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This paper contains a study of convex sets of stochastic
matrices induced by probability vectors. The vertices and
dimension of each such convex set is found. Some topological
properties of these sets are also given. Finally, the relationship
between these sets and Markov chain theory is considered.

The primary motivation for this work is derived from studies
generalizing the classical results concerning final transition proba-
bilities in the theory of Markov chains. References dealing with such
generalizations may be found in [3]. As an example of one such
result, we provide the following.

THEOREM A. [Theorem 1,3] Suppose A, A, ---
sequence of stochastic matrices so that

(1) Y, A, =Y, for probability vectors Y, Y, -+,

(2) lim..Y, =Y, >0 and

(3) given any €>0, there 1s an integer N >0 so that
(A Apss = Ariy) < & for all k suffictently large, where 0(A) =
max; i |a’i1.1' — Qg5 ]
Thewn lim,. AA,--- A, = Y!Y..

A, - 15 a

b

This result generalizes the classical Markov chain problem con-
cerning lim,.._ A* where A is primitive and stochastic [2, p. 94], the
generality being that one need not have the same transition matrix
from step to step but may choose matrices in

S[Y] = {A] A is stochastic, YA = Y with Y a probability vector}
which meet the criteria specified in the above theorem.

This paper then concerns a study of S[Y]. The objectives of
the work are as follows.

(1) We hope to indicate how much freedom one has in selecting
the sequence A, A, --- if final transition probabilities are desired.

(2) In terms of S[Y], we hope to illuminate the truth of
Theorem A.

(3) Although no explicit problems are stated, we also hope to
provide some feeling as to what future generalizations can be ex-
pected.

Finally we state that all matrices herein derive their entries from
the real number field.

405
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Results. It is easily verified that S[Y] is a compact convex set
with the property that if Ae S[Y] and Be S[Y] then ABe S[Y].
Of course if Y= (1/n, 1/n, ---, 1/n) then S[Y] denotes the set of
doubly stochastic matrices which, along with the stochastic matrices,
have been studied extensively.

1. The vertices of S[Y]. In this section we give a procedure
for finding the vertices of S[Y]. The inductive procedure of Jurkat
and Ryser [4] for finding the vertices of U(R, S) = {m X n matrices
A =0 with ith row sum r, and jth column sum ¢; where R = (7, 7,
-«o,r,)and S = (e, ¢, - --, ¢,)} is utilized for finding vertices in S[Y],
for Y > 0. This is done by establishing an isomorphism between
S[Y] and U(Y, Y).

LEMMA 1.1. For Y >0, S[Y] %s isomorphic to U(Y, Y).

Proof. Let D = diag. (¥, ¥s, -, ¥,). Then, if Ac S[Y], DAe
U(Y, Y). Further, if Ac U(Y, Y), D'Ae S[Y]. Finally, it is easily
seen that this one-to-one correspondence is in fact an isomorphism
between S[Y] and U(Y, Y).

Thus to find the vertices of S[Y] we can find the vertices of
U(Y, Y) by the Jurkat-Ryser procedure and then map these vertices
by D' back to the vertices of S[Y]. For the sake of completeness,
we shall include a summary of the Jurkat-Ryser procedure for finding
the vertices in U(R, S) for R > 0, S> 0, and

7'1—}—..._{._1-"‘:01—}-...-*-0“_

To construct a vertex Ae U(R, S), pick a position (7, j) in an
m X n array. Compute a,; = min {r, ¢;}. If a;; = r;, then complete
the ith row with 0’s and delete the ith row obtaining a smaller size
matrix which must be a vertex of Ul[(r, ¢, Tiey, Tits, ***, Tm)s
(Cy *++, Cioyy €j — T4y Cityy ==, Cu)]. If a; = c;, then complete the jth
column with 0’s and delete the jth column obtaining a smaller size
matrix which must be a vertex of Ul[(r,, -+, iy, s — Cjy Titsy ** %, Tn)s
(01, <ee, Gy, Cirpy 00, cn)].

This procedure is then reproduced on the smaller sized array
unitil a vertex is found. Further, all vertices may be found by
applying this inductive procedure.

For example, by applying the procedure to find the vertices of
S[(1/2, 1/3, 1/6)], we obtain

1 0 0 ¥ 320
(0 1 O)and(l 0 O)fori=3,j=3.

