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Let O(M) be the orthogonal group of a unimodular quad-
ratic form over the integers in a dyadic local field. The
subgroups of O(}M) normalized by the commutator subgroup
are classified when the rank (M) = 9, or when »(M) = 7 and
the residue class field has at least 8 elements.

Classifications of the subgroups of an orthogonal group normalized
by the commutator subgroup have been given by many authors. For
isotropic nonsingular quadratic forms over fields there is the funda-
mental result of Dickson [3] and Dieudonné [4]: The projective com-
mutator subgroup is simple when the form has dimension at least
5. Other proofs of this, which allow the field to have characteristic
two, have been given by Eichler [5] and Tamagawa [17]. In [12],
Klingenberg generalized this result to nondegenerate quadratic forms
over local rings, provided the residue class field is not of characteristic
two, and classified the subgroups normalized by the commutator
subgroup by using congruence subgroups and mixed commutator
subgroups. Klingenberg’s work has been further extended in [1, 2,
7-10,13,16, 18, 19] by relaxing the restrictions either on the form or
on the ring. In particular, I studied this problem for unimodular
quadratic forms over the ring of integers in a dyadic local field
with 2 an unramified prime and the residue class field having at
least 8 elements [9, 10]. These last two restrictions will now be
removed, that is, 2 may ramify and there is no restriction on the
residue class field (except only that it is perfect).

An outline of the paper follows. Denote by o the ring of integers
in a dyadic local field F' and by M a free o-module of finite rank
r(M) =z 3 endowed with an isotropic symmetric bilinear form B: M x
M — o with determinant a unit in 0. After introducing some basic
isometries, the commutator subgroup 2(M) of the orthogonal group
O(M) is determined. Apart for a few exceptional modules M with
small rank, 2(M) is equal to the spinorial kernel of O(M) and is
generated by the Siegel transformations. Next, the “primitive”
submodules M,, £€ Z(Z a suitable indexing set), invariant under the
action of the commutator subgroup are determined. For each ideal
a in o, the submodules aM, are still invariant and are used to define
the subgroups & (alM,) and & (aM;). The main result is:

If #(M) =9, a subgroup .4~ of the orthogonal group O(M) is
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normalized by the commutator subgroup M) if and only if it
satisfies a ladder relation of the form

M) s 4 & F (all)

for some ideal a in o and some &€ 5.

The restriction (M) = 9 can be weakened to (M) = 7 if the
residue class field has at least 8 elements. If aq(M,) <o, the sub-
groups £ (aM,) can be characterized as mixed commutator subgroups
with the help of congruence subgroups obtained from aM,. In a
subsequent paper we shall indicate how the local structure obtained
here can be injected into orthogonal groups over Dedekind domains.
In particular, some of the structure of # (aM,)/& (aM,) that transfers
to the global situation will be given.

The notation for subgroups in [9, 10] has been slightly modified
in the present paper. In particular, & .(a) will now be written as
& (aM,) and the subgroups &(a, {) are now included amongst those
denoted & (aM,). Similarly, & *(a) becomes & (aM*) and correspond-
ing changes will be made for the congruence subgroups.

1. Preliminaries. Let V be a finite dimensional vector space
over the dyadic local field F of characteristic zero and ¢: V—F a
quadratic form on V, that is, g(ax) = a’q¢(x) for ac F, xc V and the
symmetric mapping B:V x V — F defined by

B(z, y) = q(@ + ) — 9(x) — q(¥)

is bilinear. Denote by o the ring of integers in F, by p the maximal
ideal in o and by u the group of units. Assume V supports a unimodular
lattice M; thus M is a free o-module spanning V over F' with B(M,
M) = o and det; (M) a unit. Unimodular lattices are discussed in
[14; §93D]; we summarize below the main results required.

Fix a prime 7 in o and a normalized valuation ord on 7. Thus
ord7 =1 and ord2 =e>=1. In

oM) = {g(x)|ve M} < —o

Do |

choose g(w) = (1/2)a such that ord ¢ is minimal. O’Meara calls a a
norm generator of M. The norm group is

aM = 2(g(M) + o) .

