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This paper deals with spectral properties of commutative
locally holomorphic Banach algebra valued functions. One of
the main concepts is that of a spectral set of such a function.
This concept, which is due to L. Mittenthal, extends that of
a spectral set of a single Banach algebra element. It will
be shown that the spectral idempotent associated with a non-
void spectral set is nonzero. This result is a generalization
of a well-known theorem in ordinary spectral theory. It will
be used to prove a correctly stated but incorrectly proven
theorem of L. Mittenthal.

We investigate spectral properties of a commutative locally holo-
morphic function F defined on an open subset of the complex plane
and with values in a complex Banach algebra B. In particular we
will be dealing with two concepts which were introduced by L.
Mittenthal in his dissertation [4] (see also [5]).

The first concept is that of a spectral set (i.e., a separating
singular subset in terms of [4] and [5]) of F. We will show
(Theorem 4) that the spectral idempotent associated with F' and a
(nonvoid) spectral set of F is nonzero. This result, which extends
a well-known theorem in ordinary spectral theory (see [3], §5.6),
seems to be new.

The second concept is that of the spectral resultant (i.e., the
root operator in terms of [4] and [5]) of F and a spectral set S of
F. This resultant r is an element of the Banach algebra pBp.
Here p denotes the spectral idempotent associated with F and S.
Our second main result (Theorem 7) shows that S is precisely the
spectrum of r» relative to pBp. This also extends a well-known
result in ordinary spectral theory (see [3], §5.6). Further, we will
prove (Theorem 9) a generalization of the spectral mapping theorem
(see [3], §5.3).

For the case when B is the Banach algebra of all bounded linear
operators on a complex Banach space, Mittenthal has results similar
to those mentioned in the preceding paragraph (see [4], Theorems
2-4 and 2-6, and [5], Theorem 9 and Corollary 10). However, his
proofs do not seem to be quite correct. In our argument, Theorem
4, cited above, plays a crucial role.

1. Preliminaries., In this section we present some definitions
and notations. The symbol C denotes the complex plane. The clo-
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sure of a subset V of C is denoted by V. We shall often use the
concept of a Cauchy domain. For the definition of this notion, we
refer to [6], §5.6. The (positively oriented) boundary of a Cauchy
domain D is denoted by oD.

The domain of a function f will be denoted by 4(f). A Banach
algebra valued function ¢ is said to be commutative if

g9 = g(g(n)  (\, pe 4(9)) -

We shall freely use the standard notions concerning locally holomorphic
vector-valued functions. For a fairly complete survey of these notions
we refer to [2], §I11.14.

Let F be a locally holomorphic function defined on an open subset
4 of C and with values in a complex Banach algebra B with unit
element ¢. We do not require the norm of ¢ to be one (cf. [3],
§1.15).

The set R(F) of all ve 4 such that F() is regular in B is
called the resolvent set of F. It is an open subset of C. The func-
tion F~' defined by

F7() =F\)™7 (ve R(F))

is called the resolvent of F. It is a locally holomorphic function
with values in B. The set S(#) of all A€ 4 such that F(\) is sin-
gular in B is called the spectrum of F. Observe that

S(F) = A\R(F) ,

and that R(F') is closed in the relative topology of 4.
By Q, we denote the function given by

FO) = FW) e sin =),
QO )y =1 MM
F'(\) (~=ped).

Here F’ denotes, as usually, the derivative of F. A subset S of
S(F) is called a spectral set of F if the following three conditions
are satisfied:

(i) S is both open and closed in the relative topology of S(F');

(ii) S is a nonvoid compact subset of C;

(i) Qr(\, 20 is regular for all A, e S.
This notion corresponds with Mittenthal’s concept of a separating
singular subset.

By way of illustration, we consider the special case when

(%) F\) =x—t (Ae0),

where ¢ is some element of B. Then
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S(F) =o(t), R(F)=p(t), F*=R(;t.

Here o(t), o(t), and R(-; t) denote, as usually, the spectrum, resolvent
set and resolvent of ¢ (cf. [3], Definition 4.7.1). Further, the spec-
tral sets of F' are precisely the spectral sets of ¢ (cf. [3], Definition
5.6.1). This justifies our terminology.

