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It is known that the fibre homotopy type of a spherical
fibre space over a sphere is determined by its characteristic
class. Our purpose is to describe the homotopy type of the
total space of a spherical fibre space over a sphere in terms
of its characteristic class, and to classify homotopy types of
them by defining a kind of equivalence between characteristic
classes.

I. M. James and J. H. C. Whitehead classified homotopy types
of the total space of sphere bundles over spheres in [2] and [3].
Our results are a generalization of their theorems and also an answer
to one of problems proposed by J. D. Stascheff in [7]. Let ¥, be
the space of maps of a k-sphere into itself with degree 1 and let
F, be the subspace of %7, consisting of maps preserving the base
point (0, ---,0,1). We denote by &,..(x) the total space of an
orientable k-spherical fibre space over an n-sphere with yem,_ (%)
as its characteristic class. First we shall treat with the case where
fibrations have cross-sections. Then we may suppose ¥ = 7,(5) where
1 F,— &, denotes the inclusion map.

Now let

Al 7[%——1(%) —_ ﬂk—%nml('yk)

be the isomorphism defined by B. Steer in [5]. We are concerned
with A(§) but not y.
Then if 4,4(8) = i.(&") we claim

(1) ME) = ME) + [, 4]

for some z e 7,(5”%) where [,] denotes Whitehead product.

For, let 7 be the inclusion Z,., — <&, where .ZZ,,, is the rotation
group of 7%, Clearly 7 induces a fibre map of the fibration <2,,,— &
into the fibration %, — .$”*. Since the restriction of A on the image
of @, (7, is equal to (up to sign) ([5]), the homomorphism _# which
is defined by G. W. Whitehead in [6], A maps 67,(.5”") onto the group
[7.(&%), ] by the formula _#d(») = —[z, ¢] where 0 denotes the
boundary homomorphism taken from the homotopy sequences of fib-
rations. Thus, since & — & is contained in the o67,(57F), we obtain
).

Let X be the natural projection

Tpines( 7)) = Ty () [T (), 4]

207
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A map of &% into itself with degree —1 canonically~ induces an
endmorphism of 7., ,(*)/[7.(5"), ¢.]. We denote by 2 the compo-
sition of ¥ and the endmorphism. The set

AL (D)) = (£INME), £ENE))
is independent from the choice of & by (1). Then we shall prove

THEOREM 1. If the fibration yx,(t =1,2) has a cross-section
(n, k = 2), Z.(x) has the same homotopy type as &.()A:) tf and only

if

(1) ifn==k or m =k =even #(£:,.X)) = #(L1.(X2))

(2) ifn=Fk=odd d-M&)=NE,) mod [7,(57"), ¢,] for some integer
d, (d, m) =1, where m 1is the order of NM&,) mod [7,.(F%), t].

If &,..(x) has the same homotopy type as 7% x " the fibration
has a cross-section. Hence we have

COROLLARY 1.1.  &,..(%) has the same homotopy type as F* x .
if and only if the fibration ¥ is fibre homotopically trivial.

Secondly we consider fibrations which do not necessarily have
cross-sections. Therefore, we are mainly concerned in the case n > k.
However, the case n = k 4+ 1 is different from others, so we suppose
n=k+ 2= 4.

Let p:.97% — 7% be the homeomorphism defined by

ﬁ(xn xz: Tty xk-l—l) = (—xly ny e, xk+1) ’

and let p: &, — &, be the homeomorphism induced by 9(o(f) = pfp).
For any ae7m, (&%), from the diagram

ﬂk+n-1('§/%_l) —a—’ ﬂ'k+n-1(<c/k) ‘T Tl'”_l(%) Tﬂn-—i(fk) ’
* *

we have the subgroup of 7,., (&) defined by
L) = 1N e T (P77
Then we claim
(2) Z(a) = Z(—a) and p,(F(@) = Z(—4):) -

For, the former is clear and the latter follows from the following
commutative diagram (see Lemma 2.2)

72'-AYc+'/|,—-1('~Qk) t—z_— ﬂn—l(ﬁk) —;kT) 72’.’n—l(gk)

(3) (—‘!k)*l lﬂ; lp*
Tck+n—1(yk) "‘;— ﬂ"'lb—l(t—%) _,L‘k*_’ T (L)
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where o | &, = 4, 0" is the natural factorization.
Now let “[X] (x € mw._.(Z})) be the set of elements

{Xr _Xy IO*X7 —‘O*X}

and let &, 2, — &% be the projection of the canonical fibration.
We define a relation in x,_(%,) as follows y, ~ . if and only if
6, = 6, mod & (% (0,)) for some pair (4, 6,), 6,€ [X.].

