ORTHOGONAL GROUPS OF DYADIC UNIMODULAR QUADRATIC FORMS. II

DONALD GORDON JAMES
ORTHOGONAL GROUPS OF DYADIC UNIMODULAR QUADRATIC FORMS II

D. G. JAMES

Let $O(M)$ be the orthogonal group of a unimodular quadratic form over the integers in a dyadic local field. The subgroups of $O(M)$ normalized by the commutator subgroup are classified when the rank $r(M) \geq 9$, or when $r(M) \geq 7$ and the residue class field has at least 8 elements.

Classifications of the subgroups of an orthogonal group normalized by the commutator subgroup have been given by many authors. For isotropic nonsingular quadratic forms over fields there is the fundamental result of Dickson [3] and Dieudonné [4]: The projective commutator subgroup is simple when the form has dimension at least 5. Other proofs of this, which allow the field to have characteristic two, have been given by Eichler [5] and Tamagawa [17]. In [12], Klingenberg generalized this result to nondegenerate quadratic forms over local rings, provided the residue class field is not of characteristic two, and classified the subgroups normalized by the commutator subgroup by using congruence subgroups and mixed commutator subgroups. Klingenberg’s work has been further extended in [1, 2, 7–10, 13, 16, 18, 19] by relaxing the restrictions either on the form or on the ring. In particular, I studied this problem for unimodular quadratic forms over the ring of integers in a dyadic local field with 2 an unramified prime and the residue class field having at least 8 elements [9, 10]. These last two restrictions will now be removed, that is, 2 may ramify and there is no restriction on the residue class field (except only that it is perfect).

An outline of the paper follows. Denote by \mathfrak{o} the ring of integers in a dyadic local field F and by M a free \mathfrak{o}-module of finite rank $r(M) \geq 3$ endowed with an isotropic symmetric bilinear form $B: M \times M \to \mathfrak{o}$ with determinant a unit in \mathfrak{o}. After introducing some basic isometries, the commutator subgroup $\Omega(M)$ of the orthogonal group $O(M)$ is determined. Apart for a few exceptional modules M with small rank, $\Omega(M)$ is equal to the spinorial kernel of $O(M)$ and is generated by the Siegel transformations. Next, the “primitive” submodules M_ξ, $\xi \in \mathcal{E}(\mathcal{E}$ a suitable indexing set), invariant under the action of the commutator subgroup are determined. For each ideal \mathfrak{a} in \mathfrak{o}, the submodules $\mathfrak{a}M_\xi$ are still invariant and are used to define the subgroups $\mathcal{Z}(\mathfrak{a}M_\xi)$ and $\mathcal{F}(\mathfrak{a}M_\xi)$. The main result is:

If $r(M) \geq 9$, a subgroup \mathcal{N} of the orthogonal group $O(M)$ is
normalized by the commutator subgroup $\Omega(M)$ if and only if it satisfies a ladder relation of the form

$$\mathcal{G}(\alpha M_t) \subseteq \mathcal{N} \subseteq \mathcal{F}(\alpha M_t)$$

for some ideal α in \mathfrak{o} and some $\xi \in \Xi$.

The restriction $r(M) \geq 9$ can be weakened to $r(M) \geq 7$ if the residue class field has at least 8 elements. If $aq(M_t) \subseteq \mathfrak{o}$, the subgroups $\mathcal{G}(\alpha M_t)$ can be characterized as mixed commutator subgroups with the help of congruence subgroups obtained from αM_t. In a subsequent paper we shall indicate how the local structure obtained here can be injected into orthogonal groups over Dedekind domains. In particular, some of the structure of $\mathcal{F}(\alpha M_t)/\mathcal{G}(\alpha M_t)$ that transfers to the global situation will be given.

The notation for subgroups in [9, 10] has been slightly modified in the present paper. In particular, $\mathcal{G}_*(\alpha)$ will now be written as $\mathcal{G}(\alpha M_\ast)$ and the subgroups $\mathcal{G}(\alpha, \zeta)$ are now included amongst those denoted $\mathcal{G}(\alpha M_t)$. Similarly, $\mathcal{F}^*(\alpha)$ becomes $\mathcal{F}(\alpha M_\ast)$ and corresponding changes will be made for the congruence subgroups.

1. Preliminaries. Let V be a finite dimensional vector space over the dyadic local field F of characteristic zero and $q: V \to F$ a quadratic form on V, that is, $q(\alpha x) = \alpha^2 q(x)$ for $\alpha \in F, x \in V$ and the symmetric mapping $B: V \times V \to F$ defined by

$$B(x, y) = q(x + y) - q(x) - q(y)$$

is bilinear. Denote by \mathfrak{o} the ring of integers in F, by \mathfrak{p} the maximal ideal in \mathfrak{o} and by u the group of units. Assume V supports a unimodular lattice M; thus M is a free \mathfrak{o}-module spanning V over F with $B(M, M) = \mathfrak{o}$ and $\det_B(M)$ a unit. Unimodular lattices are discussed in [14; §93D]; we summarize below the main results required.

Fix a prime π in \mathfrak{o} and a normalized valuation ord on F. Thus $\text{ord} \pi = 1$ and $\text{ord} 2 = e \geq 1$. In

$$q(M) = \{q(x)|x \in M\} \subseteq \frac{1}{2}\mathfrak{o}$$

choose $q(w) = (1/2)a$ such that $\text{ord} a$ is minimal. O'Meara calls a a norm generator of M. The norm group is

$$gM = 2(q(M) + \mathfrak{v})$$

Let $\mathfrak{m}M$ denote the largest ideal of \mathfrak{o} in gM and define the weight $\mathfrak{w}M$ by the equation

$$\mathfrak{w}M = \mathfrak{p}mM + 2\mathfrak{v}.$$
Then \(b \in \mathfrak{o} \) is called a weight generator of \(M \) if \(b \mathfrak{o} = \mathfrak{n} M \).

If \(r(M) \geq 5 \), or if \(r(M) \geq 3 \) and \(\text{ord}(ab) \) is even, \(M \) is split by a hyperbolic plane. Thus

\[
M = H \perp K
\]

where \(H = \mathfrak{o}u + \mathfrak{o}v \) with \(q(u) = q(v) = 0 \) and \(B(u, v) = 1 \). In this manner we can reduce the general unimodular lattice to the form

\[
M = H \perp N \perp L
\]

where \(r(L) \leq 4 \) and \(q(N) \leq \mathfrak{o} \). Here \(N \) will be an orthogonal sum of hyperbolic planes plus, possibly, the anisotropic binary plane \(\langle A(2, 2\alpha) \rangle \). In general, \(\langle A(\alpha, \beta) \rangle \) denotes a binary unimodular lattice \(\mathfrak{o}x + \mathfrak{o}y \) where \(2q(x) = B(x, x) = \alpha, 2q(y) = B(y, y) = \beta \) and \(B(x, y) = 1 \). For \(\alpha \in \mathfrak{u} \), denote by \(\langle \alpha \rangle \) a lattice \(\mathfrak{o}x \) where \(B(x, x) = \alpha \). If \(r(L) \geq 1 \), the lattice \(L \) obtained above in the splitting of \(M \) can be taken as one of the forms given in the following table. Here \(a \) and \(b \) are norm and weight generators, \(\text{ord} c \geq \text{ord} b \) and \(\zeta \in \mathfrak{o} \) (see [14: 93: 17–18]). Moreover, when \(r(L) = 2 \) and \(\text{ord}(ab) \) is even, we may take \(b = 2 \).