2. Spectral idempotents. In the following S denotes a spectral
set of a commutative locally holomorphic function F' defined on an
open subset 4 of C and with values in a complex Banach algebra B
with unit element e. Using methods of Mittenthal, we shall intro-
duce an “operational calculus”. Further we shall define the spectral
idempotent p associated with ¥ and S. The main result of this
section is that p is nonzero.

Let # be the set of all complex-valued functions f such that

(i) 4(f) is an open neighborhood of S;

(ii) f is locally holomorphic.

Let & be the set of all functions ¢ with values in B such that

(i) 4(g) is an open neighborhood of S;

(ii) g is locally holomorphic;

(i) gOVF () = F(¢)g(\) for all ne 4(g) and pe 4.

In % and & we define algebraic operations—scalar multiplication, addi-
tion and multiplication—in an obvious way. We shall now define for
each function h, which belongs either to & or to &, an element
F,eB in such a way that the mappings h— F, (he %) and h —
F, (he &) preserve the algebraic operations. The definition is

Fy= 22 [ROFO)F-()ax,
2wy 9

where D is any bounded Cauchy domain such that
Sc DcDc4h) N [A\{SEFHS] .

Since 4(h) N [4\{S(F)\S}] is an open neighborhood of the compact
set S, there do exist bounded Cauchy domains of the required sort.
It follows from Cauchy’s theorem (see [2], §III.14) that the value
of the above integral is independent of the choice of D. Thus, F,
is well-defined (cf. [6], §5.6). The following theorem is essentially
due to Mittenthal. The proof, which is similar to that of [4], Theo-
rem 1-3 (also [5], Theorems 1 and 2), will be omitted.

THEOREM 1. Let aec C and either f,gc . &, or f,9e &. Then
(1) Foy =aly;

(ii) Frpy=F;+ F;

(i) F;, = F.F,.
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COROLLARY 2. Let pe B be given by

p=—1 SF’(N)F“I(x)dx ,
2wy oD

where D is any bounded Cauchy domain such that

ScDc Dca\[S(F)\S] .

Then p is an idempotent.

The element pe B defined in Corollary 2 plays a crucial role in
this paper. It is called the spectral idempotent associated with F
and S. Suppose that F' is as in formula (x) of §1. Then p is the
spectral idempotent associated with ¢ and the spectral set S of ¢ (cf.
[3], Theorem 5.6.1). This justifies our terminology. Furthermore,
we note that, in this case, F, = ph(t) = h(t)p for all he #. For the
definition of () we refer to [3], Theorem 5.2.4 (see also [6], §5.6).

For the proof of the next theorem, containing the main result
of this section, we need a lemma.

LEMMA 3. Let D be a bounded Cauchy domain such that D < 4
and 0D C R(F). Suppose that

MSF VF-()dr = 0 .
Then D s a subset of R(F').

Proof. Since F is commutative, the set {F(\)|» e 4} is contained
in a maximal commutative subset A of B. Observe that A is a
closed commutative subalgebra of B with unit element ¢. An element
of A is regular in A with inverse y if and only if it is regular in
B with inverse y. Hence, without loss of generality, we may as-
sume B to be commutative.

From the Gelfand representation theory (see [3], §84.13 and 4.14)
we know that an element be B is regular in B if and only if £(b) #
0 for each (nonzero) multiplicative linear functional 5 on B. Let B
be such a functional and put f= 8oF. Then f is a locally holo-
morphic complex-valued function and f’ = g F’. For Me R(F) we
have f(\) # 0 and f(\)™" = B(F'(\)). It is easy to verify that

SN gy ) - _ _
aDS L8 = B(BDSF )F (x)dx) = 8(0) = 0.
By a well-known result from complex analysis (see [1], Ch. III, §4,

Satz 16), this implies that G(F(\)) = f(A) == 0 for all xe D, and the
proof is complete.
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THEOREM 4. The spectral idempotent p associated with F and
S is nonzero.

Proof. Suppose that p = 0. Then

SF’(x)F‘l(x)dx — 2mip =0,

oD

where D is as in Corollary 2. By Lemma 3, this implies that DcC
R(F). Consequently SC R(F'). But Sc S(F) too. It follows that
ScR(F)NS(F) = @. This contradicts the fact that, by definition,
a spectral set is nonvoid.