It can be easily checked by (2) that this is an equivalence rela-
tion.

THEOREM 2. Ifn =k + 2 =4, then &, .(X.) has the same homo-
topy type as &,.(X2) 1 and only if Y ~ Y-

If fibrations have cross-sections this is an alternative version of
Theorem 1. For, since F.(x;) =0 we have ¥ = 4,(&). Then the
condition X, ~ X, means that y, = +y, or ¥, = =02 i.e.,

15(6) = £1(&)  or  4(8) = £0((05)(6) -

These are satisfied if and only if & = +¢&, + 0o or & = +p.& + do
where o€ m,(57%). Now apply )\ to the both side, then we have that

M) = EME) or (=) ME) mod [T.(FF), 4] .
This is so if and only if _Z(&:..(0) = A2 (Za(X2))-

From Theorem 2 the following is easily deduced.

CorOLLARY 2.1. Suppose that 7w, (F,) D Fopll)Tpina( S "),
If &,..0m=k-+2=4) has the same homotopy tyve as the total
space of am orthogonal S7*-bundle over .&°*, then the fibration itself
18 fibre homotopically equivalent to an orthogonal &7 -bundle over &,

As special cases we have

COROLLARY 2.2. Suppose that the fibration ¥ has a cross-section.
If €. =k + 2 =4) has the homotopy type of the total space of
an orthogonal &7 -bundle over <", the fibration is fibre homotopically
equivalent to an orthogonal .F*-bundle over .&°".

COROLLARY 2.3. A k-spherical fibring over .&°" is stable fibre
homotoprcally equivalent to an orthogonal .&7*-bundle over <™ if and
only if the total space of the fibring has the same homotopy & -type
as the total space of an orthogonal & *-bundle over ™.
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2. Zua(X) as a CW-complex. Let f:(&* x)— (£, 1) be a
representative of ¥ and let f: . 57" x 5% — &°* be the adjoint map.
We denote by .2#°(f) the complex &*U 2" x &* obtained from
identifying (z, y) with f(z, y) for (x, y)e " x ",

Then it is known that &,,.(x) has the same homotopy type as
22 (f) (Prop. 1 of [4]). It may be considered that 277(f) is given
the natural CW-decomposition 7% Ue" Ue**" in which attaching
maps for cells are as follows

a L —— L a(x) = f(a, %)

(4) B: Frr = g x LY M X gt
— "X xJ " X FE——— "
auf

where a: (2", ") — (% Ue", &%) denotes the characteristic map
for e*(a = o).

Let j be the inclusion: (&% Ue*, ) — (F*Ue", &%). Then we
have

LEMMA 2.1. ZFu(X) =a, and j.(B) = x[@,¢), if n >k +1 or
a=0. Thus we can define the orientation of Z2°(f) by j.(B) = [&, ¢]..

Proof. The former follows from (4) and the definition of ..
Since the group m,.,_,(S7* Ue", %) is isomorphic to the direct sum

2’[&, lk]f + aﬁk+n—-1(gn, yn—l)
under the assumption, 7,(8) is of the form
mla, ¢], + ax

for some integer m and x ¢ 7,,, (=", "Y). Let Z(i=k, n k+n)
be generators of S#7{(.%7(f)) = 2. Then, by the theorem in [1],

2w U 25 = tmZin .

On the other hand, since .°(f) has the homotopy type of &, .(X)
we have

%U%:i%-}n’

i.e.,, m = =1. And moreover ax = 0 follows from the existence of
the projection of the fibration.