It will be apparent later that the subgroup structure of the orthogonal group \(O(M) \) is determined mainly by \(L \).

<table>
<thead>
<tr>
<th>(r(L))</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\mathfrak{o}w = \langle a \rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\mathfrak{o}w + \mathfrak{o}z = \langle A(a, c) \rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\mathfrak{o}w \perp (\mathfrak{o}x + \mathfrak{o}y) = \langle a \rangle \perp \langle A(b, 2\zeta) \rangle)</td>
</tr>
<tr>
<td>4</td>
<td>((\mathfrak{o}w + \mathfrak{o}z) \perp (\mathfrak{o}x + \mathfrak{o}y) = \langle A(a, c) \rangle \perp \langle A(b, 2\zeta) \rangle)</td>
</tr>
</tbody>
</table>

Denote by \(M_* \) the sublattice of \(M \) consisting of all \(r \in M \) with \(q(r) \) in \(\mathfrak{o} \). Let \(p \) and \(r \) in \(M_* \) be such that \(q(p) = B(p, r) = 0 \). Then \(E(p, r) \) denotes the Siegel transformation defined for \(s \in M \) by

\[
E(p, r)(s) = s - B(p, s)r + B(r, s)p - q(r)B(p, s)p.
\]

Now assume that \(M \) is split by a hyperbolic plane \(H = \mathfrak{o}u + \mathfrak{o}v = \langle A(0, 0) \rangle \). In future \(H \) denotes this fixed hyperbolic plane. Then \(M = H \perp K \) with \(K \) unimodular. Denote by \(\mathcal{G} \) the subgroup of \(O(M) \) generated by the Siegel transformations \(E(u, r) \) and \(E(v, r) \) with \(r \) ranging over \(K_* = K \cap M_* \). The isometries \(\mathcal{A} \) and \(\Phi(\varepsilon) \), where \(\varepsilon \) is a unit, are defined by

\[
\mathcal{A}: u \mapsto v, v \mapsto u, s \mapsto s \quad \text{for} \quad s \in K
\]

and

\[
\Phi(\varepsilon): u \mapsto \varepsilon u, v \mapsto \varepsilon^{-1} v, s \mapsto s \quad \text{for} \quad s \in K.
\]
Finally, if \(r \in M \) is such that \(q(r) \notin p \), denote by \(\Psi(r) \) the symmetry about \(r \) defined by
\[
\Psi(r)(s) = s - q(r)^{-1}B(r, s)r.
\]

Proposition 1.1. The following relations hold.
\[
\Delta \Phi(\varepsilon) \Delta^{-1} = \Phi(\varepsilon^{-1}).
\]
For \(\theta \in O(M), q(p) = B(p, r) = 0 \) and \(r \in M^* \)
\[
\theta E(p, r) \theta^{-1} = E(\theta(p), \theta(r)).
\]
In particular,
\[
\Delta E(u, r) \Delta^{-1} = E(v, r)
\]
\[
\Phi(\varepsilon) E(u, r) \Phi(\varepsilon^{-1}) = E(u, \varepsilon r)
\]
\[
\Phi(\varepsilon) E(v, r) \Phi(\varepsilon^{-1}) = E(v, \varepsilon^{-1} r).
\]
Also, for \(r, s \in M^* \) with \(B(p, r) = B(p, s) = 0 \),
\[
E(p, r) E(p, s) = E(p, r + s).
\]

Proof. These are well-known and easy to verify.

Perhaps less well-known are the following two identities.

Proposition 1.2. Let \(M = H \perp K \). Let \(r \in K^* \) and \(\beta \in o \) be such that \(\varepsilon = 1 - \beta q(r) \) is a unit. Then
\[
E(v, \beta r) E(u, r) = E(u, \varepsilon^{-1} r) E(v, \beta \varepsilon r) \Phi(\varepsilon^{-2}).
\]
Let \(s \in K \) have \(q(s) \) a unit. Then
\[
\Delta \Psi(s) = \Phi(- q(s)) E(v, s) E(u, q(s)^{-1} s) E(v, s).
\]

Proof. These can be verified by checking the images of \(u, v \)
and \(t \in K \). Alternatively (see [10]), they can be established by making suitable calculations in the Clifford algebra of \(V \).

Corollary 1.3. Let \(M = H \perp K \) and \(q(K) \) contain a unit. Then for all units \(\varepsilon \) in \(u, \Phi(\varepsilon) \in \mathcal{S} \). In particular, the hypothesis is satisfied if \(r(M) \geq 5 \).

Proof. Take \(r \in K \) with \(q(r) \) a unit and put \(\beta = q(r)^{-1}(\varepsilon - 1) \). The result now follows from the first identity in Proposition 1.2. If \(r(K) \geq 3 \) and \(\text{ord}(ab) \) is even, then \(K \) is split by a hyperbolic plane and consequently represents units. If \(\text{ord}(ab) \) is odd, either
ord \((2a^{-1})\) or ord \((2b^{-1})\) is even, and \(K\) clearly represents units.

The characteristic set \(\mathcal{M}(s)\) of a primitive element \(s\) in \(M\) is defined by
\[
\mathcal{M}(s) = \{t \in M | B(s, t) = 1\}.
\]
Since \(M\) is unimodular, \(\mathcal{M}(s)\) is not empty. For any isometry \(\varphi \in O(M)\),
\[
q(\mathcal{M}(\varphi(s))) \equiv q(\mathcal{M}(s)) \mod o.
\]
This relation controls the equivalence of elements of \(M\) under the action of the orthogonal group (see Hsia [6]).

If \(M = M_1 \perp M_2\), denote by \(O(M)\) the subgroup of isometries in \(O(M)\) that act identically on \(M_2\). Let \(i(M)\) denote the Witt index of \(M\).

Proposition 1.4. Let \(M = H \perp K\) and \(q(K)\) contain a unit. If card \(o/p = 2\), assume also \(r(M) \geq 7\), or \(i(M) = 1\), or \(M = H \perp H' \perp K'\) and \(q(K')\) contains a unit. Then for each \(\varphi \in O(M)\) there exists an isometry \(\psi \in \mathcal{C}\) such that
\[
\psi \varphi \psi^{-1} = E(u, x)E(v, y)\Phi(\varepsilon)\theta
\]
where \(x, y \in K_1\), \(\varepsilon\) is a unit and \(\theta \in O(K)\).

Proof. The proof of Lemma 3.6 (3), (4) in [9] is modified as follows.