Let mM denote the largest ideal of o in gM and define the weight
twM by the equation

wM = pmM + 20 .
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Then beo is called a weight generator of M if bo = wM.
If »(M) =5, or if »(M) =38 and ord (ab) is even, M is split by
a hyperbolic plane. Thus

M=H1K

where H = ou + ov with ¢(u) = ¢(v) =0 and B(w, v) = 1. In this
manner we can reduce the general unimodular lattice to the form

M=H1N.1L

where (L) < 4 and ¢(N) & o. Here N will be an orthogonal sum
of hyperbolic planes plus, possibly, the anisotropic binary plane {A(2,
20)>. In general, {A(«a, B)) denotes a binary unimodular lattice ox +
oy where 2q(z) = B(z, ) = «, 29(y) = B(y, y) = 8 and B(z, y) = 1. For
acu, denote by {a) a lattice ox where B(x,x)=a. If »(L)=1,
the lattice L obtained above in the splitting of M can be taken as
one of the forms given in the following table. Here a and b are norm
and weight generators, ordc¢ = ordbd and {eo (see [14; 93:17-18]).
Moreover, when »(L) = 2 and ord (ab) is even, we may take b = 2.
It will be apparent later that the subgroup structure of the ortho-
gonal group O(M) is determined mainly by L.

TABLE I

r(L) i L

ow = {ay
ow + oz = {A(a, ¢)>
ow L (ox + oy) = <a> L <A(b, 20)>
(ow + 02) L (0z + vy) = <A(a, ¢)> L <A, 20)>

> W N

Denote by M, the sublattice of M consisting of all re M with
q(r) in 0. Let p and » in M, be such that q(p) = B(p, r) = 0. Then
E(p, ) denotes the Siegel transformation defined for se M by

E(p, r)(s) = s — B(p, s)r + B(r, s)p — q(r)B(p, s)p.

Now assume that M is split by a hyperbolic plane H = ou +ov =
(A0, 0)>. In future H denotes this fixed hyperbolic plane. Then
M = H 1 K with K unimodular. Denote by & the subgroup of O(M)
generated by the Siegel transformations E(w, r) and E(v, r) with »
ranging over K, = KN M,. The isometries 4 and @(¢), where ¢ is
a unit, are defined by

diy—— v, v—>u,s——s for seK
and

O): u — eu, v——¢ v, s——>s for se K.
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Finally, if re¢ M is such that ¢(r)¢ p, denote by ¥(r) the symmetry
about r defined by

T(r)s) = s — q(r)y*B(r, s)r .
PRroprosITION 1.1. The following relations hold.
49(e)d™ = () .
For 0e O(M), (p) = B(p, r) =0 and re M,
0E(p, )0~ = E(6(p), 6(r)) .
In particular,

AE(u, r)47* = E(v, 1)
O(e)E(u, rYO(e™) = E(u, er)
O()E(w, r)P(e™) = E(v, e7'r) .

Also, for r, se M, with B(p, ) = B(p, s) = 0,
E(p, r)E(p, s) = E(p, v + ) .

Proof. These are well-known and easy to verify.
Perhaps less well-known are the following two identities.

PRrROPOSITION 1.2. Let M= H | K. Let re K, and B<o be such
that ¢ =1 — Bq(r) is a unit. Then

E(v, Br)E(u, r) = E(u, e 'r)E(v, Ber)@(c?) .
Let s€ K have q(s) @ unit. Then
4¥(s) = O(—q(s))E(v, s)E(u, q(s)™'s)E(v, s) .

Proof. These can be verified by checking the images of u, v
and t€ K. Alternatively (see [10]), they can be established by making
suitable calculations in the Clifford algebra of V.

COROLLARY 1.8. Let M = H | K and ¢(K) contain a unit. Then
Jor all units ¢ im u, e &. In particular, the hypothesis is
satisfied if r(M) = 5.

Proof. Take re K with ¢(r) a unit and put B8 = q(r)"'(¢ — 1).
The result now follows from the first identity in Proposition 1.2.
If (K) =3 and ord (ab) is even, then K is split by a hyperbolic
plane and consequently represents units. If ord(ab) is odd, either



DYADIC UNIMODULAR QUADRATIC FORMS II 429
ord (2a™") or ord (2b7') is even, and K clearly represents units.

The characteristic set _#(s) of a primitive element s in M is
defined by

A(s) = {te M|B(s, t) = 1} .

Since M is unimodular, _#(s) is not empty. For any isometry @e
o),

(2 (9(s))) = q(#(s)) mod o .