Now we consider the special case where 0 = a = Z.(x). Then
the map f may be considered as a map: ("7}, ) — (F, 1). Since
F1&7" 1 x x = %, & is naturally imbedded as the image of <™ x =.
In this situation, after identifying n,,,_,(&°* V.57*) with 7., (%) +
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Thrnay(FF N ", 7F), it follows from Lemma 2.1 that
(5) B = @) + 4, t] -
And also 8 may be considered as follows

yk+n—1 — 9’” X yk—l U yn—l X gk gn
(6) P

X x| .G GPk —_— L. X xUrx FF
P X * UxXf

where @, denotes the identification map: <* — F*/ph 2,

We make use of A to determine z, so we recall the definition of
L. Let ¢ be the map: &7 — &, defined by e( ) = the identity of
% and let b be a map: (&2 +x)— (F, 1). Since adjoint maps
h, & .57 x 7% — % has the same restriction on 577\ .&% the
separation element d(%, &) € 7,.,(.57%) is defined. B. Steer defined M\(A)
by d(h, ). For example we have (see the diagram (3))

Lemma 2.2. 2048 = (=) ME(Ee 7, (F})) -
Proof. Let g be a representative of £&. Then we have
(=) M8) = (—4).d(@, &) = p,d(F, &) = d(07, Pf)
=~ d(p7, &id x §)) = d(Pi(id x p)(id X §), &id x 7))
= —d(pd(id x ), §) .
Since 0'-g(v, ¥) = P(3(s, PW)) = P'H(id % P)(x, v) we have 0'g = py(id x P).
Hence d(0§(id x 0), &) = d(0'g, &) = NMp'9) = MEL(E).

LEMMA 2.3. In the expression in (4) we have x = ME), up to
stgn, where & denotes the homotopy class of f.

For the proof of Lemma 2.8 we prepare the following general

LEMMA 2.4. Let ¥ be a l-conmected CW-complex and let 5%
be a complex ¥ Ue"(ax ~0). Let f, g be maps: .27 — 2 such that
1 =9 and let § be a map: &~ — 2 which induces the iso-
morphism: SE(SFY, =) — (%, ). Then we have d(f, g) = (&)
— g:(C) (up to sign).

Proof. Since @ ~ 0 there exists a homotopy equivalence @: (& V
SN, ) — (%, ) relative to &~ Let 6 be the inclusion &V —
£ V.Y, Then

d(f, 9) = £d(fP, 99) = =((fP).0 — (99).9) .
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From ¢ ' e my(& VvV .&°%) and the assumption on { we have
Pl = 0 + pne (L)), ie., { = £p,0) + P«()) .
Hence

(0 = 0.0 = Fu(£2,(0) + 2)) — 9.(£2,0) + 2.()
= £(f4P+(0) — 9.2.09)) = £d(f, 9) .
Proof of Lemma 2.3. Let & be the identification map:
X PP P P[P Xk
The maps
F&™ it o7 X P K x> P

are well-defined and has the same restriction on * X 7%/ 7"t X =*.
The complex .&°"' x %" x » has a form & U (a ~ 0).
Then we apply Lemma 2.4 to the case where

K= PR K FP=x X P Xk,
N=n+k—-1, f=feo", g=E2"and Z=.5".
Thus we have
Mf) = d(F, 8 =d(fe™, §o™) = 2(f&),0) — E2).(0)
for any (i (&7*, ) — (27 &) which induces an isomorphism
Cut S kimory (FH"T ) = 284002 L)
Congider the following commutative diagram
yk-{—n—l — gn X yk—l U yn—l X gn__)g'n
X x J " X G — G SR GPMT X x
* U
lsonUf lﬁ’f“
LN I

Since we can take { with the composition of two maps in the upper
row it follows from (§<7").(0) = 0 that M) = =(f&).({). From
the diagram (6) the proof is completed.