(3) Assume \(\alpha, \beta \in p\). Then \(s\) is primitive in \(K\). The characteristic set of \(v\) is
\[
\mathcal{M}(v) = \{z \in M | B(v, z) = 1\} = u + (K \perp ov).
\]
Since \(\varphi(\mathcal{M}(v)) = \mathcal{M}(\varphi(v))\), there exists \(t_i \in \mathcal{M}(\varphi(v))\) such that \(q(t_i)\) is a unit. Let \(t\) be the component of \(t_i\) in \(K\). Then \(q(t) \in o\). Also, since \(B(t, \varphi(v)) = 1\) and \(\alpha, \beta \in p\), it follows that \(B(s, t)\) is a unit. Hence \(B(s, t) + \alpha q(t)\) is a unit.

(4) Finally assume \(\alpha\) is a unit and \(\beta \in p\). If card \(o/p \geq 4\), the earlier version still holds. There remains the case card \(o/p = 2\) and \(B(s, t)\) a unit. Then \(K = (os + ot) \perp K'\). If \(q(s)\) is a unit, replace \(t\) by \(s\). Otherwise \(os + ot\) is a hyperbolic plane \(H'\). Now choose a new \(t \in K'\) with \(q(t)\) a unit and \(B(s, t) = 0\). This completes the proof.

2. Generators for \(O(M)\). In this section we obtain generators for the orthogonal group \(O(M)\) (see also O'Meara and Pollak [15]).
PROPOSITION 2.1. Let $M = H \perp N \perp L$ where $q(N) \subseteq \mathcal{O}$. Then the orthogonal group $O(M)$ is generated by \mathcal{S} and $O(H \perp L)$.

Proof. The proof of Theorem 2.1(1) in [9] or of the lemma in [10; IV] generalizes without significant change.

REMARK 2.2. Let $w, z \in L$ be such that $B(w, z) = 1$ and $q(z) \in \mathcal{O}$ (but not necessarily $q(w) \in \mathcal{O}$). The argument in [9; Theorem 2.1(1)] also shows that $\varphi \in O(H \perp L)$ can be changed by isometries in \mathcal{S}, and Δ, to an isometry fixing w. This fact will be used later.

It is clear that $O(H)$ is generated by Δ and the isometries $\Phi(\varepsilon)$. We now obtain generators for $O(H \perp L)$ where L is as in Table I.

2.3. Let $L = ow = \langle a \rangle$. Then $O(M)$ is generated by $O(H)$ and \mathcal{S}, together with $\Psi(w)$ if 2 is tamely ramified (ord 2 odd).

Proof. By Proposition 2.1 it suffices to consider $O(H \perp ow)$. Let $\varphi \in O(H \perp ow)$ and

$$\varphi(w) = \beta u + \gamma v + \delta w$$

where δ is a unit. Then

$$(\varphi(w))^\perp = \mathcal{O}(a\delta v - \beta w) + \mathcal{O}(a\delta u - \gamma w) \equiv H.$$

It follows that $q(\beta w)$ and $q(\gamma w)$ are in \mathcal{O}. Assume $2 \in \mathcal{O}(1 - \delta)$ (a similar argument will hold if instead $2 \in \mathcal{O}(1 + \delta)$). Using

$$\beta \gamma = \frac{1}{2} a(1 - \delta^2),$$

it follows that

$$E(u, \gamma^{-1}(1 + \delta)w)\varphi(w) = \gamma v - w.$$

Then

$$\Psi(w)E(v, a^{-1}\gamma w)(\gamma v - w) = w,$$

and we have reduced φ to an isometry in $O(H)$. When 2 is wildly ramified, $\Psi(w)$ can be expressed in terms of the isometries in $O(H)$ and \mathcal{S} using the second identity in Proposition 1.2.

2.4. Let $L = ow + oz = \langle A(a, c) \rangle$. Then $O(M)$ is generated by $O(H)$ and \mathcal{S}, together with $\Psi(w - az)$ if ord $(2a)$ is odd, and with $\Psi(z)$ if ord $(2c^{-1})$ is odd and positive.

Proof. We first change $\varphi \in O(M)$ by the given isometries to an
Isometry fixing w. If $q(z) = (1/2)c \in \mathcal{O}$, Remark 2.2 gives this immediately. We therefore assume $\text{ord}(ac)$ is odd (otherwise, change z and increase $\text{ord} c$). Again, by Proposition 1.4, since $q(L)$ now contains a unit, assume $\varphi \in O(L)$.

Let $\text{ord}(2c^{-1}) = g \geq 1$ and $h = [(g + 1)/2]$ (integral part). Then $q(xz) \in \mathcal{O}$ and $E(u, \pi^h z)(w) = \pi^h u + w$. Let

$$
\varphi(\pi^h u + w) = \pi^h u + w + \lambda w + \mu z.
$$

If $x = \pi^{-h}(\lambda w + \mu z)$ is in L_*, replacing φ by

$$
\psi = E(u, -\pi^h z)E(v, x)\varphi E(u, \pi^h z)
$$

gives the desired reduction since $\psi(w) = w$.

From $q(w) = q(\varphi(\pi^h u + w))$, it follows that

$$
\frac{1}{2}a\lambda^2 + \frac{1}{2}c\mu^2 = -a\lambda - (\lambda + 1)\mu \in \mathcal{O}
$$

and hence, since $\text{ord}(ac)$ is odd, $l = \text{ord} \lambda \geq (1/2)\text{ord}(2a^{-1})$ and $m = \text{ord} \mu \geq h \geq (1/2)g$. Let f be the minimum order of the four terms in this equation, that is

$$
f = \min \{2l - \text{ord}(2a^{-1}), 2m - g, l + \text{ord} a, m\}.
$$

Assume $f < g$. If $f = m$, then $2m - g \geq m$ leads to a contradiction. Similarly, $f = l + \text{ord} a$ gives a contradiction with $2l - \text{ord}(2a^{-1}) \geq f$. Since there must be at least two terms with the minimum order, this leaves

$$
f = 2m - g = 2l - \text{ord}(2a^{-1})
$$

which contradicts the hypothesis that $\text{ord}(ac)$ is odd. Hence $f \geq g$. This will now be strengthened to $f \geq 2h$, which ensures that $x \in L_*$ as required.

If g is even, $2h = g$. Assume, therefore, $g = 2h - 1$ and $f = g$. Considering again the definition of f, both $f = l + \text{ord} a$ and $f = 2l - \text{ord}(2a^{-1})$ (which is even) lead to contradictions. Hence $f = m = 2m - g = g$ and $(1/2)c\mu + \lambda + 1 \equiv 0 \mod \pi$. Replace φ by $\Psi(z)\varphi$ and the new coefficient of z lies in \mathcal{O}. Repeating the previous calculations now gives $f \geq g + 1 = 2h$.

