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A classification of nonoscillatory solutions according to the
sign properties of their derivatives is introduced for a general
nonlinear delay differential equation of order 2n. It is seen
that there are n types of positive solutions of this equation.
An intermediate Riccatti transformation is employed to obtain
integral criteria for the nonexistence of such solutions and
for the oscillation of all solutions. Analysis of the Taylor
Remainder gives rise to a summability condition which is
used to investigate the asymptotic behavior of a class of so-
lutions. The major results are then shown to be special
cases of a more general result based on the direct method of
Lyapunov.

The purpose of this paper is to discuss the oscillatory and non-
oscillatory behavior of solutions of the nonlinear delay differential
equation of order 2u:

1.1) D r@) D y@®)] + y.) S (¢, y(&) =0,

where y.(() = y[t — 7(®)], 0 = 7(t) < Tand 0 < m < r(t) < M. Through-
out the first three sections f(¢, #) is assumed to satisfy the following
three hypotheses:

(i) f(@, u) is a continuous real-valued function on [0, ) X R,
R = (=0, o)

(ii) for each fixed te [0, «), (¢ uw) < f(¢, v) for 0 < u < v; and

(iii) for each fixed te [0, =), f(¢, w) > 0 and f(¢, w) = f(t, —u)
for u == 0.
In section four, these assumptions on f(t, w) will be replaced by others
as indicated there.

1. A solution y(t) of (1.1) is said to be oscillatory on [0, «) if
for each ¢, > 0, there exists a T, > ¢, such that y(T,) = 0; it is called
nonoscillatory otherwise. Following Kiguradze [4], we say that a
solution y(¢) is of type A4; if for sufficiently large ¢ the derivatives
Doy#) >0,k =0,1, -+, 27+ 1 and (—1)*'Dry(t) > 0,k =25 + 2, ++-,
2n — 1. In an analogous manner we say that a solution y(t) is of
type B; if for sufficiently large ¢, y,(t) > 0 for £ =0, .--,2j + 1 and
(1) 'y (@) > 0,k =25 4+ 2, ---, 2n — 1 where

¥(t) = D*y(t) , k=0:0,m—1
and
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270 RAYMOND D. TERRY

v(®) = D lr@Dy@®)], k=m, .-, 20— L

When »(¢) = 1, these definitions reduce to those of types 4,(0 <j <
n — 1) respectively. In [4] Kiguradze proved a fundamental lemma
which we state here as follows.

LEMMA 1.1. Let u(t) be a continuous nonnegative function on
(0, ) having continuous derivatives up to order 2n inclusive which
do not change sign on this interval. If D*™u(t) <0, then there exists
an integer p =0, «++, n — 1 such that

Doty =0, k=0,---1,
(=) Du@t) =0, k=101+1.2n—1,

where | = 2p + 1. Furthermore, 0 < D'u(t) < 1! t7'u(t).

In view of this result, all nonoscillatory solutions of (1.1) with
r(t) =1 are of type A; for some 7 =0, -+, % — 1. In the general
case we argue as follows. Suppose y(¢) is a nonoscillatory solution
of (1.1) which we may assume to be nonnegative because of (iii).
First, no two successive y;, k = 1 can ultimately be negative. Suppose
k=n+1 and y, and y,., are negative for ¢ > a. Then y, is a
negative decreasing function on [a, ) and there exists a constant
C. > 0 such that y,(t) < —C, for ¢t > a. Thus

Ui — 960) = | w0)ds < ~Cut — 0),

which implies that y,_, is eventually negative. Next, if y, and y,,
are eventually negative, say for ¢ > a, then

My ) = M | Duyieds < [ vatods < ~Cut - o),

which implies that y,_, is eventually negative. Since »(¢) > 0 and

¥.(t) < 0, D"y(t) < 0. Using the negativity of D"y and D*'y we may

show as In the first part that y,_, is eventually negative for any
= 2, ..., which contradicts the positivity of ¥(t).