3. The spectral resultant. In this section we shall define the
spectral resultant » of F and S. Our main result is that » is an
element of the complex Banach algebra pBp whose spectrum (relative
to pBp) is precisely S. Further, we shall prove a generalization of
the spectral mapping theorem.

Since p is a nonzero idempotent (see Theorem 4), »Bp is a closed
subalgebra of B with unit element p. The resolvent set, spectrum
and resolvent of an element x ¢ pBp relative to pBp will be denoted
by 0,(®), o,(x), and R,(-; x) respectively. An element xc B belongs
to pBp if and only if x = px = xp(= prp). As an easy consequence
of Theorem 1 we have that F, € pBp for each 2 which belongs either
to & or to £. In particular, the element r € B, given by

1

p=_1 SxF’(x)F—l(x)dx ,
2mq 9D

where D is any bounded Cauchy domain such that
Sc Dc Dca\[S(F)\S],

belongs to pBp. It is called the spectral resultant of F and S.
This notion corresponds with Mittenthal’s concept of the root opera-
tor. If F is as in formula () of §1, then p» is the spectral idem-
potent associated with ¢ and the spectral set S of ¢, » = ¢tp = pt and
0,(r) =S (see the proof of [3], Theorem 5.6.1). We shall prove
that the last equality holds in general.

LEMMA 5. Let pte C\S. Then pte p,(r) and

R | F'MF(\)
R (15 1r) = o BDS Z—x dx,

where D is any bounded Cauchy domain such that

ScDcDc[C\{1] N [4\{SE)\S) .
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Proof. The proof is similar to that of [4], Theorem 2-2 (cf.
also the first part of the proof of [5], Theorem 9). Define g: C—C
and i: C\{¢} — C by g(\) = £ — x and h(\) = (# — \)~*. Clearly, both
g and % belong to 5. By Theorem 1, we have F,F, = F,F,=1p
and F, = up — r. Thus #p — » is regular in pBp with inverse F,.
This proves the lemma.

LEMMA 6. 0,(r) = {xe S|pF(\) singular in pBp}.

Proof. The proof is similar to that of [4], Theorem 2-4 (cf.
also the second part of the proof of [5], Theorem 9). From Lemma
5 we know that Sco,(r). Therefore, it suffices to show that an
element f£e S belongs to o,(r) if and only if pF(¢) is singular in
pBp.

Let #€S. Using the function @,, which was introduced in §1,
we define the function @: 4 — B by Q(\) = Qz(\, #). It is not difficult
to prove that @ belongs to the set &. Since S is a spectral set of
F, we have SC R(Q). It follows that the resolvent P(= Q™) of
the function @ belongs to & too. Applying Theorem 1, we obtain
F,Fy = FoF, = p. Hence Fy, is regular in pBp.

Clearly, F'e & and F(¢) = F(\) + (¢ — M)Q(\) for all e 4. Using
Theorem 1, we find pF(#) = F, + (#p — r)F,. It follows from
Cauchy’s theorem that F, = 0. So pF(tt) = (¢p — v)Fo = Fo(ttp — 7).
Since F, is regular in pBp, it follows that up — » is singular in
pBp if and only if pF() is singular in pBp. This proves the lemma.

The next theorem contains the main result of this section. Mit-
tenthal has a similar result (cf. [4], Theorem 2-4 and [5], Theorem
9). His proof, however, is not quite correct. In fact, Mittenthal
only proved what we have called Lemma 6. Our argument is based
on Theorem 4.

THEOREM 7. o0,(r) = S.

Proof. In view of Lemma 6 it is sufficient to prove that pF'(z)
is singular in pBp for all #eS. The case p = e is trivial. There-
fore, we may assume p # e.