This relation controls the equivalence of elements of M under the
action of the orthogonal group (see Hsia [6]).
If M= M, 1 M, denote by O(M,) the subgroup of isometries in

O(M) that act identically on M, Let (M) denote the Witt index
of M.

ProposITION 1.4. Let M= H | K and ¢(K) contain a unit. If
card o/p = 2, assume also r(M) =17, or (M)=1,or M=H 1 H | K
and q(K') contains a unit. Then for each @€ O(M) there exists an
1sometry € & such that

VPy~ = Eu, ©)E(v, y)d(e)0

where x, ye K,, ¢ 1s a unit and 0¢c O(K).

Proof. The proof of Lemma 3.6 (3), (4) in [9] is modified as
follows.

(3) Assume «, B€Pp. Then s is primitive in K. The charac-
teristic set of v is

A W)= {ze M|B(v, z) =1} = u + (K L ov).

Since @(_Z (v)) = #(P(v)), there exists t, € #Z (@(v)) such that q(t,)
is a unit. Let ¢ be the component of ¢, in K. Then ¢(t)co. Also,
since B(t, (v)) =1 and «, Bep, it follows that B(s,¢) is a unit.
Hence B(s, t) + aq(t) is a unit.

(4) Finally assume « is a unit and Bep. If card o/p = 4, the
earlier version still holds. There remains the case card o/p = 2 and
B(s, t) a unit. Then K = (vs + ot) L K'. If g(s) is a unit, replace
t by s. Otherwise os + ot is a hyperbolic plane H'. Now choose a
new t€ K’ with ¢(¢) a unit and B(s, t) = 0. This completes the proof.

2. Generators for O(M). In this section we obtain generators
for the orthogonal group O(M) (see also O’Meara and Pollak [15]).
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PROPOSITION 2.1. Let M = H1 N1 L where q(N)<o. Then
the orthogonal group O(M) is generated by =% and O(H L L).

Proof. The proof of Theorem 2.1(1) in [9] or of the lemma in
[10; IV] generalizes without significant change.

REMARK 2.2. Let w, z€ L be such that B(w, z) =1 and g(z)co
(but not necessarily q(w)e o). The argument in [9; Theorem 2.1(1)]
also shows that o€ O(H L L) can be changed by isometries in &,
and 4, to an isometry fixing w. This fact will be used later.

It is clear that O(H) is generated by 4 and the isometries @(e).
We now obtain generators for O(H L L) where L is as in Table I,

2.3. Let L =ow = {ay. Then O(M) is generated by O(H) and
%, together with ¥(w) if 2 is tamely ramified (ord 2 odd).

Proof. By Proposition 2.1 it suffices to consider O(H 1 ow). Let
e O(H 1 ow) and

P(w) = Bu + Yv + ow
where d is a unit. Then
(0p(w))* = o(adv — Bw) + o(adu — Yw) = H .

It follows that ¢(Bw) and ¢(vw) are in o. Assume 2eo(l — d) (a
similar argument will hold if instead 2¢o(1 + 4)). Using

By = %a(l — ),

it follows that
E(u, v + o)w)p(w) = v — w .
Then
T(w)E(v, o *vw)vv — w) = w ,

and we have reduced @ to an isometry in O(H). When 2 is wildly
ramified, ¥(w) can be expressed in terms of the isometries in O(H)
and & using the second identity in Proposition 1.2.

2.4. Let L =ow + 0z = {A(a, ¢)y. Then O(M) is generated by
O(H) and &, together with ¥(w — az) if ord(2a) is odd, and with
¥(z) if ord (2¢) is odd and positive.

Proof. We first change @ ¢ O(M) by the given isometries to an
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isometry fixing w. If ¢(2) = (1/2)c e v, Remark 2.2 gives this immedia-
tely. We therefore assume ord (ac) is odd (otherwise, change z and
increase ordc¢). Again, by Proposition 1.4, since ¢(L) now contains
a unit, assume @€ O(L).