Using the same technique as above, it follows that if any two
consecutive y,, £ = 1 are ultimately positive, then all the preceding
y, are eventually positive. We conclude that a positive solution of
(1.1) is necessarily of type B; for some j =0, ---,n — 1. Thus the
nonexistence of nonoscillatory solutions of type B;(0 <j<n — 1) will
imply that all solutions are necessarily oscillatory.

In section two integral criteria are given for the nonexistence
of solutions of type B; as well as for the oscillation of all solutions
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of (1.1). Section three provides a necessary and sufficient condition
for the existence of a nonscillatory solution of (1.1) with »(¢) =1
having prescribed asymptotic form. Recently Yoshizawa [11, 12] has
applied the direct method of Lyapunov to study the oscillatory be-
havior of solutions of certain nonlinear second order ordinary differ-
ential equations. In section four his technique is employed to
investigate the nonoscillatory behavior of (1.1). For recent related
studies see the papers of Burkowski [2], Gollwitzer [3], Staikos and
Petsoulas [7], and Wong [9].

2. In this section integral criteria for the nonexistence of
solutions of types B;(j =0, ---, n — 1) are derived. To obtain these
results we shall first prove several lemmas.

LEMMA 2.1. Let y(t) be a solution of (1.1) of type B; where either
() n is even and j < (n — 2)/2 or (ii) »n is odd and j < (n — 3)/2.
Then for all sufficiently large t,

W) =225 + 2 - B)ya(t), k=1--,27+1.

LEmMmA 2.2. Let y(t) be a Bj-solution of (1.1) where n is odd
and j = (n — 1)/2. Then for all sufficiently large t,

ty.(t) = 2My,.(t)
and

t(t) = 2[Mm™ + (n — B)lyei(t), k=1, :--,m—1.

LeEvMMA 2.8. Let y(t) be a Bj-solution of (1.1) where either (i) n
18 even and j = n/2 or (i) n is odd and j = (n + 1)/2. Then for all
sufficiently large t,

(a) ty®) <225+ 2—kyyi(t), k=n+1+++,2/+1.

(b) ty.(t) < 2M@2j — n + 2)y,.(t), and

(e) tyt) = 2[M(25 — n + 2)m™ + (n — B)]Yuoa(t),

k=100, n—1,

The proof of each of the three lemmas is elementary using only
integration by parts and the definition of a B;-solution. For brevity,
we will prove only Lemma 2.3.

Proof. Suppose y(t) is a solution of type B;. Then there is a
T,> 0 such that y,(¢t) >0, (0 <k <25 + 1) and y,;..(t) <0 for t = T,.
Hence, y.(t) >0 for t — z(t) = T, i.e., for t = T, + T = T,. Thus,
Y:;1(t) is a decreasing function of ¢ for ¢ = T,. Consequently,

0®) 2 W@, = || vinids 2 (¢ = T -
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Since (¢t — T,) = t/2 for ¢t = 2T, we have ¥,;(t) = ty,;..(t)/2 which proves
(a) for the case k =25 + 1.

We proceed inductively and suppose that for some integer £,
n+1<k<2j+1,

2.1) (t — T)yu(t) = (27 + 2 — E)yia(?) -
An integration of (2.1) yields

t t

6~ D)5 @l, = | n@ds = | 6= Towleds

so that
t
¢ — T S +2— G- D1 v o)ds
=27+ 2~ (k- Dlys(®)

which proves (a). Specifically, for £ =n + 1, (2.1) becomes
Integrating this by parts results in

¢ = T = | 1@ds = " 6 = Towan(s)ds

t

=@ -n+D| veds.

Thus, for ¢ = T, we obtain

t

¢ = Twa(®) < @ — n +2) || v,()ds
< (2 — n + 2)My,_(t) .

