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This paper is concerned with the properties of free, and
projective pseudo complemented semilattices (PCSL).

It is proved that a projective PCSL is complemented and
all its chains and disjointed subsets are countable, and that
a Boolean algebra is projective in the category of PCSL if
and only if it is projective in the category of Boolean algebras.
Further, necessary and sufficient conditions are established for
a finite PCSL to be projective.

1. Preliminaries. A semilattice A is a partially ordered set
closed under meets. If A has a least element we will denote it by
0. We say that a* is the pseudo complement of ac A, A a semilattice
with 0, if we have (i) ¢-a* =0, (ii) If ab = 0 then b < a*, for be A.
Clearly pseudo complements are unique when they exist. A semi-
lattice with 0 called a pseudocomplemented semilattice (PCSL) if each
element has a pseudo-complement. A PCSL has a greatest element,
0*, which we denote by 1. A function f: A— B, A, B PCSL’s, is
called a homomorphism if f(ab) = f(a)- f(b), f(a*) = fla)* for a, be A.
We observe that f(0) =0, and f(1)=1. For SS A let S*={z*:2e S}.

It is easily shown that the following identities are true in any
PCSL.

(1) 2y =yx (13) (xy)* = (@**y**)*

(2) «(y2) = (vy)z (14) @*y** =0 a*y* =a*
(3) vx==x (15) 2y =0—2 = y*

(4) 0-2=0 16) a(@y)* = zy*

(5) a(wy)* = wy* 17 2@*y)* ==«

(6) 20* =2 (18) x*(xy)* = x*

(7) 0**=0 (19) a*(@*y)* = a*y*

(9) z2=2y—y* = @21) x**(wy)* = a**y*

10) z=y—a** < y** (22) (zy)*(wy™)* = z*

The definitions of the concepts discussed in this paper may be found
in References 3, 4, 5, and 7.

2. Free PCSL.

LeMMA 2.1. Let X freely generate the PCSL F. Then
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(1) 0¢X, 1¢ X.

(2) If S X, S finite then II(S) # 0.

(38) If Sg X*, S finite then II(S) = 0.

(4) If x€ X then x == x**.

(5) If o, € X 2, #+ x,, then xf #+ xf, o7 + a7*.
(6) S= X, then |S|=|S*| =|S**|.

(7)) z,x,eX and x < x, then x, = %,

(8) If = II(T), T X then xc T, where xec X.

Proof. (1) If 0e X, then let f be a homomorphism f: F—2
such that f(0)=1. But f(0) = f(a-a*) = f(a)- f(a)* =0. Thus
0=1 in 2, a contradiction. Also, suppose 1€ X. Let g be a homo-
morphism g: FF— 2 such that g(1) = 0. But 1 =0* =g(1)* =9(0) =0,
again, a contradiction.

(2) Suppose I(S) = 0. S finite, S X. Then there is a homo-
morphism f: F—2 so that f(x) =1 all xe S. Thus 1 = f(II(S)) =
f(0) = 0 a contradiction.

(8) Suppose I(S) =0, S finite S X*. Then there is a homo-
morphism f: FF'— 2 so that f(z) =0 for all z¥e S. Thus 1= f(/I(S)) =
f(0) = 0 a contradiction.

(4) Suppose # = x**. Then there is a homomorphism f: F— 3,
the 3 element chain 3=(0, a, 1) such that f(x) =a. Butae**=f(z**)=
f(x) = a is false since ¢** = 0 in 3.

(5) Let 2, # 2, and suppose ¥ = x¥. Since F is free let f be
the homomorphism from F onto the boolean algebra, such that z, —a,,

1
N
al\o/a2 ’

and »,— a,. Since ¥ = x then a* = a*. That is @, = a,, a contra-
diction. Thus ) = z*.

If a}* = x¥* then we have ¢*** = g¥**, i.e., x¥ = ¢}, a contradiction.
Thus xf* # xf*.

(6) Let S X. Then S*={z*:2¢S}. Letf:S—S* be
defined by f(z) = 2*. Clearly f is onto. Suppose f(x) = f(x.), i.e.,
ef=w} " 2, =2, i.e., fisl—1. Thus|S|=|8S*|. Alsolet g: S— S**
be defined by g(x) = 2**. If g(x,) = g(x,) hence o* = z¥* and x, = x,,
ie, gis 1 —1. Thus |S|={S**|.

(7) Suppose x, # x,. Let f:F—2 be a homomorphism such
that f(z) = 1 and f(x,) = 0. But since , < 2, thus 1 £ 0 —a contra-
diction.

(8) Let = JII(T) and suppose x¢ T. Let f: F—2 be a homo-
morphism such that f(x) =0 and f(z;) =1, 2,€ 7. Then we have
1 £ 0 — a contradiction.
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LEMMA 2.2. If A is a PCSL then A* is a retract of A.

Proof. @: A— A* defined by o(x) = x** is a homomorphism onto
A*, If vxe A* then @(x) = #, since a*** = x*. Hence, A* is a retract
of A.

THEOREM 2.1. If F is a PCSL freely generated by X, then F*
18 freely Boolean gemerated by X**; i.e., F'* is free in the class of
boolean algebras.

Proof. Let @: F— F* the homomorphism @(x) = z**, and let
! F'* — F' be the inclusion map. Then @+ = I;.. Let X = {x;:¢¢ I}
and let B be any Boolean algebra and suppose b, € B, for i€l then
there exists a homomorphism f:F— B such that f(x) =10, Let
h= fy: F*— B. Then h(x¥*) = f(z¥*) = bf* = b,. Also we note
that 7 is a Boolean homomorphism.