Let ord(2¢™") =g =1 and & = [(¢ + 1)/2] (integral part). Then
o(m"z)e 0 and E(u, n*2)(w) = 7w + w. Let

P(rtu + w) = 7hu + w + vw + pz .
If « =77 *(\w + ¢z) is in L., replacing @ by
¥ = E(u, —n*2)E(v, x)pE(u, w'z)

gives the desired reduction since (w) = w.
From ¢(w) = q(@(r*u + w)), it follows that
1 .., 1 .
Ea?m + Ecﬁ = —ax— (A + Dpeo
and hence, since ord (ac) is odd, I = ord » = (1/2) ord (2¢™") and m =
ord £ = h = (1/2)g9. Let f be the minimum order of the four terms
in this equation, that is

f = min {2l — ord (2¢7"), 2m — ¢, 1 + ord a, m} .

Assume f < g. If f = m, then 2m — g = m leads to a contradiction.
Similarly, f =1 + ord e gives a contradiction with 2] — ord (2¢7") =
f. Since there must be at least two terms with the minimum order,
this leaves

f=2m—g =2l —ord(2¢7")

which contradicts the hypothesis that ord (ac) is odd. Hence f = g.
This will now be strengthened to f = 2k, which ensures that xe L,
as required.

If g is even, 2h = ¢g. Assume, therefore, g =2h —1land f = g.
Considering again the definition of f, both f =1+ orda and f =
2l — ord (2¢7') (which is even) lead to contradictions. Hence f =
m=2m—g=g9 and (1/2ct + » +1 = 0mod . Replace @ by ¥(z)p
and the new coefficient of z lies in wf*'s. Repeating the previous
calculations now gives f =g + 1 = 2h.

We may now assume @(w) = w. Modifying the argument in 2.3,
we now reduce @ to an isometry in O(H). Let r = w — az so that
B(r, w) = 0. Since B((z), w) =1,

P(z) =au + v +7r + 2

for some «, B, veo. Computing characteristic sets gives
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AH(Z) =w+ H 1 o(z — cw)

and
29(#Z (P(z))) = 29(#(2)) = {a + p%e(1 + ac)|p € o} mod 20 .

Since v + (1 — a@)we #(9(2)), and either ce 20 or ord(ac) is odd, it
follows that aa®c 20. Similarly, aB?c 20. Let ¢ = —B(r, 2) — vq(r).
Then ¢(2) = q(9(z)) gives avo = aaB € 20. But ord (vg(r)) = ord (1/2)(a")
and hence ceo. If o is a unit,

E(u, ac™'r)p(z) = Bv + z .

Similarly, the coefficient of » can be made zero and we obtain an
isometry fixing both w and z. If, however, ¢ is not a unit, then
Yg(r) is a unit (since B(r, 2) is a unit). In ¥(r)®(z) the new coeflicient
of » becomes gq(r)™*. Now proceed as before. Note that if ord (2a)
is even, ¥(r) can be expressed in terms of the elements of & and
O(H). This completes the reduction.

2.5. Let L =ow L (ox + oy) = {a) L <A(b, 20)) with ordb odd.
Then O(M) is generated by O(H) and &, together with one symmetry
U(r) where ord (q(r)) is odd.

Proof. Let e O(M). Since B(w + z,y) =1 and q(y)eo, by
Remark 2.2,  can be assumed to have the property ®(w + ) =
w + 2. But

L =ow + z) L (o(ay — w) + o(ax — dw)) .

The result now follows from 2.4 since B(ay — w, ax — bw) is a unit,
29(ay — w) = a(l + 2a¢f) and 2¢(ax — dbw) = ab(a + b).

2.6. Let L = (ow + 0z) L (ox + oy) = {A(a, ¢)y L CA(b, 20)) with
ord (ab) odd. Then O(M) is gemerated by O(H) and &, together with
one symmetry T(r) where ord (q(r)) is odd.

Proof. Let @e O(M). By Remark 2.2, we may assume @(x) =
. If it can also be arranged that ®(y) = y, invoking 2.4 will com-
plete the proof. Changing z if necessary, we may assume that either
ce 2o or ord (ac) is odd.

If ce 20, using 2.2 again, we also have @(w) = w. When ce 2o,
let ¢ =ord(207") and & = [(¢ + 1)/2]. Now put s=7z*x — by) so
that ¢(s)eo. If, however, c¢ 20 so that ord (ac) = ord (ab) mod 2,
let 2 = ord (¢b™*) = 0. Since ord (ac) is odd, there exists € ow+oz
such that

s =71 + 1z — by)
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is in M,. Moreover, B(s, w) is a unit, and by Remark 2.2 we can
change @ so that again @(w) = w.