2.2)

As in (a) the estimate for ¢ = 27T, becomes
tyn(t) = 2(2.7 - N+ Z)Myn—-l(t) ’

which proves (b).
Now integration of (2.2) by parts establishes the anchor for an
inductive proof of (c).

nls — T, —m ||

1

bns@ds =m | (6 = T)Du(e)
< (- Tow)is
5@ —n+2M| v, ()ds.

Thus, for ¢ = 2T,, we have
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t

Mty (B2 < mt = THoe) < [@F = n+ DM + m] |y ()ds
= 25 — n + 2)M + m]y,() ,
which proves (c) in the case £ = n — 1. Now assume inductively that
t — Ty(t) S M@27 — n + 2ym™ + (n — k)]Ye(?)

for some k,1 <k <n —1. Then
¢ = T — | pe(5)ds
= L ¢ T)yus)ds
< [MZ% — n + 2/m~" + (n — k)] S; Yer(s)ds

so that for ¢t = T,
(t — T)yea(t) S [M(25 — n + 2)m™ + (n — k + D]yt
and for t < 2T,
tea(t) =< 2[M(27 — n + 2)m™ + (n — k + 1)]y,—(t)

which proves (c).

We remark that if y(t) is a B;-solution of (1.1) on [0, «) with
r(t) =1 and 7(¢) = 0, we may take 7, = 0 and m = M = 1. The above
proof will yield

Wojnsr = KYsjsis

for k =1, -+, 2§ + 1, which is another form of Kiguradze’s lemma

[4].

LEMMA 2.4. Let y(t) be a solution of (1.1) of type B;. Then
Yai(t — 7(8)) ~ Y4(1).

Proof. Let y(t) be a Bj-solution of (1.1). For j+# (n — 1)/2 and
t =T, y.(t)and y,(t), k =0, - -+, 2§ + 1 are all positive while y,;,,(t) < 0.
Since z(t) = 0 and y,;(t) is an increasing function on (T, <), ¥t —
T(t)) < ¥.,(t), so that with the help of Lemma 2.1 or 2.3, we have

Yailt = T@) 1| = 7(p)¥eiri®) 2T 9s(8) - 2T

L2y T AV = J2d01\ 0] - A2 Y2i05) o 2
Yi(?) Y24(t) s Yu(t) s

where t — z(t) < s <t. Since s tends to infinity with ¢, the lemma

follows in this case. The case j = (n — 1)/2 follows in a similar
manner using Lemma 2.2 and the estimate mD¥.i(s) < ¥zni(s)-

’
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We remark that this lemma is analogous to one proved by Bradley
[1] for the linear equation

y"'(@® + p@®)y(t) = 0.

His proof can be modified to yield Lemma 2.4. We note that Lemmas
2.1, 2.2, and 2.3 are valid for unbounded ¢, provided Hm, ... (¢ — z(?)) =
+ . A weaker version of Lemma 2.4 is also true for unbounded
7(t), provided 0 < z(¢) < t, where ¢ can be specified. In general, if
y(t) is a Bj-solution of (1.1) described by Lemmas 2.1 or 2.3, then we
may take p( < 1/2; otherwise the stronger estimate p < m/(M + m)
is required. The conclusion of Lemma 2.4 is changed to read: There
are constants k; > 0 and t; > 0 such that ,,(t — 7(t)) > k;y.;(t) for
t > t;. With these lemmas we can now give criteria for the non-
existence of solutions of type B;(0 <j <n — 1).

THEOREM 2.5. Suppose that for all constants C >0 and some
j :0, aee, (n — 1)’

2.3) S”tw‘ £(t, Ct)dt = + oo .

Then (1.1) has no solutions of type B;.

Proof. Let y(t) be a positive solution of type B; and let w(t) =
Yons(0)/Y.;(t). Then (1.1) shows that

W' (@) + Yus) DYDYz () + (S C, v () (@) =0 .

For j == (n — 1)/2, Dy,(t) = Yu;1.(t) > 0; if n is odd and j = (n — 1)/2,
Dy,;(t) = Yy;.,(E)/r(t) > 0 since r(t) > 0. Since ¥,,,(t) and y,;(¢) are
positive for ¢ > T,, this reduces to

2.4 w' () + y-(OF ¢, vz @) <0, t = T, .

