementary subsystem of B = .
Let 6 be the sentence

@)AB) (YY) ER)(YUu)(Yu)(YUu){y(x) A ¥(2) A v-v =
ANy =uvety-veus A N(3u4)(3u5)(u2 = Ut Ve U))
= @AW)Er) (U =w V Uy =wr) A Y(wW) AN2-x-w =w-2-2)]}.

This sentence 6, as it will be applied below, says roughly the follow-
ing: There is an idempotent (which will have to be b) and an indi-
visible z such that for any word ¥ we can find an indivisible z such
that for any way of writing v as %,-b-u,-b-u, with u,e 4 or €¢ 4’
(as the case may be), there is a left-most indivisible factor w of w,
such that z.x-w =w-2-x. We are using here the fact that
B«W = ~Qu)Aus)(u = uy - b-wuy) iff ue A, and similarly with A’ in
place of A.

We claim B+«W =6 and B+AU = ~ 4. First, why B+U = 07
Let v be be B and let # be the Ze '. (@) holds in B » Y’ because
@ satisfies @,(z) in &'. Now suppose ye B+ is given. We can
assume y is of the form h,+b-t,+b-ty+ b eev bet, bk, where m =1,
each ¢, Q' and h, h, are each either b or in U’; otherwise the ante-
cedent of [--+ — -] in @ could not be satisfied and we would easily
finish. So for each ¢, there is an indivisible w, e 9’ such that either
t,=w; or t;, = w,;-r, for some ;€. (Recall every member of 2
has this property and % = %’.) We know ¥ k& @,(@). So replacing
¢, in this formula by w; we get an indivisible ze %’ such that for
all 3, 1 <1< m, 2-@-w;, = w;-2-a@. Now for any u,, u, 4, in B W,
if the antecedent of [-.- — -.-] is satisfied, it must be the case that
for some ¢, u, =¢t,. So let w be w, let r be r, and we are done.

We now wish to show B+ = ~ 4. Suppose not. So we get
v and z. Since v-v = v we must have v = b since b is the only
idempotent in B x . Since B+ = y(x) we must have » = geG.
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As remarked above, there is an m and g, -« -, 9. € G such that for any
9eG, A= ~ AL(9'°9+9; = 9:-9'-9). Let y =b-g,°b+gs> <=+ +b-gp-b.
So we then get 2. Since B = U = (), we must have z€ G; say z = ¢'.
Say 4, is such that ¢'-g-9,, # 9,,-9' - 9. If 1 <4, <m, let u, be g,,
let w, be b-g,+b: -+ +b-g,, and let u;be g;4,+ b+ -+ b-gn-b If
i, =1, let u, be g, let u, be b and let u, be as above. The case
%, = m is similar. Clearly the antecedent of [--- — -] in @ is satis-
fied. So we get w and ». It must be the case that w = u,(= g,).
Butz-z-w(=9¢"+-99:)#*w-2-%(= g;,+ 9"+ 9), contradicting B+ A = 0.
So B+ E= ~ 4.

We remark that in the logical hierarchy of formulas, 6 is a
Yy-sentence. It seems likely that an example showing that free
products do not preserve elementary equivalence could be constructed
in which the sentence 6 is X, or perhaps X,. It also seems likely
that 3, or at least X, equivalence is preserved by free products, and
the method of games of the next result should suffice to show it.

A groupoid % =<4, -) is a nonempty set A and a function
from A x A into A; and * is now in the class of groupoids. We
wish to show that if U, 2, B, B, are groupoids, A, =B, A, =B,
then U, * U, =B, * B,. The method to be used is the method of games
[1], [2], and the winning strategy for player II is similar to that
which is used in showing that, as linearly ordered sets, ® = @ + ©0* + @.
We wish to thank the referee whose questions and comments led
to, among other things, improvement in the proof of the following
theorem.

THEOREM. If U, U, B, B, are groupoids and N, =B, A, =B,
then U, = A, = B, = B,.