Examining the proof of Proposition 1.4(1), we find that either
@ or 4p can be expressed in the form FE(u, »)E(v, p,)P(e)§ where
6e O(L) and B(p,, ) = B(p;,, w) = 0 for ¢ = 1, 2 (since the conditions
o(x) = 2 and @(w) = w ensure that the component of @(v) in H is
primitive). To prove 2.6 it now suffices to show that any ¢ O(L)
with ¢#(x) = ¢ and @(w) = w can be expressed in terms of the given
generators.

We still have & and s available as constructed. In both cases,

E(u, s)(¥) = au +y
where @ = B(s, y) = n*(1 — 2b{). Note that E(u, s) leaves & fixed. Let
Plaw + y) = au + B(w — az) + Y@@ — by) + y

where B, Yeo. Since g(y) = g(®(aw + ¥)), it follows that ag8® + b€
20 + aco, and hence ord 8 = h and ordY =k (in fact, ordg=h + 1
if ¢¢20). Thus

Plan + y) = auw + 7t + y
where te L and B(t, ) = 0. Suppose that g(t)co. Then
E(u, —s)E(v, a”'n"t)pE(u, s)(y) =y

and changing @ by elements in O(H) and & we have obtained an
isometry acting identically on x and y. This, by 2.4, would complete
the proof. If c¢¢ 20 we need one symmetry in 2.4; this is also true
if ¢c€ 20 and ord (2a) is odd. When ¢ 20 and ord (2a) is even, the
symmetry will appear below.

It remains to show ¢(t)eo. Since

wtg(t) = —7w*B(¢, y) = v(1 — 2b0),
it suffices to show ord v = 2k. Again, from ¢(y) = g¢(P(au + ¥)),

Omod bz** if c¢ 20

aB: + by + 27 =
g O mod 27%* if ce20.

Except when ce 20, ord (26™') = 2k — 1 = ord v and 2 + by = 0 mod 27,
we can conclude that ord~v = 2k. In the exceptional case, replace
® by ¥(x — by)p and the new coefficient of « (the new %) is divisible
by #**. This completes the proof.

THEOREM 2.7. Let M be a unimodular o-lattice split by a hyper-
bolic plane H. Then the orthogonal group O(M) is gemerated by
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O(H) and &, together with at most one symmetry ¥(r). The symmetry
U(r) is required if and only if M contains an element r with

ord (g(r)™") =1
and odd.

Proof. This merely summarizes the results 2.3-2.6.

COROLLARY 2.8. Any element @ € O(M) can be expressed in the
Jform

P = 4D(e)T(r) 0

where ¢, de€ {0, 1}, ¢ is a unit and 6e &. In particular, d =0if M
does mot contain an element r with ord (¢(r)™") =1 and odd.

Proof. This follows immediately from Theorem 2.7 and Proposi-
tion 1.1.

Let © denote the spinor norm on the special orthogonal group
SO(V) and Sk(M) the spinorial kernel in O(M),

Sk(M) = {pe SO(M)|6(P) = 1} .

THEOREM 2.9. Let M = H | K and assume q(K) contains a unit
of 0. Then

Sk(M) = & .

Proof. It is well-known that the isometry E(p, s) has spinor
norm 1. Hence & < Sk(M) always. Conversely, let

P = LD (r) 0

have spinor norm 1. Then det® =1 gives ¢ =d. Now 6O(p) =
(—q(r))e, since 4 =T(u — v) and @(e) = 4 (u — ev). If r exists,
ord (¢(r)) is odd, and hence ¢ = 0 and & = 7* for some unit 7. Corol-
lary 1.3 now gives Sk(M) & &.

3. -invariant sublattices., We now study the Z-invariant
sublattices of M, that is, sublattices of M that are invariant under
the action of &. For O(M)-invariant sublattices, see [11].

Clearly, M, = {s€ M| q(s) € 0} is invariant under the action of both
O(M) and &. Let M* be the dual lattice of M,, that is,

M* = {se V|B(s, M,) S o} .
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Then 2M* =< M and 2M* is invariant under the action of O(M). Let
P be a sublattice of M. Define

a(P) =Tez;,’ B(r, M,) .
Then B(P, M,) < o(P) and a(P) is an ideal in o, since each B(r, M,) is.