0 01 0 01
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100 2 0 %
o;%)and;;omi_g,jmz.
10 010

2 0 % ¥ 3 0 3 40

01 0), (2 0 2]and{0 3 3|fori=38 j=1.

100 \1 oo 100

This then specifies the entire list of vertices of S[(1/2, 1/3, 1/6)].

To extend our work to finding the vertices of S[Y] where Y = 0
we proceed as follows. As YA = Y if and only if YPP'AP = YP
i.e.,, P!S[Y]P= S[YP], for any permutation matrix P we may assume
without loss of generality that Y = (v, ¥, -+, ¥,, 0, -+, 0) Where

ve>0for k=12 ---, . Now YA = Y implies that A — (jl 2)

21 2
where A, is of order ». Hence (v, ---, ¥.)A, = (¥, -+, ¥,) and so
A€ S, -+, u)]. Further, if A,e [, -+, then 4= (g 4 )e

S[Y] if and only if (4, A,) = 0 has row sums equal to one. Thus
the vertices of S[Y] may be found as follows.

AeS[Y] is a vertex of S[Y] if and only if A4, is a vertex of
Sl(y, -+, ¥,)] and (4, 4,) has precisely one 1 in each row. For
example the vertices of S[(1, 0, 0)] are as follows.

1 00 1 00 1 00 1 00 1 00
(1 0 0) 10 O) 1 0 O) 01 0 0 1 0)
1 0 0 0 1 0 0 0 1 1 00 0 10
100 1 00 1 00 1 00

0 1 0) 0 0 1) 0 0 1 (0 0 1

0 0 1, 10 0 01 0 0 0 1

2. Moving in S[Y]. This section considers the kind of changes
that can be made among the entries of a matrix 4 e S[Y] to obtain
another matrix Be S[Y]. In light of Theorem A, our curiosity is
over the various choices for each A, in constructing the sequence
A, A, ---. The first result related to this question requires the
following definition. An 7 x m matrix N is called a loop matrix if N
has a collection of nonzero entries say =, ;, %,;, % %
Wiy with

- . . eee s N g =
11319 1199 12799 ’ 15—17gy Tigls

if (’L', .7) = (?:k; jk+1)

— it (4, 5) = (%, J)

0 otherwise
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for ¢e# 0 and Y = (¥, ¥, -+, ¥.) > 0 some probability vector. For
example,

r s t

i o0 ==

Y Y
—& ¢

N = — — 0
J Y; Y;

0 = &

k Yr Y

THEOREM 2.1. Suppose A and B are in S[Y] with Y > 0. Then
there is a sequence of loop matrices N, N, ---, N, so that A = A,
A +N =A4, -, A, + N, = A,., = B where A, e S[Y].

Proof. The proof is a matter of translating [Theorem 3.1,1], by
using Lemma 1.1, into the current result.

For the extension of this theorem to the case where ¥ =0 we
introduce the following definition. A matrix Sis called a shift matrix
if S has row sums zero and precisely two nonzero entries in some

one of its row, say a,;, = ¢ and a,;, = —¢. For example,
Jr Js
000 00O
S=4{0 ¢ 0 —€ 0
00 0 0O

THEOREM 2.2. Suppose A and Bare in S[Y] with Y=0. Then
there is a sequence of loop matrices N,, N, ---, N, and shift matri-
ces S, S, -+, S so that A=A, A +N,=A, -+, A, +N,=A4,,
At+1 + S1 = At+2, Y At+l + Sz = At+l+1 = B.

Proof. Without loss of generality we assume Y = (y, :*-, ¥
0, ---, 0) has precisely » nonzero components. Then
(o n) ()
A21 Azg Bz1 Bzz
with A, and B, of order r. Now as A,, B,€ S[(y, -, ¥-)] we see

from Theorem 2.1 that there are loop matrices N,, N,, -+, N, so that
A=A,A +N, =4, ---, A, + N, = A,., where each A,¢c S[Y] with
B and A,., agreeing in each entry in the first » rows. Now we may
add a sequence of suitable shift matrices to A,,, yielding A,., whose
(r + 1, 1) entry is precisely that of B. Similarly without altering
this entry we may again add a sequence of shift matrices to A4,,,
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whose (r + 1, 2) entry is precisely that of B. Continuing in this
manner it follows that there is a sequence of shift matrices say
S, S, +-+,S;sothat A,., + S, = A4, -+, A, + S, = A,,,,, = Bwith
each A,,,€ S[Y]. This then is the result of the theorem.