There are three cases to consider

(i) = is even and j < (n — 2)/2 or % is odd and j < (n — 3)/2;

(ii) = is odd and j = (» — 1)/2; and

(iii) = is even and j = n/2 or = is odd and j = (n + 1)/2.
Applying Lemmas 2.1, 2.2, and 2.8 to cases (i), (i), and (iii) respec-
tively, we obtain

iy, () < Myy(t) ,
where

2425 + 1)!, case (1),

M; =25 T [Mm~* + (n — )] , case (ii),
k=1
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24925 — n + 2)! ]llt[1 (27 — % + 2)Mm™ + (n — k)], -case (iii).

Letting N; = M;", we have y(t) = N;it¥y,;(t) for ¢ =2T, so for
t=2T, + T = T, we have

Y:(t) = Ni(t — c(®))7ye5(t — 7)) = Nt — T)yi(t — 7(t))

because 0 < 7(t) < T. Since Dy,i(t) > 0 for ¢t = T, there is a con-
stant C, such that y,,(t)=C, for t=T,. Hence, y,;(t — z(t)) = C, for
t= T + T. Moreover, (t — T)=t¢/2 for t = 2T. Because T, =2T, +
T>max (T, + T, 2T), both estimates hold for ¢ = T,. Combining
the above estimates with (2.4) via hypothesis (ii) and using Lemma
2.4, we arrive at

w'(t) + NK&ift, Ct) < 0,¢t = T,

for some T, = T,, where N = N;27% C = 2%N,C, and K = K; >0 is
the constant from Lemma 2.4. An integration of this together with
(2.3) shows that w(f) is eventually negative, which is absurd.

Since the divergence of t¥f(t, Ct¥) implies that of ¢*¢+Vf (¢, Ct*9+")
the conclusion of Theorem 2.5 may be strengthened to exclude so-
lutions of type B, where j <k <n — 1. The theorem may also be
restated as follows.

THEOREM 2.6. Suppose (2.8) holds for all comstants C> 0 and
for some j =0, -+, m — 1. Then either (1.1) is oscillatory or else

y()Y.5(t) < 0 for t sufficiently large.

For j =n — 1 and »(t) = 1, Theorem 2.6 reduces to the alternative
that either (1.1) is oscillatory or else y(t)D**y(t) < 0 for t sufficiently
large, which is essentially Theorem 3.1 of Ladas [5].

Moreover, in view of the fact that all positive solutions are of
types B; for some j(0=<j=<n —1), we can immediately restate
Theorem 2.5 as a criterion of oscillation.

COROLLARY 2.7. If for all constants C > 0
rf(t, CYt = + oo,
then all solutions of (1.1) are oscillatory.

COROLLARY 2.8. Suppose p(t) is continuous and eventually positive
and that

Sw p(t)dt = + oo .



276 RAYMOND D. TERRY

Then all solutions of the equation
(2.5) Drr@)Dy(®)] + p(E)y? () = 0, >0
are osctllatory.

The conclusion of Corollary 2.8 is true in the case A = 0 in (2.5).
In this instance, (2.5) is not a special case of (1.1) since f(¢, u) = p()
does not satisfy hypothesis (ii) of section one. To permit this
extension, we may suppose that y(t) is a B;-solution of (2.5) and let
W) = Youi(t)/y:;(t). Equation (2.4) becomes

w'@) + p@y(Oy: (¢) <0,t = T .

Applying Lemmas 2.1-2.4, which are independent of hypothesis (ii),
produces the same contradiction as in the proof of Theorem 2.5. Thus,
if x =0 and

Sm Lip(t)dt = oo

for some j =0, ---,n — 1, (2.5) has no B,-solutions for k =7, «--,
% — 1. Corollary 2.8 then follows by specifying 7 = 0.