THEOREM 3.1. Let M = H 1 K where q(K) contains a unit. If
card o/p = 2, assume also r(M)=1T7. Then a sublattice P of M 1is
Z-invariant if and only if

M, s oP)"Ps M*.

Proof. Write a = a(P). Since B(a'P, M,) < o, it follows that
a ‘P M*. Now let x€ K, and ye P. Since B(P, M,) Sq,

E(u, x)(y) = ymod aM, ,

and P is Z-invariant if aM, < P. It remains to show that if re P
and B(r, M,) = b, then bM, = P if P is Z-invariant.

Write » = Bu + vv + s where se K. Then b = 8o + vo + B(s,
K,). We may assume b = Bo (otherwise replace » by E(u, t)(r) where
B(s, t) generates b, or interchange w and v). Take ye K, such that
q(y) is a unit and, when card o/p = 2, also B(s,y) = 0. For a suitable
unit ¢, (E(v, ey) — I)(r) gives rise to an element v + z in b™'P with
z€ K and ¢q(2) 2 unit. Then, for any unit »,

(E(w, 72) — I)(v + 2) = =72 + (2 — D)a(z)u

is in b™'P. If card o/p =4, it follows that web™'P and it is now
easy to show that M, = b'P. If card o/p =2, put » =1 so that
v + q(?)u is in 67'P. Take pe K primitive and isotropic. Then E(u,
p)(v + ¢(2)u) is in b'P. Hence peb™'P and consequently M, & b™*P.
This completes the proof.

COROLLARY 3.2. Let re M and B(r, M,) = a. Under the hypo-
theses of the theorem, aM, + or is the smallest &-invariant sublattice
n M containing .

Proof. Clear.

Introduce an indexing set Z so that the lattices M, ée 5, are
all the distinct lattices on V satisfying

M,S M.< M*.

If o/p is finite, then & is also finite. Let a be an ideal such that alM, S
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M. Then alM, is an Z-invariant lattice.

4. The subgroups & (aM,) and & (aM,;). For e 5, let a be an
ideal such that aM, =& M,. Define & (aM,) to be the subgroup of
O(M) generated by isometries of the form E(u, z)v " and yE(v, 2)y*
where e & and ze KN aM,. The subgroups & (alM,) are obviously
normalized by &. Also, let

F(alM) = {pe O(M)|[p, ] & & (aM)} .
Then any subgroup .+~ of O(M) satisfying
(M) S 4" S F (aM,)
for some aM, & M, is normalized by & since
;&1 [F M), ]S &0aM) S 1.

For aM, & M, define the congruence subgroup O(aM,) by O(aM,) =
{peO(M)|p(x) = v mod aM, for all xe M.} x {+ I}. These subgroups
are normalized by & since M, and al, are Z-invariant. If al, =
M,, then O(M,) = O(M). Now let a & p. If ¢ = 1moda, then @(c) e
O(aM,). Also, for ze KN aM,, both E(u, z) and E(», ) are in O(aM,)
provided aq(M.) =< 0. Hence & (aM.) = O(alM.), provided aq(M,) < o.

LEMMA 4.1. Let a S p and ag(M,) S 0. Then @€ O(aM,) can be
expressed in the form

P = £ E(u, 2)E(v, y)P(c)0
where © and ¥y are in KN aM,, ¢ = 1lmoda and 6 O(K) N O(aM,).

Proof. Let @(v) = au + Bv + s where se K alM, and
B = *+l1lmoda.

If 3 =—1moda, replace » by —@. Now put @, = O(B)E(u, B3 's)pe
O(aM,) so that ¢,(v) = v. Let ¢, (u) = u — q(t)v + ¢ where tc K N alM,.
Put 0 = E(v, t)p, € O(aM,). Then 6c O(K) and @ can be rewritten in
the desired form.

THEOREM 4.2. Let M = H | K where g(K) contains a unit., If
card ofp = 2, assume that r(M) = 9. Then, if aq(M;) S o,
& (aM,) = [O(aM,), &]

and hence

&(@aM,) S O@M) & & (aM,) .
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Proof. We first show that [O(all), &) & & (aM,). If alM, = M,,
then &(M,) = & and [O(M), £] = & by Corollary 2.8. Now assume
a & p. Consider first [@, E(u, t)] where @€ O(aM;) and te M,. By
Lemma 4.1,

P = xEu, 2)E(v, y)0(e)d
with E(u, ) and E(v, y) in &(@M,). From Proposition 1.1,
[®, E(u, t)] = E(u, ¢0(t) — t) mod & (al;) .
But [p, E(u, t)] is in O(aM;) and hence
E(u, €0(t) — t)(v) = v mod alM,

so that €0(t) — tealM,. Hence [p, E(u, t)] € &(@M,;). From the pro-
perties of commutators, it follows that

[O(eM,), ] & & (aM,) .