We may now assume $\varphi(w) = w$. Modifying the argument in 2.3, we now reduce φ to an isometry in $O(H)$. Let $r = w - ax$ so that $B(r, w) = 0$. Since $B(\varphi(z), w) = 1$,

$$
\varphi(z) = \alpha u + \beta v + \gamma r + z
$$

for some $\alpha, \beta, \gamma \in \mathcal{O}$. Computing characteristic sets gives
\[\mathcal{M}(z) = w + H \perp \varepsilon(z - cw) \]

and

\[2q(\mathcal{M}(\varphi(z))) \equiv 2q(\mathcal{M}(z)) \equiv [a + \rho \varepsilon(1 + ac)|\rho \in \varepsilon] \mod 2\varepsilon. \]

Since \(v + (1 - \alpha)w \in \mathcal{M}(\varphi(z)) \), and either \(c \in 2\varepsilon \) or \(\text{ord}(ac) \) is odd, it follows that \(a\alpha^2 \in 2\varepsilon \). Similarly, \(a\beta^2 \in 2\varepsilon \). Let \(\sigma = -B(r, z) - \gamma q(r) \). Then \(q(z) = q(\varphi(z)) \) gives \(\sigma \gamma \sigma = a\alpha \beta \in 2\varepsilon \). But \(\text{ord}(\gamma q(r)) = \text{ord}(1/2(a\gamma)) \) and hence \(\sigma \in \varepsilon \). If \(\sigma \) is a unit,

\[E(u, \alpha \sigma^{-1}r)\varphi(z) = \beta v + z. \]

Similarly, the coefficient of \(v \) can be made zero and we obtain an isometry fixing both \(w \) and \(z \). If, however, \(\sigma \) is not a unit, then \(\gamma q(r) \) is a unit (since \(B(r, z) \) is a unit). In \(\mathcal{V}(r)\varphi(z) \) the new coefficient of \(r \) becomes \(\sigma q(r)^{-1} \). Now proceed as before. Note that if \(\text{ord}(2a) \) is even, \(\mathcal{V}(r) \) can be expressed in terms of the elements of \(\mathcal{E} \) and \(O(H) \). This completes the reduction.

2.5. Let \(L = \omega w \upharpoonright (\omega x + \omega y) = \langle a \rangle \perp \langle A(b, 2\zeta) \rangle \) with \(\text{ord } b \) odd. Then \(O(M) \) is generated by \(O(H) \) and \(\mathcal{E} \), together with one symmetry \(\mathcal{V}(r) \) where \(\text{ord}(q(r)) \) is odd.

Proof. Let \(\varphi \in O(M) \). Since \(B(w + x, y) = 1 \) and \(q(y) \in \varepsilon \), by Remark 2.2, \(\varphi \) can be assumed to have the property \(\varphi(w + x) = w + x \). But

\[L = \varepsilon(w + x) \perp (\varepsilon(ay - w) + \varepsilon(ax - bw)). \]

The result now follows from 2.4 since \(B(ay - w, ax - bw) \) is a unit,
\[2q(ay - w) = a(1 + 2a\zeta) \]
and
\[2q(ax - bw) = ab(a + b). \]

2.6. Let \(L = (\omega w + \omega z) \perp (\omega x + \omega y) = \langle A(a, c) \rangle \perp \langle A(b, 2\zeta) \rangle \) with \(\text{ord}(ab) \) odd. Then \(O(M) \) is generated by \(O(H) \) and \(\mathcal{E} \), together with one symmetry \(\mathcal{V}(r) \) where \(\text{ord}(q(r)) \) is odd.

Proof. Let \(\varphi \in O(M) \). By Remark 2.2, we may assume \(\varphi(x) = x \). If it can also be arranged that \(\varphi(y) = y \), invoking 2.4 will complete the proof. Changing \(z \) if necessary, we may assume that either \(c \in 2\varepsilon \) or \(\text{ord}(ac) \) is odd.

If \(c \in 2\varepsilon \), using 2.2 again, we also have \(\varphi(w) = w \). When \(c \in 2\varepsilon \), let \(g = \text{ord}(2b^{-1}) \) and \(h = [(g + 1)/2] \). Now put \(s = \pi^h(x - by) \) so that \(q(s) \in \varepsilon \). If, however, \(c \in 2\varepsilon \) so that \(\text{ord}(ac) \equiv \text{ord}(ab) \mod 2 \), let \(2k = \text{ord}(cb^{-1}) \geq 0 \). Since \(\text{ord}(ac) \) is odd, there exists \(r \in \omega w + \omega z \) such that
\[s = r + \pi^h(x - by). \]
is in M_*. Moreover, $B(s, w)$ is a unit, and by Remark 2.2 we can change φ so that again $\varphi(w) = w$.

Examining the proof of Proposition 1.4(1), we find that either φ or Δ_ψ can be expressed in the form $E(u, p_1) E(v, p_2) \Phi(\varepsilon) \theta$ where $\theta \in O(L)$ and $B(p_1, x) = B(p_2, w) = 0$ for $i = 1, 2$ (since the conditions $\varphi(x) = x$ and $\varphi(w) = w$ ensure that the component of $\varphi(v)$ in H is primitive). To prove 2.6 it now suffices to show that any $\varphi \in O(L)$ with $\varphi(x) = x$ and $\varphi(w) = w$ can be expressed in terms of the given generators.

We still have h and s available as constructed. In both cases,

$$E(u, s)(y) = \alpha u + y$$

where $\alpha = B(s, y) = \pi^h(1 - 2b \zeta)$. Note that $E(u, s)$ leaves x fixed. Let

$$\varphi(\alpha u + y) = \alpha u + \beta(w - ax) + \gamma(x - by) + y$$

where $\beta, \gamma \in \mathfrak{o}$. Since $q(y) = q(\varphi(\alpha u + y))$, it follows that $a\beta^2 + b\gamma^2 \in 2\mathfrak{o} + ac\mathfrak{o}$, and hence $\text{ord} \beta \geq h$ and $\text{ord} \gamma \geq h$ (in fact, $\text{ord} \beta \geq h + 1$ if $c \in 2\mathfrak{o}$). Thus

$$\varphi(\alpha u + y) = \alpha u + \pi^h t + y$$

where $t \in L$ and $B(t, x) = 0$. Suppose that $q(t) \in \mathfrak{o}$. Then

$$E(u, -s) E(v, \alpha^{-1} \pi^h t) \varphi E(u, s)(y) = y$$

and changing φ by elements in $O(H)$ and \mathfrak{g}' we have obtained an isometry acting identically on x and y. This, by 2.4, would complete the proof. If $c \in 2\mathfrak{o}$ we need one symmetry in 2.4; this is also true if $c \in 2\mathfrak{o}$ and $\text{ord}(2\mathfrak{o})$ is odd. When $c \in 2\mathfrak{o}$ and $\text{ord}(2\mathfrak{o})$ is even, the symmetry will appear below.