NoTte. When # =2 and 5 = 1, Lemma 2.3 reduces to Lemma 2.1
of Terry and Wong [8]. Similarly, letting n =2 and j =0,1 in
Lemma 2.4, we obtain Lemma 2.2 (a), (b) of [8]. Moreover, Theorem
2.5, Corollary 2.7, and Corollary 2.8 here are, respectively, the analogues
of Theorem 2.8, Theorem 2.4, and Corollary 2.5 of [8].

3. In this section an asymptotic result is established for the
equation

3.1) Dy(t) + f@, y-(8)y:(t) =0,

where f(t, u) satisfies the three conditions of section one.

LEmMA 3.1. Let y(t) be a solution of (3.1) which is eventually
posttive. Then

D y(t) ~ Cn — DI E2y(t) .
Proof. Suppose y(t) is a solution of (8.1) such that y(t) > 0 for

t =T, Then y.(t)>0 for t —z(t) = T, i.e., for t =T + T =T*
By Taylor’ theorem with remainder, for ¢t = T*

(3.2 @n—DIREO = @n - Diy®) + | ¢ — 9 0.076 v.0)ds,

where
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2n—1 1
R(@t) = > — D9y(T*)( — T*)".
= k!
Since ¥.(s), and hence —D*y(s), is positive for s > T*, condition (iii)
together with (¢ — T*) > (¢ — s) > 0 imply that
2n — 1! R(t)
< @n —DVy@) + ¢ — T [D"y(T™) — D*7y(®)] .
Dividing this by (¢ — T*)** ' and noting that
lim(2n — D! (¢ — T*)""R(t) = D™ 'y(T*),
it follows upon passage to the limit that
D2n—1y(T*)
< lim @n — 1! (¢ — T*)*y(t) + D 'y(T*) — Lim D™ y(t) .
t—roo {—co
Hence,

(3.9) lim D 'y(t) < lim (20 — D! (¢ — T*)*y(2) .

To prove the reverse inequality let ¢ be chosen such that
T* <o <t. By restricting s to lie in the interval [T*, o], we have
t—sy"'= (@ —o)y"" and

(@n — DIE®) = @n — DIy®) + ¢ = 0¥ || )76, 1.6)ds

= @1 — DI y®) + (¢ — o [D*y(T*) — D*y(o)] .

Multiplying this by (¢ — 0)'~*", keeping ¢ fixed and letting ¢— oo
through a sequence of points for which (¢ — ) *"y(¢) tends to its limit
superior, we obtain
DZn—-ly(T*)
> lim @n — D! (¢ — T*)""y(t) + D™ "'y(T*) — D™ 'y(o)
t—o0

from which it follows that
im 20 — D (¢ — TH"y(t) = D" y(0) .

t—oo

Since ¢ is arbitrary and lim,.., D™ 'y(t) exists, it follows that

fim (2n — D! (¢ — T*)*y(t) < lim Diy(t) .

t—oo

Combining this with (3.3) yields the desired result.

THEOREM 3.2. FEgquation (3.1) has a pesitive solution y(t) satis-
fying
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(3.4 Hm e=*ny(@) =k, 0 <k < o,
i, and only if, for some C > 0

(3.5) S‘”tz"—l F(t, CEP)dE < oo .

Proof. Suppose (8.5) holds. A lower limit T, can be chosen
sufficiently large so that

(3.5 S: £t Crr)dt < (2n — 1) — 1/2.