Proof. We can assume 4, N4, =B, N B, =®. Letn bea fixed
positive integer. We will describe a winning strategy for player II
in the game G, * A, B, +B,). We can assume that the nonlogical
constants of the language are only = (interpreted always as identity)
and a three-place predicate P, where P(a, b, ¢) means a+b = c¢. This
allows us to avoid considering terms. In the game, , ,&, «++, & Will
be chosen from 9, *%2, and 1y, .y, +++, .4 from B, +B,. II wins iff
forall 14,5, k<n

@ = it ey =4y
and
x=y0 iff wy=,y.

We shall need II’s' winning strategy in G, B) and in G2, B,),
where m = Y7, 2%?, We require some notation. For each ,x in
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A x9N, let » =,2. Then by induction, for 7 =1 and k=1, if
aied, U, — (A, UN), let xf =242 - 2. This decomposition is
unique because of the definition of free product of groupoids. We
say that each i is a factor of ,xf, if j =4 and 299"k - 1)+ 1<
E<2499(k). And we say ,x]{ has depth j in ,». Similar notation
is adopted for each ,y. The m defined above is the largest number
of members of, say, 4, which can appear among ., ---, ,» at a depth
<8 inwor <38 'in ,x or---or <3 in ,x. It is these members
which are, in some sense, directly threatened by player I in the game.
It will be convenient to assume first that A, 4, B, B, are all infinite.
We now begin to describe II’s strategy.

First of all, if I chooses ,x then the .,y that II will choose will
have exactly the same “form” as ,x — i.e., wie B, iff xic A, and
i€ B, iff e A,. Similarly if I chooses ,y.

Secondly, say I chooses & and ., ---, @iz is a list of those
factors of ,» which are at a depth < 38" in z(i.e., each j, £ 3") and
which are in A,. Then II chooses it «+-, ,yjz from B, according to
his winning strategy in G,(2, B,). Note that p < 2¢"?, A similar
procedure is followed for such factors from A, and B,. If I had
chosen .y, again the procedure is similar. The method II uses for
completing his choice of factors of ,y (if ,» is not already completely
defined) will be specified later. It will not affect some parts of his
later strategy, which it is convenient to give now. Say I chooses ,y.
Say .yii, «--, wyir is a list of those factors of ,y which are in B, and
which are at a depth <3 in ,y. Note r <2%7'»  Then II
chooses i, « -+, ;¢ir from A, by using his winning strategy in G,.(2,, B,)
and taking into account the choices made in this game when 2z and
.y were discussed above. (So this involves choices number » + 1 to
p+rin G,®, B,).) Similarly for factors of depth < 3*' in ;& and
.y which are from A, and B, and also similarly if I had chosen ,x.
Player II continues in this way for the rest of the game, choosing
factors which are to be in A, U 4, or B, U B, and at depth < 3¢+
in ,& according to his given winning strategies in the games G, and
in the light of earlier choices in these games. Note that the choice
of m ensures that II has enough “room to work in”. Note also that
the winning strategy for II in these games G,.(%, B) and G., B,)
certainly includes maintaining equalities and inequalities —i.e., for
those choices of factors specified above, we have ,x¢ = o5 iff 9% = ¥
This will be required later. Furthermore, at the end of the game,
since the above winning strategies were used, we will have: If
1, J, k < n then ., ;x, ,x are all in 4, iff ;y, ;4, .y are all in B, and
in this case » = ¢ iff w =,y and and x-,&2 =, iff 5.,y =w.
Similarly for A, and B,.

We define for each r, 0<r<m, conditions K,(1),---,K,(4) as follows:
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K,(1): Suppose 1 <s <r and j, +j, — 1 <3, Suppose ,xi:
and ,z{: are defined and equal. Then ,yii and ,yi: are also defined
and equal.

K,(2): Suppose j, + j, — 1 < 8! and suppose ,x{i and ,zj: are
defined and equal. Then ,yj: and ,yiz are also defined and equal.

K.(3): Replace “equal” in K,(1) by “unequal”.