It remains to show $q(t) \in \mathfrak{o}$. Since

$$\pi^{2h} q(t) = -\pi^h B(t, y) = \gamma(1 - 2b \zeta),$$

it suffices to show $\text{ord} \gamma \geq 2h$. Again, from $q(y) = q(\varphi(\alpha u + y))$,

$$a\beta^2 + b\gamma^2 + 2\gamma \equiv \begin{cases} 0 \text{ mod } b\pi^{4h} & \text{ if } c \notin 2\mathfrak{o} \\ 0 \text{ mod } 2\pi^{2h} & \text{ if } c \in 2\mathfrak{o}. \end{cases}$$

Except when $c \in 2\mathfrak{o}$, $\text{ord}(2\mathfrak{o}^{-1}) = 2h - 1 = \text{ord} \gamma$ and $2 + b\gamma \equiv 0 \text{ mod } 2\pi$, we can conclude that $\text{ord} \gamma \geq 2h$. In the exceptional case, replace φ by $\Phi(x - by) \varphi$ and the new coefficient of x (the new γ) is divisible by π^{2h}. This completes the proof.

Theorem 2.7. Let M be a unimodular o-lattice split by a hyperbolic plane H. Then the orthogonal group $O(M)$ is generated by
O(H) and \mathcal{E}, together with at most one symmetry $\Psi(r)$. The symmetry $\Psi(r)$ is required if and only if M contains an element r with

$$\text{ord} (q(r)^{-1}) \geq 1$$

and odd.

Proof. This merely summarizes the results 2.3-2.6.

Corollary 2.8. Any element $\varphi \in O(M)$ can be expressed in the form

$$\varphi = A^c \Phi(\varepsilon) \Psi(r)^d \theta$$

where $c, d \in \{0, 1\}$, ε is a unit and $\theta \in \mathcal{E}$. In particular, $d = 0$ if M does not contain an element r with $\text{ord} (q(r)^{-1}) \geq 1$ and odd.

Proof. This follows immediately from Theorem 2.7 and Proposition 1.1.

Let Θ denote the spinor norm on the special orthogonal group $SO(V)$ and $Sk(M)$ the spinorial kernel in $O(M)$,

$$Sk(M) = \{\varphi \in SO(M) | \Theta(\varphi) = 1\} .$$

Theorem 2.9. Let $M = H \perp K$ and assume $q(K)$ contains a unit of v. Then

$$Sk(M) = \mathcal{E} .$$

Proof. It is well-known that the isometry $E(p, s)$ has spinor norm 1. Hence $\mathcal{E} \subseteq Sk(M)$ always. Conversely, let

$$\varphi = A^c \Phi(\varepsilon) \Psi(r)^d \theta$$

have spinor norm 1. Then $\det \varphi = 1$ gives $c = d$. Now $\Theta(\varphi) = (-q(r))^c \varepsilon$, since $A = \Psi(u - v)$ and $\Phi(\varepsilon) = A \Psi(u - \varepsilon v)$. If r exists, $\text{ord} (q(r))$ is odd, and hence $c = 0$ and $\varepsilon = \eta^c$ for some unit η. Corollary 1.3 now gives $Sk(M) \subseteq \mathcal{E}$.

3. \mathcal{E}-invariant sublattices. We now study the \mathcal{E}-invariant sublattices of M, that is, sublattices of M that are invariant under the action of \mathcal{E}. For $O(M)$-invariant sublattices, see [11].

Clearly, $M_* = \{s \in M | q(s) \in \mathcal{E}\}$ is invariant under the action of both $O(M)$ and \mathcal{E}. Let M^* be the dual lattice of M_*, that is,

$$M^* = \{s \in V | B(s, M_*) \subseteq \mathcal{E}\} .$$
Then $2M^* \subseteq M$ and $2M^*$ is invariant under the action of $O(M)$. Let P be a sublattice of M. Define

$$a(P) = \sum_{r \in P} B(r, M_*) .$$

Then $B(P, M_*) \subseteq a(P)$ and $a(P)$ is an ideal in \mathfrak{o}, since each $B(r, M_*)$ is.

Theorem 3.1. Let $M = H \perp K$ where $q(K)$ contains a unit. If \(\text{card} \, v/p = 2\), assume also $r(M) \geq 7$. Then a sublattice P of M is \mathcal{E}-invariant if and only if

$$M_* \subseteq a(P)^{-1}P \subseteq M^* .$$

Proof. Write $\alpha = a(P)$. Since $B(\alpha^{-1}P, M_*) \subseteq \mathfrak{o}$, it follows that $\alpha^{-1}P \subseteq M^*$. Now let $x \in K_*$ and $y \in P$. Since $B(P, M_*) \subseteq \alpha$,

$$E(u, x)(y) = y \mod \alpha M_* ,$$

and P is \mathcal{E}-invariant if $\alpha M_* \subseteq P$. It remains to show that if $r \in P$ and $B(r, M_*) = b$, then $bM_* \subseteq P$ if P is \mathcal{E}-invariant.

Write $r = \beta u + \gamma v + s$ where $s \in K$. Then $b = \beta o + \gamma o + B(s, K_*)$. We may assume $b = \beta o$ (otherwise replace r by $E(u, t)(r)$ where $B(s, t)$ generates b, or interchange u and v). Take $y \in K_*$ such that $q(y)$ is a unit and, when \(\text{card} \, v/p = 2\), also $B(s, y) = 0$. For a suitable unit ξ, $(E(v, \xi y) - I)(r)$ gives rise to an element $v + z$ in $b^{-1}P$ with $z \in K$ and $q(z)$ a unit. Then, for any unit γ,

$$(E(u, \gamma z) - I)(v + z) = -\gamma z + \gamma(2 - \gamma)q(z)u$$

is in $b^{-1}P$. If card $v/p \geq 4$, it follows that $u \in b^{-1}P$ and it is now easy to show that $M_* \subseteq b^{-1}P$. If card $v/p = 2$, put $\gamma = 1$ so that $v + q(z)u$ is in $b^{-1}P$. Take $p \in K$ primitive and isotropic. Then $E(u, p)(v + q(z)u)$ is in $b^{-1}P$. Hence $p \in b^{-1}P$ and consequently $M_* \subseteq b^{-1}P$. This completes the proof.

Corollary 3.2. Let $r \in M$ and $B(r, M_*) = \alpha$. Under the hypotheses of the theorem, $\alpha M_* + \mathfrak{o}r$ is the smallest \mathcal{E}-invariant sublattice in M containing r.

Proof. Clear.

Introduce an indexing set \mathcal{E} so that the lattices $M_\xi, \xi \in \mathcal{E}$, are all the distinct lattices on V satisfying

$$M_* \subseteq M_\xi \subseteq M^* .$$

If v/p is finite, then \mathcal{E} is also finite. Let α be an ideal such that $\alpha M_* \subseteq$
Then aM_i is an \mathcal{G}-invariant lattice.