If y(t) = y(¢, T,) is the solution of (3.1) defined by D*y(T,) =0,k =0,
v, 20 — 2, D" 'YT)=2n—D!C and y(t) =0 for T, - T=<t= T,
then y(¢, T\) is positive on some open interval whose left endpoint is
T,. Let ¢t = T, be the first zero of y(t, T,) in (T,, ). By Taylor’s
theorem we have

@n — DOt — Ty = (@n — D!y, T)

3.6 ¢
oo + ¢ = 9" 06076, v.6)ds -

Since y(s) >0 for T, — T <s< T, y(s) >0for T, — T<s—7(s) = T,
i.e. for s=T,— T + 7(s). Hence y.(s) >0 for s =T,. A similar
argument shows that y.(s) > 0 for s < 7. Thus

3.7 y@&) =y, T) = Ct — Ty, I, <t < T,.
Moreover, letting ¢ = T, in (3.6) we have
Ly @ DT Ty [o (T = 9.0, s
> < (7= 1| 00 £, s
By condition (iii) and (3.7)

Y(8)f (s, y.(s)) = Cs™ 7' f (s, Cs™ ™),
so that (3.8) yields

@n — 1)! gg“ =11 (s, Cs™)ds ,
Ty
which contradicts (3.5") and demonstrates the existence of a positive
solution satisfying (3.4).
To prove necessity let y(¢) be a positive solution of (3.1) satisfying
(8.4). It follows from Lemma 8.1 that
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69 | v@s6 vle)ds = D" u(T) - @n - D1k

(83.4) shows that for any €>0 there is a T, =T, such that
yY(it) = (k — e)t*»* for all ¢t = T, so that (k — &)t — T)"* < y.(t) for
t>T*=T,+ T. Also, it follows from (ii) that

F 8, y(8) = fls, (B — e)(s — Ty} .
Since (3.9) is valid with T, replaced by T,
D y(T*) — 2n — 1) Kk
= (-9 - T fls, (6 — O — T ds.
For so s = 27T,
§w82”~1f(s, Cszﬂ—l)ds < 22%—1
% S”(s — Tyn-if[s, 2*-'C(s — T)*'lds < N, ,

where N, = 2"k — ) [D"'y(T*) — (2n — 1)!k] and C = (k —¢)/2*.
The conclusion follows.

For the linear equation (2.5) with A =0, n =2, »(t) = 1, and
7(t) = 0, this result reduces to that of Leighton and Nehari [6]. As
in the discussion following Corollary 2.8, we observe that when » = 0
and () =1, (2.5) is not a special case of (3.1). However, Theorem
3.2 remains valid and the proof given above may be easily modified
to yield the result. The details of this are omitted for brevity. For
the nonlinear equation (3.1) with z(f) = 0 and » = 2, see also Wong
[10]. The case of (3.1) with 7(¢) #0 and n = 2 is treated by Terry
and Wong [8].

4., In this section we shall apply the direct method of Lyapunov
to obtain nonoscillation criteria for (1.1). For convenience, we first
introduce some notation which will be used in the section. Let
R.=]a, ), a =0, R* =(0, ), R, =(— 0, 0) and R' = R = (— oo, o0).
We shall abbreviate the cartesian products of these intervals as
follows:

R* = R* X R* X -+« X R* ptimes
R,=R, X R, X <+ X R,, ptimes
R*=R, X R*R*,=R*xXR,.

Other products may be defined in terms of these, e.g.,

R =R, x R™.
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To begin with we shall consider an arbitrary 2nth order equation of
the form

(4.1) D*r@)Dy(@®)] + F(¢, a(t), 0.(8)) =0,
where

o) = (W(t), *++, Youa(t)) and o.(t) = ot — 7(t)) .

A real-valued function V{(¢, 6) will be called a Lyapunov function if
V{t, o) is continuous in its domain and locally Lipschitzian in .
Following Yoshizawa [11, 12], we define the trajectory derivative V,
of V along solutions ¢(¢) of (4.1) by

@2 Vo o) = l'n_n—,l; [Vt + b, o(t + b)) — V(t, o)] -

The first result of this section is an extension of Yoshizawa’s theorem
to (4.1) and the proof is based on his.