K,(4): Replace “equal” in K,.(2) by “unequal”. Clearly K,1),---,
K,(4) are vacuously satisfied.

Assume that 1 <¢ < and that ,«, --+, ,_x and .y, ---, ..,y have
been completely specified, following that part of II’s strategy already
indicated above and, for the rest (if any) of the factors in these
elements, in such a way that for each », 0 <r <t -1, K, (1), -+, K,(4)
are all satisfied. Suppose I chooses ,x. Then for those factors of
.y which are to be in B, U B, and at a depth < 8* ™" = 3" in .y,
II specifies these factors according to that part of his strategy
already given above. We now wish to show that Il can complete
his definition of ,y so that K,(1), ---, K,(4) are all satisfied.

Consider those factors ,yi of ,y which are in B, U B, and with
7 < 3"+ —j.e., those just specified by II. Conditions K,(1) and K,(3)
might require some ,y; equal or unequal to some ,y; r <t and
a+c¢—1=<3"* and this in turn might mean that there is a factor
Wi of ,yf which is a member of B, U B, has j < 3" " (and thus
was specified by II already) and which, if we are to have ,y; equal
or unequal to ,y:, will have to be equal or unequal (as the case may
be) to ,yf, which is a factor of ,y; and a member of B, U B,. Is this
equality or inequality, needed for K,(1) or K,(3), satisfied? Assume
it is equality we need. We have a + ¢ — 1 3", 7 £ 3" and
c—g=a~—3. Soji=¢c+j—a=<ec+j. Butec<e+a—1ZL3"
So g, < 3rt+t 4 @rottt L gttt < 3vr+i Hence Lt and Lyt were
“earlier moves” in the games G, being played and so, since ,xf = ¢
and thus .»{ = ,x{, player II, as required by his winning strategies
in the games G,, chose ,y = ,yi.. We have shown that the part of
II’s strategy already given does not conflict with conditions K,(1)
and K,(3). The check that there is also no conflict with K,(2) and
K,(4) is simpler and we do not give it.

We will now show how the rest (if any) of .y is to be defined
by II. Let &, ---, @iz be a list of those factors of ,x which satisfy
the hypothesis of condition K,(1) and such that no member of this
list is a factor in ,x of any other (and hence there is no “overlap”
among them at all, in the sense that they have no factors in common).
It follows that every ,x{ which (together with some .xi, s <t)
satisfies the hypothesis of K,(1) is a factor of one of the members
of this list.

Say ,@ff =i, r <t j,+14—1<3""*. For those ,z{, which are
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factors of txkl, are in A, U A, and satisfy j' > 8"**Y, 1l defines ,y{ so
that ,yit = ,yi. There is no difficulty in doing this. However, sup-
pose .xj is a factor of ,xi: and suppose .»] and ,i(s < t) satisfy the
hypothesis of K,(1). Since ,y; has just been defined (since it is a
piece of ,yi:), does it satisfy the conclusion of K,(1)? We have j +
a — 138+, We require ,y] = ,y7. Since ,xi = % and since they
have exactly the same form, let ,x%, be that factor of ,x% which cor-
responds to ,x; under the correspondence given by this “sameness of
form”. Of course ,2%, =,x] and ' — ¢ =75 — j,. In the same way,
Yi=w. Buta+5+¢U—7)—1=a+7—1Z8" " and this im-
plies ¢ + (j — 7,) < 38", Alsoj, + 1% — 1 < 3" implies 7 < 3",
Hence a+i'=a+ @ —9)+it=a+(@—7)+2=2-3"1 K30t <
gr-mexen+t - Qo by the induction hypothesis for Koa..,n(1) if r+#s
or for K,(2) if r =s, we get ¢ = ,4%. So u¢ = ,yi.

Suppose ,zf: = ,x% (as above) and in addition ,xi = ,x; with v <¢
and j, + ¢ — 1 < 3" **', Then by an argument similar to the above,
we could show ,y2 = ,y% and so no conflict arises here.