3. Proof of Theorem 1. Let 9% be a complex of the form
yk \/ yn U 6k+n
where B8 = qa + |4, ¢,] under the decomposition

Torni(F*V P = T (FF) + Tpin(F) + 'y il -
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By the cellular homotopy theorem .227 has the same homotopy type
as 27, if and only if there exists a homotopy equivalence (n, k = 2)

Q. FrN > PN P

such that @,.(8) = =8,. Now consider the case n = k. It is obvious
that a map @ is homotopy equivalence if and only if @] &% = ¢, +
t,ot(te m(S4™), and @ | 9" = ¢, if m <k = *¢, and @] .57 = 00 +
+toem, (%) if n> k. From easy computation of @,(B8,) we can
obtain

LEmMA 3.1, If n -+ k, 22 has the same homotopy type as &,
iof and only if the set {+a,, =(—¢),a} is equal to the set

{£ay, £(4) ) mod [7,(57), 4]

Next we consider the case n = k. By the same way as in [2]
we have

LemmA 8.2. (James and Whitehead). If n =k = even, 22 and
%, have the same homotopy type if and only if

{£a} = {a} mod 7, ("), 4] .

LemmA 3.3. (James and Whitehead). If n =k = odd, 2%, and
245 have the same homotopy type if and only if there exists an integer
d which is prime to m, and da, = «a, mod [7,(S7%), ¢.] where m, is the
order of a,mod [7,(S7*), ¢.].

Thus Theorem 1 follows from Lemmas 3.1, 8.2, 3.3, and 2.3.

4, Some Lemmas. Let & be a complex of the form .&* Ue”
with the characteristic map a@: (2", &) — (&, %) for the n-cell.
Let <&~ be the congplex obtained from identifying .&°* of two copies
of & ie., ZF=¢" Ul* Ue". It may be considered that two maps
(i =1, 2): ¥— & and a map v: &F— & are naturally defined and
satisfy v, = the identity. Since p,|.97% = p,|.5* the separation
element d(z, 1) is defined. Then we have

LEMMA 4'1' If BE :Tk+n—1(=~\2ﬂ) a%d j*(ﬁ) = m[&y !k]n then /’tl*(lg) -
/“‘z*(lg) = mld{t,, (), AP

Proof. Consider the following commutative diagram
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ﬁ*(yk) _ 77:=|=(->?;) - ﬂ:*(g yk)

o " Tl e

7 () L) = TS )
* *

which is taken from the homotopy sequence of the pair and = =k +
n— 1.
From the commutativity it follows that

J+(thdB) — t:(B)) = M & — U@, 1], .
On the orther hand, we have
Jeld(t, ), 4l = [5.d(tt, ), al. = (1@ — 1, 4], .
Thus, for some element ve 7, (57%), it holds
mld(t, t), 4] = t(B8) — talB) + 1.(7) .
Applying v, to the both side, then, from
vid(th, 1) = diy, v) = d(id, id) = 0 and v(8) = 8,

we have v,7,(v) = 0. Hence 7,(v) = 0 from the commutativity of the
diagram.

As an application of Lemma 4.1 we have

LEMMA 4.2. Let f, g be maps: & — Z° such that f | =g| &
For any B, j.(B) = ml&, ¢],, we have

Fe(B) — 94(B) = mld(f, 9), f | &*].

Proof. Define a map f U g: &F— 2 by
(fUPs =f, and (fUPM.=9.

Since d(f, 9) = d((f U D, (f U ) = (f U 9).d(t, #:) the proof is
completed by applying (f U g), to the both side of the equality in
Lemma 4.1.

Let id be the identity map of < (n =k + 2 = 4) and let w: &¥—
&7 be a map with w|.o7* = id|.57*. In general, d(id, w) is belonging
to 7,(&°). However, we have

LEMMA 4.3. w 1s a homotopy equivalence preserving the orien-
tation of the m-cell if and only if d(id, w) is contained in ©,7.(S").
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Proof. Let z,, ¥y, be the orientation generators of S7,(%°), and
SZ,(S”") respectively, and let 0 be d(id, w). Since z, — w,(z,) =
0,(Y,), @, = w,(x,) holds if and only if d,(y,) = 0. On the other hand,
the diagram

T( ) > Bl L) —— WL, SN = SE(L, ) = L)
£3
shows that d.(»,) = 0 is equivalent to d e 4,7,(57%).