Put ¢ =e — p. Then ¢ is a nonzero idempotent and ¢Bgq is a
closed subalgebra of B with unit element ¢. F¥rom the definition of
p it is clear that F(\) commutes with p and ¢ for all Ae 4. Hence
pF(\) e pBp and qF(\)e ¢Bg for all xe 4. By F, and F, we denote
the functions, with domain 4, given by F,(\) = pF(») and F,(\) =
gF(\). Observe that F, is a commutative locally holomorphic func-
tion with values in the complex Banach algebra pBp. Similarly, F,
is a commutative locally holomorphic function with values in ¢Bg.
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Let S,(F,) denote the spectrum of F, (relative to pBp), and let
S,(F,) denote the spectrum of F, (relative to ¢Bg). We have to
prove that Sc S,(F,). Since SCS(F) = S,(F,) U S(F,), it suffices to
show that SN S(F,) = @.

Put S, = SN S(F,), and suppose that S, is nonvoid. Then S, is
a spectral set of F,. The spectral idempotent associated with F,
and S, is equal to gp = 0. This contradicts Theorem 4, and the
proof is complete.

Let he #. The preceding theorem shows that o,(r) = S. Hence
o,(r)c 4(h). We use the symbol h(r), to denote the element of pBp
given by

1
h(r), = Ere

9 °D

\ R (s ryage,

where D is any bounded Cauchy domain such that
o (r)y=ScDcDc4h).

From ordinary operational calculus we know that A(r), is well-defined
(cf. [3], Theorem 5.2.4 and [6], §5.6). It will be shown that ki(r), =
F,. A similar result appears in the work of Mittenthal (see [4],
pp. 42, 43, 49 and [5], pp. 126-129), but again his arguments are not
quite satisfactory. We shall give a new proof.

LEMMA 8. (1), = F, (he &).

Proof. Let he #. Choose two bounded Cauchy domains U and
V such that

ScUcUc Ve Vadh)n[4\{S(F)\S)] .
Then

h(r), = —2}r— Sh(y)Rp(#; rydy .

1

By Lemma 5

R | F'OWE(\)
R (1 7r) = an
{45 7) 21 evs ®—

for all #£coV. Hence

By changing the order of integration, we find
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Cauchy’s integral formula yields that

1 (M,
) = 2—m—g_;z o

for all xeoU. Thus
1

2wy o

h(r), = Sh(x)F’(x)F*l(x)dx .
By definition, the right hand side of this equation is equal to F,,
and so the proof is complete.

Combining Theorem 7, Lemma 8 and the spectral mapping theo-
rem, we obtain the following result (cf. [4], Theorem 2-6 and [5],
Corollary 10).

THEOREM 9. o,(F,) = h[S] (he . F).

Proof. From Lemma 8 we know that F, = h(r),. The spectral
mapping theorem (see [3], Theorem 5.8.1) yields that o,(h(r),) =
hio,(r)]. Now the desired result is immediate from Theorem 7,
which says that g,(r) = S.

The preceding result may be viewed as a generalization of the
spectral mapping theorem. To see this, take F' as in formula (*) of
§1 and S = o(%).

Let L be the logarithmic derivative of F. Thus L is the func-
tion defined on R(F') by

L) = F'O)F'(\) .

In view of the preceding results (in particular Theorem 1), the ques-
tion arises whether L satisfies the resolvent equation. The following
example shows that, in general, the answer is negative.

ExAMPLE 10. Let ¢ be a nilpotent element of B of order of
nilpotence 2. Define F on C by

FO) = e + Nt

Then F is holomorphic and commutative. Using the fact that ¢* =
0, one easily shows that S(#) = {0} and

F(0) = —%e ¢ (v 0).

Since F'(0) = ¢ is regular, we have that {0} is a spectral set of F.
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Now assume that the logarithmic derivative L of F satisfies the
resolvent equation on a deleted neighborhood U of 0. Thus

L0 — L) = (1 — VLML) O ee V).

Using the expression for F~'(\) obtained above, it is easily seen that
L(x):—i—e+t (v = 0) .
Substituting this in the resolvent equation, we get

<%e + t) — (%e + t) = (¢ - X)(—%—e - t><—ﬁ1—e + t) o pel).

It follows by a straightforward computation that
M=t =0 (\prel).

But this implies that ¢ = 0, which contradicts the hypothesis that
the order of nilpotence of ¢ is 2. The conclusion is that L does not
satisfy the resolvent equation.
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