Player II now repeats the above procedure for ,zft on ,af, - -, @i3.
Since, as remarked above, no two of these overlap there is no dif-
ficulty in making the definitions to satisfy K,(1); and again as above,
factors of members of this list are automatically taken care of.

We now wish to consider condition K,(2). Suppose ,xi: and .
satisfy the hypothesis of K,(2) (i.e., they are equal and j,+75,—1<3"7*),
Suppose further that there is no pair of factors of ,r satisfying
the hypothesis of K,(2) and with either of these factors being
factors of ,»ft or of .xft —i.e. this latter pair is “minimal” with
respect to the hypothesis of K,(2). If there are any pairs satisfying
the hypothesis of K,(2) then there is a minimal pair because: If
&, iz and o8, it are different pairs satisfying the hypothesis of
K.(2) and if ,oj is a factor of ,xf: then if ,xj* were a factor of ,xjz, we
would get ,ziz equal to a proper factor of 1tse1f and this is impossible
in a free product. So we can “work our way down in depth” and
consider a minimal pair ,xj, «fz. Player II must arrange ,yj = ,yf.
There are several ways in which the parts of .y defined in satisfying
K,(1) might conflict with this desired result.

Suppose i =, yi, 4 + 5 — 1 <3 r < t, and i = b, 57 +

"—1=<38"" s <t were arranged in satisfying K,(1). Say i is
a factor of ,yi' and ,yjz is a factor of ,yi:; hence ,yj: and ,yfz have
already been completely defined. Let ,y? be the factor of ,y?, which
corresponds (under the sameness-of-form correspondence between
A and Lyi) to yji. Similarly for ,y; and ,yf2. It suffices to show
My =Y. We have ¢/ —a=7" —j, " —c=75" -, '+ -1=
3n—t+l, 7:"+j" —1< 3n~t+1’ and .7.1 + jz — 1< gt So i’ < 3n~t+l, a <
3 and (j, — j) + 5" + (. — §”) — j” — 1 =3'*'. Hence (j, — j') +
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(Jo— 3" —1<8", But then a+c¢c—1=¢+75,—3 +4" + 37, —
g’ —1L38.3n b+l = grott-+t < Guomaxtnotl Qg by the induction hypo-
thesis, using Ko.yro(1) if s and K,(2) if s =r, we get ,yi = ,y5.

Now suppose things are as above, except ,yi is a factor of Y2
instead of the other way round. By computations very similar to
those above we would get .yi. equal to its corresponding (under the
correspondence determined by .xj: being equal to .fz) image in .yi:.
Player II then defines those ,y; which are factors of .2, which are
required to be in B, U B, and which are not already defined, by
making them equal to the corresponding (same correspondence) factors
in .y, all of which were defined earlier.

Now suppose things are as above, except ,yi. is a factor of i
and ,yi. is a factor of ,yf2. There are now several subcases to con-
sider, depending on how these factors overlap under the corre-
spondence determined by ,z{: being equal to ;2. All of them involve
computations similar to the one given above, and we omit them.
Once the definitions made in satisfying K,(1) are seen not to conflict
with ,yj{: being equal to .yiz, II can define those factors of, say, ,yi:
which are to be in B, U B, and which are supposed to equal factors
already defined in ,yj2. One possibility remains. A certain factor of
.yl is to be a member of B, U B, and equal to its corresponding
factor in ,yjz — but neither has been defined by any of the above
considerations. In this case we use the assumption that B, and B,
are each infinite, and II chooses any member (from B, or B,, whichever
is needed so that .,y and ,x will have the same form) which is com-
pletely new —i.e., which appears nowhere in x, -, &, ¥, -+, ._¥
and that part of ,y so far defined. This completes the definition of
i and (yi.

Other minimal pairs satisfying the hypothesis of K,(2) are handled
similarly. We then consider pairs which are minimal in the sense
above, but with respect only to those pairs not yet considered. The
arguments are analogous, and II proceeds to define as much of ,y as
is required to satisfy K,(2).