3. The size of S[Y]. This section discusses the size of the set
S[Y]. In particular, we find the size of the largest simplex contained
in S[Y]. The work may be considered an extension of a result of
Marcus and Minc which provides that dim S[(1/n, 1/n, ---, 1/n)] =
(n — 1)

Let .#7°(m, n) = {m x n matrices A so that A has its ith row
sum and jth column sum being zero}. _#°(m, n), of course, is a vector
space.

LemMmA 3.1. dim. 7" = (m — 1)(n — 1).

Proof. Let e, be the (0, 1)-row vector with m coordinates having
precisely one 1, in its ith position. Let ¢ be a row vector with m
coordinates having a one in each position. Let A’ be the ith column
of A and

e 0 - 0
-0
S S
A® o 0 ...
x=|" 1 Set M = ¢
. 6 € €
A™ €y €y * * * €
Cm Cm €m

an (n + m) X mn matrix. Then Ae_#"(m, n) if and only if MX = 0.
Thus, as rank M =m + n — 1, dim _#"(m, n) = mn — [m +n — 1] =
(m — 1)(n — 1).

LEMMA 3.2. IfR= (1,7, «*-rn)>0and S=(c,c, -+, ¢,) >0
with t=r, +7r,+ +++ +r,=¢ +¢+ -+ + ¢, then dim UR, S) =
(m — 1)(n — 1).

Proof. TFirst note that A = v7'(r,¢;) >0 and Ae U(R, S). Let
E,E, ---, E,_,,,., be a basis of _#°(m, n). Then A, A+ ¢E,
A+¢eE, --+, A+ ¢E 1 provide the vertices of an (m—1)(n—1)
dimensional simplex of U(R, S) for ¢ sufficiently small. To see that
this is a largest simplex in U(R, S), suppose B, B, ---, B, are the
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vertices of any simplex of U(R, S). Then {B,— B, B,— B, +--,
B, — B} is linearly independent. But each B, — B,e._#"(m, ») and
so r = (m — 1)(n — 1).

These two lemmas provide the initial result.

THEOREM 3.1. For Y >0, dim S[Y] = (n — 1)%.

Proof. An application of Lemma 1.1 and Lemma 3.2.

For the dim S[Y] when Y = 0, we proceed as follows.

Let .#°(m, -) = {m X n matrices A with ith row sum zero}. Let
UR, -) = {m x » matrices A = 0 with ¢th row sum ~;}.

LemMmA 3.8. dim #"(m, ) = m(n — 1).

Proof. As in Lemma 3.1.

LEMMA 34. If R=(r, T4y **+, Tw) > 0then dim U(R, -)=m(n—1).
Proof. As in Lemma 3.2.

The major result of this section may now be stated as follows.

THEOREM 3.2. dim S[Y] = (r — 1)+ (n — r)(n — 1) for Y having
precisely r nonzero values.

Proof. Without loss of generality, we assume that Y =
¥ Ysr ~*+, U 0, +++, 0). Recall 4= (ﬁl 8 )esiyy it and only if
21 2
A e S[(y, ¥y +++, ¥,)] and (4, 4;) = 0 has row sums one. Let B, B,
«++, B,_,: be the vertices of simplex in S[(y, ¥, **, ¥-)]. Applying
Lemma 3.4, let G, C, -+, Cpin_yy be (m — r) X n matrices which are
the vertices of a simplex in U(R, -) where R= (1,1, ---,1). Let

B, 0 B, 0 B, 0 )
D, = , D = y Diperyin—ny = y o

-B(r—l)2 0)
Co )

B, 0

D(n—r)(n—-l)+1 =
G

) y %y Dinenynenyr—n2 = (
It is easily verified that these matrices form the vertices of an (» — 1)* +

(n — r)(n — 1) dimensional simplex of S[Y]. Finally, by an arguement
similar to that in Theorem 3.1, S[Y] can have no larger simplex.