THEOREM 4.1. Let V be a real-valued continuous function defined
on RE* % (R, )" for some a > 0 such that

(i) V tends to infinity uniformly for e R¥™* x (R, *)" 7 as
t tends to imfinity; and

(ii) for each solution y(t) of (4.1) such that (¢, o(t)) € R{¥+* x
(R.*)"* for some b = a, Vi (t, 0(@t)) < 0.
Then (4.1) has mo solution of type Bj;.

Proof. Let y(t) be a solution of type B;. There is a positive a
for which o(t) e R¥+* x (R,*)* 7' if t =2 a. By (ii) for ¢ sufficiently
large, i.e., for t = b = q,

V¢, a(t)) = V(b, 0(b)) -
On the other hand, (i) implies that there is a ¢ = b for which
Vit, o(t)) > V(b, a(b))

if £ > ¢, which is a contradiction.

As in other applications of the direct method of Lyapunov, the
key to applying this result is the construction of suitable Lyapunov
functions V having the requisite properties. In this case of (1.1)
Theorem 2.5 may be regarded as a special case of this result, for if
y(t) is a Bj-solution there are constants C > 0 and K > 0 such that
for sufficiently large ¢, y.(t) = NKt¥y,;(t) = Ct¥. It follows that by
taking a suitable T* the function

V(t, O'(t)) = ym-—l(t)[yzj(t)]_l + NKS *Szjf(s, Cs”)ds

t
T
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will be a Lyapunov function satisfying the conditions of Theorem 4.1
provided (2.4) holds.

Another application of Theorem 4.1 to equation (4.1) is given by
the following result.

THEOREM 4.2. Suppose there exist functions p(t) and o(u) of class
C(R,) and C'(R) respectively such that

(i) P'(w) = 0;uo(u) >0, u == 0;

(ii) F(, o) =z p)o(w), y = 0;

(iii) S'”p(t)dt = too.
Then (4.1) has no solutions of type B;.

Proof. Suppose y(t) is a solution of (4.1) of type B;. Then
(¢, o(t)) e RP* x (R, *)"3~* for some b=a. Let V(¢ o) be the func-
tion defined by

Vit 0(t) = Y OloWENT™ + | 2(s)ds .

In view of hypotheses (i), (ii), and (iii), V will clearly satisfy condition
(i) of Theorem 4.1. Moreover, since both ¥'(t) and y,,_.(t) are positive
for large ¢, a simple calculation with the help of (i) and (ii) shows
that

o Dy2n—1(t) P'[’!/(t)] ’
I/v(l) = T 7N T iy Yan—-1
ely(@®)] e o' ly(®)] b1 )
_ Fi, o)
=20 ply@)] =0

Theorem 4.1 is thus applicable and we conclude that (4.1) cannot have
any solution of type B;.

Acknowledgment. This paper is part of a thesis submitted to
the Graduate School of Michigan State University in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.
The author wishes to thank Dr. Pui-Kei Wong for his guidance
during the writing of the thesis.

REFERENCES

1. J.S. Bradley, Oscillation theorems for a second order delay equation, J. Differential
Equations, 8 (1970), 397-403,

2. F. Burkowski, Osctllation theorems for a second order monlinear functional differ-
ential equation, J. Math. Anal. Appl., 33 (1971), 258-262.

3. H. E. Gollwitzer, On nonlinear oscillations for a second order delay equation, J.
Math. Anal. Appl., 26 (1969), 385-389.



282 RAYMOND D. TERRY

4, I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential
equations, Dokl. Akad. Nauk SSSR, 144 (1962), 33-36; translated in Soviet Math. Dokl.,
3 (1962), 649-652.

5. G. Ladas, Oscillation and asymptotic behavior of solutions of differential equations
with retarded arguments, J. Differential Equations, 10 (1971), 281-290.

6. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear
differential equations of the fourth order, Trans. Amer. Math. Soc., 89 (1958), 325-
377.

7. V. A. Staikos and A. G. Petsoulas, Some oscillation criteria for second order non-
linear delay differential equations, J. Math. Anal. Appl., 30 (1970), 695-701.