4. The subgroups $\mathcal{G}(aM_i)$ and $\mathcal{F}(aM_i)$. For $\xi \in \mathcal{E}$, let α be an ideal such that $aM_i \subseteq M_*$. Define $\mathcal{G}(aM_i)$ to be the subgroup of $O(M)$ generated by isometries of the form $\psi E(u, z)\psi^{-1}$ and $\psi E(v, z)\psi^{-1}$ where $\psi \in \mathcal{G}$ and $z \in K \cap aM_i$. The subgroups $\mathcal{G}(aM_i)$ are obviously normalized by \mathcal{G}. Also, let

$$\mathcal{F}(aM_i) = \{\varphi \in O(M) | [\varphi, \mathcal{E}] \subseteq \mathcal{G}(aM_i)\}.$$

Then any subgroup \mathcal{N} of $O(M)$ satisfying

$$\mathcal{G}(aM_i) \subseteq \mathcal{N} \subseteq \mathcal{F}(aM_i)$$

for some $aM_i \subseteq M_*$ is normalized by \mathcal{G} since

$$[\mathcal{N}, \mathcal{E}] \subseteq [\mathcal{F}(aM_i), \mathcal{E}] \subseteq \mathcal{G}(aM_i) \subseteq \mathcal{N}.$$

For $aM_i \subseteq M_*$ define the congruence subgroup $O(aM_i)$ by $O(aM_i) = \{\varphi \in O(M) | \varphi(x) \equiv x \text{ mod } aM_i \text{ for all } x \in M_* \} \times \{\pm 1\}$. These subgroups are normalized by \mathcal{G} since M_* and aM_i are \mathcal{G}-invariant. If $aM_i = M_*$, then $O(M_*) = O(M)$. Now let $\alpha \equiv \varphi$. If $\varepsilon \equiv 1 \text{ mod } a$, then $\varphi(\varepsilon) \in O(aM_i)$. Also, for $z \in K \cap aM_i$, both $E(u, z)$ and $E(v, z)$ are in $O(aM_i)$ provided $aq(M_i) \subseteq \varphi$. Hence $\mathcal{G}(aM_i) \subseteq O(aM_i)$, provided $aq(M_i) \subseteq \varphi$.

Lemma 4.1. Let $\alpha \equiv \varphi$ and $aq(M_i) \subseteq \varphi$. Then $\varphi \in O(aM_i)$ can be expressed in the form

$$\varphi = \pm E(u, x)E(v, y)\theta$$

where x and y are in $K \cap aM_i$, $\varepsilon \equiv 1 \text{ mod } a$ and $\theta \in O(K) \cap O(aM_i)$.

Proof. Let $\varphi(v) = \alpha u + \beta v + s$ where $s \in K \cap aM_i$ and

$$\beta \equiv \mp 1 \text{ mod } a.$$

If $\beta \equiv -1 \text{ mod } a$, replace φ by $-\varphi$. Now put $\varphi_1 = \Phi(\beta)E(u, \beta^{-1}s)\varphi \in O(aM_i)$ so that $\varphi_1(v) = v$. Let $\varphi_1(u) = u - q(t)v + t$ where $t \in K \cap aM_i$. Put $\theta = E(v, t)\varphi_1 \in O(aM_i)$. Then $\theta \in O(K)$ and φ can be rewritten in the desired form.

Theorem 4.2. Let $M = H \perp K$ where $q(K)$ contains a unit. If card $K/\varphi = 2$, assume that $r(M) \geq 9$. Then, if $aq(M_i) \subseteq \varphi$, $\mathcal{G}(aM_i) = [O(aM_i), \mathcal{G}]$ and hence

$$\mathcal{G}(aM_i) \subseteq O(aM_i) \subseteq \mathcal{F}(aM_i).$$
Proof. We first show that \([O(aM_\xi), \mathscr{E}] \subseteq \mathscr{E}(aM_\xi)\). If \(aM_\xi = M_*\), then \(\mathscr{E}(M_\xi) = \mathscr{E}\) and \([O(M), \mathscr{E}] \subseteq \mathscr{E}\) by Corollary 2.8. Now assume \(a \leq p\). Consider first \([\varphi, E(u, t)]\) where \(\varphi \in O(aM_\xi)\) and \(t \in M_*\). By Lemma 4.1,

\[\varphi = \pm E(u, x)E(v, y)\Phi(\varepsilon)\theta\]

with \(E(u, x)\) and \(E(v, y)\) in \(\mathscr{E}(aM_\xi)\). From Proposition 1.1,

\([\varphi, E(u, t)] \equiv E(u, \varepsilon \theta(t) - t) \mod \mathscr{E}(aM_\xi)\).

But \([\varphi, E(u, t)]\) is in \(O(aM_\xi)\) and hence

\[E(u, \varepsilon \theta(t) - t)(v) \equiv v \mod aM_\xi\]

so that \(\varepsilon \theta(t) - t \in aM_\xi\). Hence \([\varphi, E(u, t)] \in \mathscr{E}(aM_\xi)\). From the properties of commutators, it follows that

\([O(aM_\xi), \mathscr{E}] \subseteq \mathscr{E}(aM_\xi)\).

For the converse inclusion we must show \(E(u, z)\) and \(E(v, z)\) are in \([O(aM_\xi), \mathscr{E}]\) for all \(z \in K \cap aM_\xi\). If \(\text{card } o/p \geq 4\), there exists a unit \(\zeta\) such that \(\eta^{-1} = \zeta^2 - 1\) is also a unit. Then

\[E(u, z) = [\Phi(\zeta^2), E(u, \eta z)] \in [\mathscr{E}, O(aM_\xi)]\).

Finally, let \(\text{card } o/p = 2\). Since now \(r(M) \geq 9\), \(M = H' \perp K'\) where \(z \in K'\) and \(H' = \neu' + \nu v'\) is a second hyperbolic plane. Then

\[[E(u', z), E(v', u)] = E(E(u', z)(v'), u)E(v', -u) = E(u, -E(u', z)(v'))E(u, v') = E(u, z + q(z)u')\]

is in \([O(aM_\xi), \mathscr{E}]\). Since \(aq(M_\xi) \leq o\), we have \(q(z)u' \in aM_\xi\). A similar argument shows that \(E(u, q(z)u')\) is also in \([O(aM_\xi), \mathscr{E}]\). The result now follows immediately.

Theorem 4.3. Let \(M = H' \perp K\) where \(q(K)\) contains a unit. If \(\text{card } o/p = 2\), assume that \(r(M) \geq 9\). Then

\[\mathscr{E} = \Omega(M)\,.

Proof. Take \(aM_\xi = M_*\) in Theorem 4.2. Then

\[\mathscr{E} = \mathscr{E}(M_\xi) = [O(M), \mathscr{E}] \subseteq \Omega(M) \subseteq \mathscr{E},\]

the final inclusion following from Theorem 2.9.

Remark 4.4. With greater effort, a stronger result may be
obtained when card o/p = 2 (see, for example, [8; Theorem 2.6]). Also, when \(aq(M_\s) \not\subseteq o \), anomalous behaviour may occur (see [9; Table III]).