4. Some intersection properties of S[Y]. This section considers
the question of how well S[Y] can be used to determine particular
stochastic matrices. In [3], criteria (3) of Theorem A is used to show
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that the product A A, --- A, gets closer to the set of rank one
stochastic matrices as & increases. Criteria (2) is added to show that
the product also gets closer to S[Y;]. These two bits of information
thus provide the desired result, as there is only one rank one matrix
in S[Y,]. Our results are intended to expand on this area.

THEOREM 4.1. Aec S[Y N S[Y,]n --- N S[Y,] for some linearly
independent set {Y,, Y, -+, Y.} of and only vf A is reducible into
at least h isolated submatrices.

Proof. Suppose (Y, Y, ---, Y},} is linearly independent and
AeS[Y]In S[Y,]Nn --- N S[Y.]. Without loss of generality we may
assume that

A, 0 0 0 0
0 A, -+ 0 0 0
A={0 0 w4, 0 0
Ag+1 i Ag+1 2 Ag+1 0
Al]. Alz Al

is in normal form [2, p. 75] with ¢ isolated irreducible submatrices.
Now dm{X| XA =X}=9. As {Y, Y, ---, YV, }Cc{X| XA =X} it
follows that h <g.

The converse argument is elementary.

- 10 220y
As an application note that <1 0> and (3 £ 0] are in precisely one
100
S[Y] while (O 1 0) is in infinitely many S[Y]. However, it does
330
100
follow that if <(1) % 0)6 S[Y.In S[Y.JNn ---n S[Y,] then dim span
30

{vy, Y, ---, Y,} =<2. Also as a consequence, if R = {rank one
stochastic matrices} we have the following.

COROLLARY 4.1. Y Yo' Yn
ROS[Y]={T7=|" VY
Y Yz Ya

1.e., the only rank one matrixz in S[Y] is Y.
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From this corollary we see that rank one stochastic matrices are
completely determined by the particular S[Y] they are in. To
generalize this result to idempotents of higher rank we have the
following. One should recall that idempotents play an important
role in the study of final transition probabilities.

THEOREM 4.2. Suppose {(Y,, Y,, -+, Y,} is a linearly independent
set of probability vectors and Y, + Y, + --- + Y, > 0. Then there
18 at most one idempotent of rank h in S[Y,]n S[Y.]N --- N S[Y3].

Proof. Suppose A and B are idempotents of rank 2 in S[Y,]N
S[Y.JNn--- N S[Y,]. Without loss of generality by Theorem 4.1 we
may assume that

A4, 0 0

0 A4, 0
A= .

0 O"'Ah

where each A, (k =1, 2, ---, k) is rank one. Thus there is a linearly
independent set {Z,, ---, Z,} of probability vectors so that

0 Q- cceveeens 0
O Qeveevenne 0

Z : =2, fork=12 - h
0 0. Ay--e0]| ¢ 77 R
0 Qcceveenns 0

and span{Z, ---, Z,} = span{Y,, ---, Y,}. Therefore, Z,B = Z, and
hence by partitioning B as is 4, say

B1 B12 et B12
B— B21 Bz"‘Bzz ,
By B+ By

we have that B;; =0 for 7+ j. Hence each B,(k=1,2, ---, k) is
rank one and again as Z,B = Z, it follows that A = B.

It should be noted here that Theorem 4.2 does not imply that
there is an indempotent of rank # in S[Y, N S[Y,]N:-- N S[Y:]. In
fact S[Y,JN S[Y,]N --- N S[Y,] may contain only I. Further we
should mention that the condition Y, + Y, + .-« + Y, > 0 may not
in general be relaxed, for if the normal form of A is
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A -+ 0] 0
0---4,l 0
B 0

then A is idempotent if and only if each A, (k =1, 2, ---, g) is idem-
potent and rank A = rank A, + --- + rank 4,. Thus if ¢ >1 and B
appears then there are infinitely many choices for B and hence
infinitely many idempotents. Concerning the count of the idempotents
in S[Y] we do have the following.

THEOREM 4.3. If Y = (Y, ¥y, ***, Yu) with n < 2, then S[Y] has
only finitely many idempotents.

THEOREM 4.4. If Y = (Y, Yy, =+, Yn) With =2 and Y % 0 then
S[Y] has tnfinitely many idempotents.