For the converse inclusion we must show E(u, z) and E(v, ?) are
in [O@@M,), &] forall ze KN aM,. If cardo/p = 4, there exists a unit
€ such that 7' = — 1 is also a unit. Then

E(u, z) = [9(C), E(u, 72)] € [&, O(M)] .

Finally, let cardo/p = 2. Since now r(M)=9, M =H | H 1 K’
where ze K’ and H' = ou’ + 0v’ is a second hyperbolic plane. Then

[ E(w, 2), BV, w)] = E(E(W, 2)(v'), w)E(', —w)
= E(u, — E@W/, 2)(v")E(u, v')
= E(u, z + q(z)u)

is in [O(aM,], £’]. Since aqg(M.) < o, we have g(2)u’ € alM,. A similar
argument shows that FE(u, q(z)u’) is also in [O(alM.), =" ]. The result
now follows immediately.

THEOREM 4.3. Let M = H 1 K where q(K) contains a unit. If
card o/p = 2, assume that »(M) = 9. Then

& = QM) .

Proof. Take aM, = M, in Theorem 4.2. Then
& =& (M) =[0M), ]S 2AM) S &,

the final inclusion following from Theorem 2.9.

REMARK 4.4. With greater effort, a stronger result may be
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obtained when card o/p = 2 (see, for example, [9; Theorem 2.6]).
Also, when aq(M,) £ o, anormalous behaviour may occur (see [10;
Table II}).

5. Subgroups normalized by 2(M). Let .7~ denote a subgroup
of O(M) normalized by . We now prove, under suitable hypotheses,
that there exists a sublattice alM, invariant under & such that

M) s A = F () .

The method is as follows. Assume @€ .4~ and choose ¥r€ & as
in Proposition 1.4 such that

YPyT = E(u, x)E(v, y)O(e)0

is also in .47 We shall show that E(u, x), E(v, y) and @(c)0 are all
in .+~ and use these isometries (varying @ in _#") to obtain a maximal
subgroup of the form & (aM,) in .47 It then remains to prove .+~ &
F (aM,;). We prepare for this theorem with a number of lemmas.

LEMMA 5.1. Let M = H i K where ¢(K) contains a wnit. Then
if cardo/p = 8 and

P = E(u, )E(v, y)P(e)0

1s i a subgroup 4 normalized by £, there ewist units { and 73
(independent of ®) such that E(u, {x) and E(v, ny) are also in A7

Proof. Modify Lemma 3.8 in [9].

LEeMMA 5.2. Assume (M) =7 and E(u,x) is in 4. Then
E(u, azx) 1s in 4~ for all aco.

Proof. xze K can be embedded in a binary (or unary) sublattice
Bof Kwith K= B L C. Then »(C)=38. From [14; 93: 20], 6(SO(C))
contains all units. Let ¢ be any unit and take 6 e SO(C) such that
6(0) = ¢. Then @(e)f ¢ Sk(M) = &. Conjugating E(u, ) in .4~ with
O(e)0 gives E(u, e6(x)) = E(u, ex) is in .+~ for all units e. If aeco
is not a unit, then @« = 1 + ¢ with ¢ unit and now E(u, a) is also
in .47 This proves the lemma.

The previous two lemmas show that for »(M) = 7 and card o/p =
8 that if E(u, x)E(v, y)@(c)0 lies in a subgroup .+~ normalized by &,
then so do E(u, z), E(v, y) and @(c)d. We show now that this is still
true for card o/p = 2 or 4 provided the rank of M is at least 9.