We have thus defined part of .,y and at the same time shown
that K,(1) and K,(2) are satisfied. For the remaining (if any) factors
of ,y which are to be members of B, U B, we again use the assump-
tion that B, and B, are infinite and II chooses completely new ele-
ments. It follows that K,(3) and K,(4) are thus satisfied.

If player I had picked ,y then K,(1), ---, K,(4) and II’s strategy
are gotten by interchanging 2 and y.

Now suppose not all of A, A, B, B, are infinite. If 4, is finite,
since YU, = B, we get f: U, = B,. If in addition A4, is finite, we get
N, =« W, =B, +B,. So assume A, (and hence also B,) is infinite. Then
player II’s winning strategy is modified so that if I chooses ,x and
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wie A, then II defines .y = f(,»i), and similarly if I chooses ,y. It
can be shown that all of the conclusions above are obtained also in
this situation.

Now suppose the game is over and 2, ---, .2, .9, *--, ¥ have
been chosen. We want to show, for 1 <14, 7, £k < n, that 2,2 = &
iff 2w =,y and & = ;o iff ,y = ;5. As noted above, if z, ;x, . are
all in A, then .y, ;u, .,y are all in B, and conversely, and the result
then follows from II’s winning strategy in G,(, B,). Similarly for
A, and B,. So now assume this is not the case. There are now
several cases to consider; we discuss two of them.

(i) Supposei <k <jand z&-,;x =6 So,x =2 and 2 = ;2.
Since j <n and t <n we have 3" **' > 2 and 3" 7*' > 2. And so
24+1—-1<38"*%' and 2+ 1—1<3" 7+, Thus conditions K,Q1),
K.(3), K;(1), Ki(3) ensure that ,y* = i and ¥ = ;ui, and thus ,y =
Y Y.

(ii) Suppose 72 >k and -2 = ,x. So & =,v; =2 Again
EF<m,s03<3"%" s02+2—1<3* %' Thus condition K,(2) and
K,(4) ensured that, when ,» and ,y were chosen, we had .2} = % iff
WY = i Then, as in case (i) above, conditions K,(1) and K,(3) ensure
&=t =23 iff Y = vk = .

The other cases are no more difficult.

REMARK. For any positive integer #, let m be defined (as a
function of ») as in the proof of the above theorem. Let =, mean
equivalence with respect to sentences with at most p variables.
Then in fact the above proof shows that:

(1) if A, A, B, B, are all infinite,

W =,B, A =,3B, then A +xU,=,B,*B,.
(2) if U, =B, U, and B, are infinite, and
N, =,B, then I« = B, «B,.

It seems likely that these last results could be strengthened — in
particular by weakening the hypotheses.

GOROLLARY. If 9, N, B, B, are groupoids, A, < B, A, < B, then
A+ Wy < B, B,

The proof of the corollary is essentially the same as that for
the theorem, except that we start with @ =y, ---, ,# = ,y for some
fixed p < n, and the first part of II’s strategy is modified to use
II’s winning strategy gotten from the games appropriate for 9, < B,
and 2, < B,.

What follows is a short attempt to motivate intuitively the
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above results. The major reason the preservation result is true for
groupoids is that, because of the lack of an associative law, factors
of an zeUA+B — (A UB) which are inside a sufficient number of
brackets cannot be “connected” with 2 in a game with only % rounds.
For example, to “state” that 2] is a factor of ., player I would
need at least j rounds. If G, is being played and n < j, player II
knows that I cannot do it. So when .z, in the game G,, has been
chosen, only members of the original groupoids at a depth < 3" in
& are “threatened” by I; for the others it suffices that II maintain
certain equalities and inequalities.

However, for semigroups an element, say a,- b, - ay- b, <+« - @, b,
in 2« B, does not depend on the bracketing. And the b,’s are all
equally and quickly “accessible”. Thus in round 1, player II commits
himself to some choice and in round 2 player I can then present II
with an arbitrarily large finite subset of elements, any one of which
is accessible in 2 or 3 more rounds. The above counterexample for
semigroups takes advantage of this, as well as the idea in Example
1.3 of [5].
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