Proof. Without loss of generality, assume Y = (y,, ¥, ***, ¥a, 0).

Now A = (é 8) where B> 0 a n — 1 dimensional row vector with

22'b, = 1 yields infinitely many idempotents in S[Y] corresponding
to infinitely many choices of B.

THEOREM 4.5. If Y >0 then S[Y] has only finitely many
wdempotents.

Proof. A is an idempotent of S[Y] if and only if there is a
permutation matrix P so that

A 0 0

A, 0

B=P'AP = . .
0 0---A4,

with each 4, of ordeir n,, rank one fork=1,2, ---, g and Be S[YP].
Further, if YP =Y and 0, = §usimy_ o1 + *** + Tupreoing, 40, thED

A, = <fzk)> where

X

(k) _ Ynprootmggrieoti .
ai]' O.k

This then implies that there are only finitely many idempotents in
S[Y].
It is easily established that if Y % 0 then A ¢ S[Y] implies that
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A is reducible. Further, if Y > 0 then Aec S[Y] implies that A is
irreducible or completely reducible [2, p. 78]. The remainder of this
section then contains results concerning the 0 pattern of matrices in
more than one S[Y].

THEOREM 4.6. Suppose Y has precisely r nonzero entries. If
P is any permutation matric so that YP = (0, <<+, 0, Ysrs, ***, Yerm
0, ---,0) then Ae S[Y] implies that P'AP = B is such that b; =0
fort+1=ZiZt+rand j<t+1or j>t+r i.e., Bhas an iso-
lated submatric in rows t +1 to ¢t + r.

Proof. By direct calculation.

COROLLARY 4.2. If{Y, ---, Y,} is a linearly independent set of
probability vectors so that Y, Y:=0 for i +Jj with Y, + Y, + -+ +
Y, >0 then Ac S[Y,]NnS[Y,]N --- N S[Y,] implies that there is a
permutation matriz P so that B = P'AP 1is completely reducible into
r isolated submatrices.

THEOREM 4.7. If Ae S[X]nN S[Y] then either

(1) XY'=0 or

(2) there is a probability vector Z so that z, > 0 if and only
if ©,>0 and y, >0 with Ae S[Z], i.e., the isolated submatrices
corresponding to X and Y intersect in an isolated submatrix corre-
sponding to Z.

Proof. As a consequence of [2, p. 96] there is a positive integer
m and a permutation matrix P so that A, = lim,_ . P!A™P = (%, g)

where
A 0 0
0 A4,---0
J =
0 0 ---A,

is of order ¢, each A, > 0 of order ¢, and rank one. Now of course
A,e S(XP)N S(YP). Note that XY* =0 if and only if (XP)(YP)*=0.
Thus suppose XY* = 0. Let XP=X, YP=7Y. As A,eS[X]n S[Y]
it follows that # =4, =0 for %>t Thus JeS[@, ---, )] N
Si(#, -+, 4.)]. One now sees (2) by direct calculation.

5. Topological properties of S[Y]. In this section we consider
how close and how far apart matrices in S[X] can be from matrices
in S[Y] in terms of the components of X and Y. Our first result
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extends Lemma 2 in [3] concerning the closeness of matrices in S[X]
to those in S[Y].

THEOREM 5.1. If Ae S[X] there is a Be S[Y] so that

max |x, — y;| where 0 = miny, .

max|a; —b,;| = 2n(n + 1)
ij 0 ¥;>0

Proof. We may assume without loss of generality that Y =
sy ¥, 0, -+-,0) with , >0, ---, y, > 0. Partition 4 = @‘ ﬁm)
21 2

with A4, of order r. Compute YA = Z. Set V=(, -, y,) and
A=(A,A;). Then YA=Z. Again without loss of generality, assume
Y1 S 2, Ys S 2y, vy Ys = Zoy Yor1 = Rogyy **°, Yo = 2. Lt €, = 0 50 that

I—-¢e)z=y, for k=12 --. s. Thus as Y-, ¥, = >.r-, 2, it follows
that SV .. v = o 6% + Soieen 2. Pick 0 < 61 <1 so that