LEMMA 5.8. Let M= H 1 K with »(M) =9 and ¢ = E(u, x)E(v,
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Y)P(e)b e A~ where x, ye K, and € O(K). Then E(u, x), E(v, y) and
()6 are all in -

Proof. Since r(M) =9, we have M = H | H' 1 K where H' =
ou' + ov’ is a hyperbolic plane and y< K’. Then

E(u, —n)lp, E(u, w")]E(u, ) = E(v, ¥)E(u, e6(w)E(v, —y)E(w, —u')
is in .+ Hence

E(u, e0(w)E(E(v, —y)(u), —u)
= E(u, f(u)E(w +y — q(y)v, —u')
= E(u, e0(u) — w)EW, y — q(y)v)

is also in .#7 Let t = ed(w') — u’. Take se K’ with ¢(s) a unit and
B(s,y) =0. Then [E(u, s), E(u, t)E(«, y — q(y)v], and hence also
EW’, q(y)(s + q(s)w)), are in 47 But ov + o(s + g(s)u) is a hyperbolic
plane, so that both E(v/, q(y)v) and E(u, t)E(w/, y) are in .#. This
already completes the proof in the special case where ¢ =1 and 6
is the identity map, since then ¢t = 0. Returning to the general case,
since r(K’) = 5, there exists € O(K’) such that y(y) =y and 4y ¢
#. Conjugating E(u, t)E(w', y) with 4+, shows that E(v, v(t)E(', y)
is in .#. Hence E(u, t)E(v, —(t))e .+~ and, by the special case
noted above, it follows that E(u, t) is in _#. Finally, E(/, y)e 4~
and the result now follows.

LEMMA 5.4. Let M=H 1| K with (M) = 7. If cardo/p < 4,
assume also r(M) = 9. Let E(w, x)€ 4" where x€ K, and B(x, M,) =
a. Then

g(aM*) S .

Proof. Take ze K, such that B(x, 2) = « where o =a. We
may assume ¢(z) is a unit, for if not, take z,€ K, with B(z,2) =10
and ¢(z,) a unit; if B(x, z,)€ au, replace z by 2z, otherwise, replace
2z by z + z,. Moreover, there exists ye K, with B(z, ¥) = 0 and q(y)
a unit. Let ¢ = ¢(2)g(y). Conjugating E(u, x)€ 4+~ with @(e)¥(2)¥(y)
from Sk(M) = & gives E(eu, x — aq(z)'2z)e 47 From Lemma 5.2 it
follows that E(u, az) is in .47 If we K, and card o/p = 8, there is
a unit » such that ¢(z + yw)eu and B(z, z + nw)c au. A similar
argument shows E(u, a(z + yw)), and hence also E(u, aw), are in .47
Conjugating with 40(—q(2))¥(z)e & gives now & (aM,) & A"

Now assume cardo/p < 4 so that (M) =9. Then M=H.1H I K
with € K. Conjugating E(u, ) with E(«’, z) leads to E(u, au’)e
A7 Similarly, E(u, av’)e._#. Take te K,. Finally, conjugating
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E(u, au’) with E(v', t)e & shows that E(u, at) is in .#~ and hence
again, (@M, = 1"

THEOREM 5.5. Let M be a unimodular lattice with r(M) =1,
and r(M) =9 if cardo/p = 2,4. Then a subgroup A~ of the orthog-
onal group O(M) is normalized by the commutator subgroup QM)
if and only if it satisfies

&M, S v = F (aM,)

for some ideal a in o and an invariant sublattice M, with aM, & M,.

Proof. We have already observed that subgroups satisfying these
ladder relations are normalized by & = 2(M). Now assume ./~ is a
subgroup normalized by 2(M) and choose aM, & M, maximal such
that & (aM,) & .+ Clearly, at least {I} = £ ({0} M,) S .#"; moreover,
if both &(a,M,,) and & (a,M,,) are contained in .#; these two sub-
groups generate & (a,M.) S .+~ where a;, = a, + a, (see §4).

Now let pe _#"; we must prove ¢ & (aM,;). By Proposition 1.4
there exists 4 € (M) such that

Yy~ = E(u, 2)E(v, y)P(e)0

where e O(K). By Lemmas 5.1-5.3 we know that E(u, x) and E(v,
y) are in .4~ and hence by Lemma 5.4 and §4 they are even in
& (al,). It therefore suffices to prove that @(e)d is in & (aM,). For
se K,,

[2()0, E(u, 5)] = E(u, €b(s) — s)

is in 47 Again, from Lemma 5.4 and §4, it follows that [@(¢)d,
E(u, s)] is in &(aM,). Hence

[0(e)d, ] & & (alM)
and, therefore, @(c)d € # (aM,). This proves the theorem.
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