5. Subgroups normalized by \(\Omega(M) \). Let \(\mathcal{N} \) denote a subgroup of \(O(M) \) normalized by \(\mathcal{E} \). We now prove, under suitable hypotheses, that there exists a sublattice \(\alpha M_\s \) invariant under \(\mathcal{E} \) such that

\[
\mathcal{E}(\alpha M_\s) \subseteq \mathcal{N} \subseteq \mathcal{F}(\alpha M_\s).
\]

The method is as follows. Assume \(\varphi \in \mathcal{N} \) and choose \(\psi \in \mathcal{E} \) as in Proposition 1.4 such that

\[
\psi \varphi \psi^{-1} = E(u, x)E(v, y)\Phi(\varepsilon)\theta
\]

is also in \(\mathcal{N} \). We shall show that \(E(u, x) \), \(E(v, y) \) and \(\Phi(\varepsilon)\theta \) are all in \(\mathcal{N} \) and use these isometries (varying \(\varphi \) in \(\mathcal{N} \)) to obtain a maximal subgroup of the form \(\mathcal{E}(\alpha M_\s) \) in \(\mathcal{N} \). It then remains to prove \(\mathcal{N} \subseteq \mathcal{F}(\alpha M_\s) \). We prepare for this theorem with a number of lemmas.

Lemma 5.1. Let \(M = H \perp K \) where \(q(K) \) contains a unit. Then if \(\text{card } v/p \geq 8 \) and

\[
\varphi = E(u, x)E(v, y)\Phi(\varepsilon)\theta
\]

is in a subgroup \(\mathcal{N} \) normalized by \(\mathcal{E} \), there exist units \(\varepsilon \) and \(\eta \) (independent of \(\varphi \)) such that \(E(u, \varepsilon x) \) and \(E(v, \eta y) \) are also in \(\mathcal{N} \).

Proof. Modify Lemma 3.8 in [8].

Lemma 5.2. Assume \(r(M) \geq 7 \) and \(E(u, x) \) is in \(\mathcal{N} \). Then \(E(u, \alpha x) \) is in \(\mathcal{N} \) for all \(\alpha \in \mathcal{E} \).

Proof. \(x \in K \) can be embedded in a binary (or unary) sublattice \(B \) of \(K \) with \(K = B \perp C \). Then \(r(C) \geq 3 \). From [14; 93: 20], \(\Theta(SO(C)) \) contains all units. Let \(\varepsilon \) be any unit and take \(\theta \in SO(C) \) such that \(\Theta(\theta) = \varepsilon \). Then \(\Phi(\varepsilon)\theta \in Sk(M) = \mathcal{E} \). Conjugating \(E(u, x) \) in \(\mathcal{N} \) with \(\Phi(\varepsilon)\theta \) gives \(E(u, \varepsilon\theta(x)) = E(u, \varepsilon x) \) is in \(\mathcal{N} \) for all units \(\varepsilon \). If \(\alpha \in \mathcal{E} \) is not a unit, then \(\alpha = 1 + \varepsilon \) with \(\varepsilon \) unit and now \(E(u, \alpha x) \) is also in \(\mathcal{N} \). This proves the lemma.

The previous two lemmas show that for \(r(M) \geq 7 \) and card \(v/p \geq 8 \) that if \(E(u, x)E(v, y)\Phi(\varepsilon)\theta \) lies in a subgroup \(\mathcal{N} \) normalized by \(\mathcal{E} \), then so do \(E(u, x) \), \(E(v, y) \) and \(\Phi(\varepsilon)\theta \). We show now that this is still true for card \(v/p = 2 \) or \(4 \) provided the rank of \(M \) is at least 9.

Lemma 5.3. Let \(M = H \perp K \) with \(r(M) \geq 9 \) and \(\varphi = E(u, x)E(v, \),
where $x, y \in K^*$ and $\theta \in O(K)$. Then $E(u, x)$, $E(v, y)$ and $\Phi(\varepsilon)\theta$ are all in \mathcal{N}.

Proof. Since $r(M) \geq 9$, we have $M = H \perp H' \perp K'$ where $H' = ov' + ov''$ is a hyperbolic plane and $y \in K'$. Then

$$E(u, -x)[\beta, E(u, u')]E(u, x) = E(v, y)E(u, \varepsilon\theta(u'))E(v, -y)E(u, -u')$$

is in \mathcal{N}. Hence

$$E(u, \varepsilon\theta(u'))E(E(v, y), -u')$$

is also in \mathcal{N}. Let $t = \varepsilon\theta(u') - u'$. Take $s \in K'$ with $q(s)$ a unit and $B(s, y) = 0$. Then $[E(u, s), E(u, t)E(u', y - q(y)v)]$, and hence also $E(u', q(y)(s + q(s)u))$, are in \mathcal{N}. But $ov + o(s + q(s)u)$ is a hyperbolic plane, so that both $E(u', q(y)v)$ and $E(u, t)E(u', y)$ are in \mathcal{N}. This already completes the proof in the special case where $\varepsilon = 1$ and θ is the identity map, since then $t = 0$. Returning to the general case, since $r(K') \geq 5$, there exists $\psi \in O(K')$ such that $\psi(y) = y$ and $\Delta \psi \in \mathcal{S}$. Conjugating $E(u, t)E(u', y)$ with $\Delta \psi$, shows that $E(v, \psi(t))E(u', y)$ is in \mathcal{N}. Hence $E(u, t)E(v, -\psi(t)) \in \mathcal{N}$ and, by the special case noted above, it follows that $E(u, t)$ is in \mathcal{N}. Finally, $E(u', y) \in \mathcal{N}$ and the result now follows.

Lemma 5.4. Let $M = H \perp K$ with $r(M) \geq 7$. If $\text{card } o/p \leq 4$, assume also $r(M) \geq 9$. Let $E(u, x) \in \mathcal{N}$ where $x \in K^*$ and $B(x, M^*) = a$. Then

$$\mathcal{S}(aM_s) \subseteq \mathcal{N}.$$

Proof. Take $z \in K_*$ such that $B(x, z) = \alpha$ where $o\alpha = a$. We may assume $q(z)$ is a unit, for if not, take $z_i \in K_*$ with $B(z, z_i) = 0$ and $q(z_i)$ a unit; if $B(x, z_i) \in au$, replace z by z_i, otherwise, replace z by $z + z_i$. Moreover, there exists $y \in K_*$ with $B(x, y) = 0$ and $q(y)$ a unit. Let $\varepsilon = q(z)q(y)$. Conjugating $E(u, x) \in \mathcal{N}$ with $\Phi(\varepsilon)\Psi(z)\Psi(y)$ from $Sk(M) = \mathcal{S}$ gives $E(\varepsilon u, x - \alpha q(z)^{-1}z) \in \mathcal{N}$. From Lemma 5.2 it follows that $E(u, \alpha z)$ is in \mathcal{N}. If $w \in K_*$ and $\text{card } o/p \geq 8$, there is a unit η such that $q(z + \eta w) \in u$ and $B(x, z + \eta w) \in \alpha u$. A similar argument shows $E(u, \alpha(z + \eta w))$, and hence also $E(u, \alpha w)$, are in \mathcal{N}. Conjugating with $\Delta \Phi(-q(z))\Psi(z)\in \mathcal{S}$ gives now $\mathcal{S}(aM_s) \subseteq \mathcal{N}$.