Now we prepare lemmas for the proof of Theorem 2. In what
follows, we use the notations in §2 and suppose n =k + 2 = 4.

LEMMA 4.4. Let ¢ be the inclusion: &£ — " U e* < #(f). Then
we have

17'(0) = A Tpsn (") .

Proof. Since the pair (£ (f), &%) is homotopy equivalent to
(& 2a(0)s &)

Tirl Z(f), 1) = Tpsn( ") = ETpas (P77
Hence from the homotopy sequence of the triple (2#7(f), &% Ue", &%)
we obtain
Thsa FF U €7, ) = 0T in(Z(f), F U €") U yTi (27, 7))
Thus we have that

1%(0) = 0, (F U e, %) = a, TP .

Let y.(7 = 1, 2) be elements such that A.(x) = F(¥) = a. Then
Bi € Thpina(SF Ue”) and there exists an element &ex, (%;) which
satisfies 1,.(8) = % — %e-

LEMMA 4.5. There exists a homotopy equivalence @: % U e —
S8 U e™ which satisfies

(1) Q*(ek) = ek, ¢*(6n) =€

(2) B — PuB:) = 1, M8E) (up to sign).

Proof. Let £: " — 7V &7 be a map of type (1, —1) and let
X be the fibration induced from X, \V ¥, by %, i.e., ¥ =X, — %.. Since
1:+(3) = x22°(f) has the form %V .&“"Ueée™ by (5). It may be
considered that £ induces a map £:

() =LV U — () U ZZ(f)
= x SPUSLPU g7 x FF
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which satisfies
Eyu(e"t™) = eft™ —eb™ , F.(e") = eF — e} and £,(¢) = ¢* .

Let £: &%\ & —er U .S7* U e be the map obtained from the restric-
tion of £ on &%V " and let 7; be the inclusion: e} V .&*— e U
S Uer. Then we have

(*) E*(B) = 7:1*(/31) - iz*(ﬁz) .
Define the map r:e? U 7% Uer — . 7% Ue™ by
rler U SP* =identity =7 | . F* Uel.

We claim that
(**) 7.(w) is contained in 7,-image where @ = %|.5”" and ¢ denotes
the inclusion: &% — e U .57% U er.

For, consider the commutative diagram

T(FV P, FF)— m,(er U FFUel, y")——y—» T(F*V e, )

Fy

E3
[jl"‘ {.7.2* ’[.7.3*

TNV P > (el U FFUep) — T (F*FUe) .
* *

Let z, be the element of 7,(5* \V .&°*) which is represented by 5°".
Then we have

G @) = Gur B(22) = 7, (B(22) = 7 4B uius(2)
= 7 (0(X) — (@) =X — @ =0.

Thus (**) is proved.
Now, by applying », to the both side of (*) we have

T*E*(.B) =6 — L.
On the other hand, by using (5), we have
T84 (B) = Ty Ru(t(ENME) + [, 2.)), (tn = 24)
= 1(£M8)) + &, r(@)]
= 1, (EME) + [4, @]), (@ € TF), 1,0 =1, (@) by (**))
= 1, (E=M8) = [0, 4])
ie., B — B =1 (N8 £ [0, 4]) .

If we take a map ®:.57* Ue" — 7% Ue" such that d(id, ) = F&', it
follows from Lemma 4.2 and Lemma 2.1 that

B — Pu(B:) = i (Flo', &]) ie., B — Pu(B:) = 1,.(ENME)) .
Since d(id, @) € 1,7.(S"*) ¢ satisfies (1) by Lemma 4.3.
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LEMMA 4.6. There ewxist homotopy equivalences w': 2Z(—f)—
Z(f) and w': 277(pp) — ZZ(f) which satisfy

(1) wul(e?) =¢é" and (") = —e",

(2) ul(e) = —é* and ul(e*) = e”.