Ropy + 0372, + - o0 + 072, + 07518y + o0 + 0512, = Your

2y + 072, + o0 + 002, + 00y Rpyy + roe FOL2, =Y, ,
with
5fﬂzl + oo + 5121 = &2
6:+1zs + -+ 5izs = &5
05 8pn T oo e + 00080 = Zpp
0572, + oo + 002, = 2, .
Now let A® denote the kth column of A for k =1,2 ---, n and set
B = (AA“) — 81AA<1), .o, A — 831‘1\(5), At 3i+1A\(1)
doeee 5§+1AA(3) + Bﬁi%Af(rH) 4 oeee 3;{-121\(7»)’ . A(r)
T OTAD 4o 4+ gTA® + 5:H[iw+1> 4. o+ 5;1@‘”’, 0,
cee, 0).

Now B has row sums equal to one and YB = Y. Therefore,

B
B = (Am Az) eS[Y].

Now note that 6f + .-+ + 6* < mmaxe, for k=s+1, -+, 7 and

1Sis<s

that as 37, ¥,.a,, = 2z, we have that a,, < 2,/0 = (|2, — v, |)/0 for t > r
and k < r. Hence
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| @;; — by | < max {sl, cee, &, n(max & —I—%mgfc |2 — y,l)}

154<s r

< n(max & + 1 ex [z, — Y, l)
1Siss 0 r<t

1 1 |

n(Kmax]zi yi|+§1{l§3{lzt y:l)

1Siss

IA

Sza—nmaxlzi—yil.

Finally set #, —y, =7, for 1 =12 ---, n. Then

wwa=M-§mm %—;%m—n)

= |y, — x| +lzk|a'ki'7k

S|o —y | +nmax|x, — v, | < (n + 1)max |z, — v,

= Iyi —x; + Zk‘,akm

and so

ay = by) = 22X Dmax o, — .
Thus

|a;; — b g—z—yﬂ%—i—l—)maxlxi—yil .

Our results concerning how far matrices in S[X] can be from
matrices in S[Y] rest on the following theorem.

THEOREM 5.2. Given any probability wvector Y, there is an
Ae S[Y] so that a;; = 0 for some 1.

Proof. If y # 0, pick P a permutation matrix so that YP =Y, =
@y G *++, 5, 0, +++,0) with 9, >0,9,>0, ---, 5, >0. Then

A gz' Y, 0---0
by JoovoBr 0420
7 - AA ..... A ....... ¢ S[YP]
Gy Govor9r 040
1 0...0 0-.--0
1 0..-0 0.--0

with 0 in the (n, %) position and hence P*Y,Pe S[Y] has the desired
property. If Y >0 then let y,, = miny,. Now consider the loop
matrix



A STUDY OF CONVEX SETS OF STOCHASTIC MATRICES 417

7:0 .7 Y Yz Yau

N =1, [—y, ’ _ .
TV Ve pet 7= | P T e gy,

. _ng _yio oooooooooo

TNy v Yo Yttt Yn

Then Y + Ne S[Y] and has the desired property.

As corollaries, we can see how far the matrices in S[Y] are
spread and also how far one can expect matrices in S[X] to be from
matrices in S[Y].

COROLLARY 5.1. Given any probability wvector Y there is an
Ae S[Y] and a Be S[Y] so that max;;|a,;; — b;;| = 1.

Proof. Take A with the property of Theorem 5.2 and B = I.

COROLLARY 5.2. Given any probability vectors X and Y there
1s an Ae S[Y] and a Be S[X] so that max,;|a,;; — b;| = 1.

Proof. As in Corollary 5.1.

6. Conclusion. Concluding this paper, we cite §§1, 2, and 3 as
providing some answer to motivating point (1) in our introduction.
For motivating point (2) we cite §4 and §5 as being significant.
Concerning motivating point (3) we label the general areas of

(1) mean limiting transition probabilities [2, p. 96] and

(2) studies on sequences of transition matrices with some specified
zero pattern,
as possibly fruitful areas in which to further generalize the classical
work of Markov chains. Loosely speaking, as I see it, one can con-
sider the defining properties of the final transition matrix A, i.e.,
does it lie in S[Y] or several S[Y], is it idempotent, etc., and let
these properties determine possible sequences of stochastic matrices
A, A, --- sothat lim,_ ., A A4,--- A, = A,, etc. Sections 4 and 5 may
then be useful in determining various types of such sequences.
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