8. R.D. Terry and P. K. Wong, Oscillatory properties of a fourth order delay differ-
ential equation, Funkeialaj Ekvacioj, 15 (1972), 209-221.

9. J.S.W. Wong, Second order oscillation with retarded argumenes, Proceedings of
Conference on Ordinary Differential Equations, June 14-23, (1971), edited by L. Weiss,
Academic Press, New York, 1972, 581-596.

10. P. K. Wong, On a class of nonlinear fourth order differential equations, Ann.
Mat. Pura Appl., 81 (1969), 331-346.

11. T. Yoshizawa, Oscillatory property of solutions of second order differential equa-
tions, Tohoku Math. J., 22 (170), 619-634.

12. ————, Oscillatory property for second order differential equations, Proceedings
of Conference on Ordinary Differential Equations, June 14-23, (1971), edited by L. Weiss,
Academic Press, New York, 1972, 315-327.

Received December 18, 1972 and in revised form July 23, 1973.

GEORGIA INSTITUTE OF TECHNOLOGY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 52, No. 1 January, 1974

David R. Adams, On the exceptional sets for spaces of potentials .................
Philip Bacon, Axioms for the Cech cohomology of paracompacta ................. 7
Selwyn Ross Caradus, Perturbation theory for generalized Fredholm operators. . . .. 11
Kuang-Ho Chen, Phragmén-Lindeldf type theorems for a system of

NONHOMOZENEOUS CQUATIONS . . . . vttt e e e et et aeee e 17
Frederick Knowles Dashiell, Jr., Isomorphism problems for the Baire classes. ... ... 29
M. G. Deshpande and V. K. Deshpande, Rings whose proper homomorphic images

are right subdirectly irreducible . ............. ... i 45
Mary Rodriguez Embry, Self adjoint strictly cyclic operator algebras.............. 53
Paul Erd&s, On the distribution of numbers of the form o (n)/n and on some related

QUESTIOMS « . o et e e e e e e e e e e e e e e 59
Richard Joseph Fleming and James E. Jamison, Hermitian and adjoint abelian

operators on certain Banach spaces .................. ... ... i, 67
Stanley P. Gudder and L. Haskins, The center of aposet.......................... 85
Richard Howard Herman, Automorphism groups of operator algebras . ............ 91
Worthen N. Hunsacker and Somashekhar Amrith Naimpally, Local compactness of

Sfamilies of continuous point-compact relations.............................. 101
Donald Gordon James, On the normal subgroups of integral orthogonal groups .... 107

Eugene Carlyle Johnsen and Thomas Frederick Storer, Combinatorial structures in
loops. II. Commutative inverse property cyclic neofields of prime-power

Ka-Sing Lau, Extreme operators on Choquet simplexes .. ... ...
Philip A. Leonard and Kenneth S. Williams, The septic charact.
Dennis McGavran and Jingyal Pak, On the Nielsen number of a
Stuart Edward Mills, Normed Kothe spaces as intermediate spa

Philip Olin, Free products and elementary equivalence. .. .....
Louis Jackson Ratliff, Jr., Locally quasi-unmixed Noetherian ri

principal class. ............
Seiya Sasao, Homotopy types of spherical fibre spaces over sph
Helga Schirmer, Fixed point sets of polyhedra................
Kevin James Sharpe, Compatible topologies and continuous irr

FEPIESENIATIONS « . o oo v et s e ee e
Frank Siwiec, On defining a space by a weak base . .. .........
James McLean Sloss, Global reflection for a class of simple clo.
M. V. Subba Rao, On two congruences for primality .. ........
Raymond D. Terry, Oscillatory properties of a delay differentia

Joseph Dinneen Ward, Chebyshev centers in spaces of continuo
Robert Breckenridge Warfield, Jr., The uniqueness of elongatio
GPOUDS . oottt
V. M. Warfield, Existence and adjoint theorems for linear stoch
CQUATIONS . o v ottt et e e e e e e e



	
	
	