Proof. Let 7 be the identification map: &7+ " x &7 — 2 (f)
and define «’, v as follows

pn(xlr Ty o0 o, xn) = (—xu Loy * 0y x’n): ((x1, Loy o0y xn)e gn)
w() =2, u' (@) =px if xe " and
Wy, 2) =7z oy, 2), %'y, 2) =%y, pz) if (y,2)e Z" x .
w' and " are well-defined by the formulas
~F = F(o. | &") x id) and of = pf(id x p).

5. Proof of Theorem 2. First of all we prove

LemMMA 5.1. If &,,.(X) has the same homotopy type as &,.(4s)
there exists a pair (4, 8,), 8, L] which satisfies

(&) Ful0) = Fl0:)

(&#) there exists a homotopy equivalence r: 927(g,) — 2¢7(g,) with
(e = € (i =k, ).

Proof. Let h: 27(f) — >27(f,) be a homotopy equivalence which
may be considered as a cellular map. Then we have

Fo(l) = 2(Foudy)) or £(—4),Fo(X) -

Since it is clear that each element on the right hand side can be
obtained as Z,.(0,) of a suitable 0, .5[X,], there exists a pair (¥, 0s.)
which satisfies (.%7), and a homotopy equivalence u: 22(f,) — 227(9.)
by Lemma 4.6.

We suppse that u,(ef) = ¢,ef and u,(e}) = e,e7-(e4, €, = +1). Then
we have the equation

() () FodL) = €0 Fd05).
Hence, by (.9”), we have

(2) elew) Fouk) = Foul0:) = FolX)-
The case of ¢, = 1. Since, by Lemma 4.6, there exists a homotopy
equivalence u': 277 (e, f,) — 27 (f,) with wi(e¥) = ¢* and u/.(e") = ¢,¢", the
set

{01 = Enxly 027 q# = u‘u’}

satisfies (%) and (<#).
The case of ¢, = —1. Similarly, by Lemma 4.6, there exists a
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homotopy equivalence u”: 27 (e,0f) — 22 (f.) with u}(e*) = —e* and
uy(e”) = e¢". The set

{01 = 67010*X1, 02! "/f = u‘?l,”}
satisfies (.&7) and (&) by Ful(€.0.X) = o — ) FPu(X1).

Proof of Theorem 2. First we suppose that &%,..(x) has the same
homotopy type as &,.(X;). We choose (4,, 0,, ¥) as stated in Lemma
5.1. Let g, be a representative of 6, and let v, be the attaching
class for the (k + n)-cell of 2¥7(g;). Let @: &*Ue"— F*Ue” be a
map as stated in Lemma 4.5 (¥, = 6,) and let ¥ be the map obtained
from the restriction of + on &* Ue". Since ¥,(Y) = 7. we have

0="— “/7*(71)
=% — Pu(1) + Pu(r) — V()
(v, — P (7)) + [d(®, ¥), 4] by Lemma 4.2 and Lemma 2.1
1 .(EN®) + [d(@, ¥), ¢] by Lemma 4.5 and
0, — 6, = 1,(7) .

On the other hand, since d(@, ¥) = d(®, id) + d(id, ¥), d(®¥) is con-
tained in 7,7,(5*) by Lemma 4.3. Hence we obtain that

Il

M®) =19, ¢] + 43'(0) for some de 7w (&%) i.e.,

7 =230, 4] mod Ni3H(0) = AN Fu(0) Tt 0a (7T

by Lemma 4.4. By applying 7,. to the both side we have
0, — 6, = 0 mod &(F.(0)), ie., XLi~7%s.

Secondly we assume that y, ~ y.. Hence there exists a pair (4, 6,)
such that 6, = 4, mod €(<7.(0,)) which means

0, — 0, = 4A1), 1€ T (F2), M7) € Fol0)Th4no(F7777)

Since .Z.(0) = .F(0,) there exists a homotopy equivalence @: &% U
e" — 7% U e* which satisfies (see Lemma 4.5)

T 90*(72) = %*(ik(ﬁ)) .

Since 7, (END)) € 1, Fu(0)  Tpyns( ") =0 by Lemma 4.4, we have
v, = @,.(7,), i.e., » is extendable over .9¢7(g,) to .9¢(g,). Then, by
Lemma 4.6, &, .(y%.) has the same homotopy type as &, .(X).
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