Now assume $\text{card } o/p \leq 4$ so that $r(M) \geq 9$. Then $M = H \perp H' \perp K'$ with $x \in K'$. Conjugating $E(u, x)$ with $E(u', z)$ leads to $E(u, \alpha u') \in \mathcal{N}$. Similarly, $E(u, \alpha v') \in \mathcal{N}$. Take $t \in K_*$. Finally, conjugating
$E(u, au')$ with $E(v', t) \in \mathcal{E}$ shows that $E(u, at)$ is in \mathcal{N} and hence again, $\mathcal{E}(aM_\ast) \subseteq \mathcal{N}$.

Theorem 5.5. Let M be a unimodular lattice with $r(M) \geq 7$, and $r(M) \geq 9$ if $\text{card} \, \nu/\nu = 2, 4$. Then a subgroup \mathcal{N} of the orthogonal group $O(M)$ is normalized by the commutator subgroup $\Omega(M)$ if and only if it satisfies

$$\mathcal{E}(aM_\ast) \subseteq \mathcal{N} \subseteq \mathcal{F}(aM_\ast)$$

for some ideal a in ν and an invariant sublattice M_\ast with $aM_\ast \subseteq M_\ast$.

Proof. We have already observed that subgroups satisfying these ladder relations are normalized by $\mathcal{E} = \Omega(M)$. Now assume \mathcal{N} is a subgroup normalized by $\Omega(M)$ and choose $aM_\ast \subseteq M_\ast$ maximal such that $\mathcal{E}(aM_\ast) \subseteq \mathcal{N}$. Clearly, at least $\{I\} = \mathcal{E}(\{O\}M_\ast) \subseteq \mathcal{N}$; moreover, if both $\mathcal{E}(a_1M_\ast)$ and $\mathcal{E}(a_2M_\ast)$ are contained in \mathcal{N}, these two subgroups generate $\mathcal{E}(a_3M_\ast) \subseteq \mathcal{N}$ where $a_3 = a_1 + a_2$ (see §4).

Now let $\varphi \in \mathcal{N}$; we must prove $\varphi \in \mathcal{F}(aM_\ast)$. By Proposition 1.4 there exists $\psi \in \Omega(M)$ such that

$$\psi \varphi \psi^{-1} = E(u, x)E(v, y)\Phi(\varepsilon)\theta$$

where $\theta \in O(K)$. By Lemmas 5.1–5.3 we know that $E(u, x)$ and $E(v, y)$ are in \mathcal{N} and hence by Lemma 5.4 and §4 they are even in $\mathcal{E}(aM_\ast)$. It therefore suffices to prove that $\Phi(\varepsilon)\theta$ is in $\mathcal{F}(aM_\ast)$. For $s \in K_*$,

$$[\Phi(\varepsilon)\theta, E(u, s)] = E(u, \varepsilon\theta(s) - s)$$

is in \mathcal{N}. Again, from Lemma 5.4 and §4, it follows that $[\Phi(\varepsilon)\theta, E(u, s)]$ is in $\mathcal{E}(aM_\ast)$. Hence

$$[\Phi(\varepsilon)\theta, \mathcal{E}] \subseteq \mathcal{E}(aM_\ast)$$

and, therefore, $\Phi(\varepsilon)\theta \in \mathcal{F}(aM_\ast)$. This proves the theorem.

References

15. O.T.O'Meara, B. Pollak, *Generation of local integral orthogonal groups II*, Math. Z., **93** (1966), 171-188.
18. L. N. Vaserstein, *Subgroups of finite index in Spin groups of rank \(\geq 2 \)*, Mat. Sbornik, **75** (1968), 178-184.

Received August 7, 1973. This research was partially supported by the National Science Foundation.

THE PENNSYLVANIA STATE UNIVERSITY
Harm Bart, Spectral properties of locally holomorphic vector-valued functions ... 321

J. Adrian (John) Bondy and Robert Louis Hemminger, Reconstructing infinite graphs .. 331

Bryan Edmund Cain and Richard J. Tondra, Biholomorphic approximation of planar domains ... 341

Richard Carey and Joel David Pincus, Eigenvalues of seminormal operators, examples ... 347

Tyrone Duncan, Absolute continuity for abstract Wiener spaces .. 359

Joe Wayne Fisher and Louis Halle Rowen, An embedding of semiprime PI.-rings ... 369

Andrew S. Geue, Precompact and collectively semi-precompact sets of semi-precompact continuous linear operators ... 377

Charles Lemuel Hagopian, Locally homeomorphic \(\lambda \) connected plane continua .. 403

Darald Joe Hartfiel, A study of convex sets of stochastic matrices induced by probability vectors .. 405

Yasunori Ishibashi, Some remarks on high order derivations ... 419

Donald Gordon James, Orthogonal groups of dyadic unimodular quadratic forms. II ... 425

Geoffrey Thomas Jones, Projective pseudo-complemented semilattices ... 443

Darrell Conley Kent, Kelly Denis McKennon, G. Richardson and M. Schroder, Continuous convergence in \(C(X) \) 457

J. J. Koliha, Some convergence theorems in Banach algebras .. 467

Tsang Hai Kuo, Projections in the spaces of bounded linear operations .. 475

George Berry Leeman, Jr., A local estimate for typically real functions .. 481

Andrew Guy Markoe, A characterization of normal analytic spaces by the homological codimension of the structure sheaf ... 485

Kunio Murasugi, On the divisibility of knot groups ... 491

John Phillips, Perturbations of type 1 von Neumann algebras .. 505

Billy E. Rhoades, Commutants of some quasi-Hausdorff matrices .. 513

David W. Roeder, Category theory applied to Pontryagin duality ... 519

Maxwell Alexander Rosenlicht, The nonminimality of the differential closure 529

Peter Michael Rosenthalal, On an inversion theorem for the general Mehler-Fock transform pair 539

Alan Saleski, Stopping times for Bernoulli automorphisms .. 547

John Herman Scheuneman, Fundamental groups of compact complete locally affine complex surfaces. II 553

Vashishtha Narayan Singh, Reproducing kernels and operators with a cyclic vector. I 567

Peggy Strait, On the maximum and minimum of partial sums of random variables ... 585

J. L. Brenner, Maximal ideals in the near ring of polynomials modulo 2 .. 595

Ernst Gabor Straus, Remark on the preceding paper: “Ideals in near rings of polynomials over a field” ... 601

Masamichi Takesaki, Faithful states on a \(C^* \)-algebra .. 605

R. Michael Tanner, Some content maximizing properties of the regular simplex 611

Andrew Bao-hwa Wang, An analogue of the Paley-Wiener theorem for certain function spaces on \(SL(2, \mathbb{C}) \) .. 617

James Juei-Chin Yeh, Inversion of conditional expectations .. 631