THEOREM 2.2. Let A be any free PCSL and let X freely generate
A. Then every element of A is of the form II(T)-(II(P))* .- (I(P,)*,
where TS X, P,=R,US}y, R,US, & X, R,nNS, = 0, P, finite for
1=12 -, m, n=0, using the convention that II(®) = 1.

Proof. Let B={II(T)-r T< X, re A*, T finite}. Then B is a
subalgebra of A, since 0e B, and B is closed undermeets. Also if
be B, then b*e A*, and thus b*e B. Further, we note that X & B,
hence B= A. Since the homomorphism @: A— A* given by @(x) = x**
is onto, then A* is freely Boolean generated by X**. Hence any
element » =1 of A* is a product of elements of the form a =
S (UU V*) where U and V are finite disjoint subsets of X**. But
U= S** and V = R** for some R, S subsets of X. Clearly RN S=Q
and V* = R*. Hence

a=3,(S*™ UR") = (I(S*UR™)* = {I(BUS)",

by [2, Theorem. 2] and (13) of §1. Since z(xy)* = zy*, x(x*y)* = =,
((16), (17) of § 1) we may assume that TN R, = TN S, = @ for all
1= m.

THEOREM 2.3. Let X, Y freely generate a PCSL F. Then X=1Y.

Proof. Let wxe X. Then ¢ =II(T)-r where @ + TS Y and
reF*, Thenz =<y, forally,e T={y, ¥, +++, Ya}. Also, y,=II(T)-r,
for @ + T, < X and r,€ F*. Hence x = II(T)-r = (U T)IIr,)-r
from which we see that # < II({J T,), and conclude that U T; = {«},
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using Lemma 2.1(7). Hence y, = x-7, and thus y, < 2 and hence

x=1vy, e, xeY., Thus X< Y, and by a similar argument Y < X.

LEMMA 2.3. Suppose X freely generates a PCSL F, and let
x2eX, RUSUTE X, RUSUT finite. If 0= I(TUR** U S* <z,
then ze T.

Proof. Since 0= II(TUR** U S*), then TNnS=RnNS=a.
Clearly x¢ S. Suppose x¢ 7. Let f: F— F be a homomorphism such
that

1lif yeRUT — {a}

S =q{zify=2
0if ye S.

This is possible since X freely generates F. Then

1 if ze¢R

(T U R*™ U S%) =
FUTUETUSD = pen i ye R

Hence 1 <z or 2** <, so # = 1, or & = 2**. But this is impossible
by Lemma 2.1, and the result follows.

LEMMA 2.4, Let X freely generate F, and T <= X, and re F*,
xeX., If 0<I(T)-r=wx. Then xec T.

Proof. r is a sum in F* of elements of the form [I/(R** U S*),
where RUSES X, RN S= ¢@. Hence for some K and S we have
0<I(TUR*US*)<wx. Then by Lemma 2, xc T.

THEOREM 2.4. Let X freely generate a PCSL F. Then the
elements of X are super-meet irreducible. That is, let a,, ay -+, 0, € F,
ze X, and 0 < aa,---a, =z then a, = x for some 1.

Proof. For each 4,a,=1(P)-r, P,= X, r,e F'*. Hence 0 <
P yY---UP)-r,+---r,<wx, then by Lemma 2.5 zxe¢P, U-.- UP,
and thus 2e¢ P, for some 7. Therefore o, < .

LEMMA 2.5. Let X freely generate F, and acF,re F*, If
0<r<a, then ac F*,

Proof. Suppose a¢ F'* then o < 2, for some z€ X. Hence 0 <
r <. But ris a sum (in F*) of elements of the form II(R** U S*),
where RUSE X, RN S= @. Hence for some such E, S, we have,
0 <IHR**US*) =II(p UR*™US*) <ux, and then by Lemma 2.4 we
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have ve @, a contradiction.

LEMMA 2.6. Let X freely generate F, and ac F. If a* =0, then
a=1.

Proof. We have a =1I(T)-r where TS X, re F*. Since a* =0,
then 1 =qo** = II(T)**-r < r, thus » = 1. Hence a = 1I(T). If
T+ @ then o £z for some e X. Thus 1< z**. But this is im-
possible by Lemma 2.1(3).

THEOREM 2.5. If F is a free PCSL, then F is complemented,
i.e., if a€ F, the a + a* exists and equals 1.

Proof. Suppose a < b, a* <b, then b* < a*a**=0. Hence b=1
by Lemma 2.6.

THEOREM 2.6. Let F be a free PCSL.

(1) Let SE F*, S finite, and a = 3,7.(S). Then X (S) exists
and equals a.

(2) a* + b* = (ab)* for a, be F.

Proof. (1) Clearly true if S = {0}.

We may assume S {0}. Now a=s for all seS. If beF and
b=s all seS, then be F* by Lemma 2.6 and thus b= a. Thus
37 (S) exists and equals a.

(2) a* + ;0" =a* + . b*
= (a**b**)* gince F'* is a Boolean algebra
= (ab*) by (18) of §1.

LEMMA 2.7. Let Fbea free PCSLand re F*. Then{ac F:a**=r}
18 finite.

Proof. By Lemma 2.6, ¢* =0 iff @ =1, and in any PCSL a¢* =1
iff @ = 0. Hence we may assume 0 < r < 1. Let X freely generate
F. By Theorem 2.2 there exists a finite subset X, of X such that
re I, the algebra generated by X,. Now F, is finite. We need only
show that if ¢** = », then ac F,. If ac F*, then a = a¢** = re F..
Now suppose a¢ F*. Then a = II(T)-s, where @ = T< X, and
se I'*. Further, from Theorem 2.2 we may assume that s is in the
subalgebra generated by a subset of X which is disjoint from 7. If
T & X, then there exists an element x¢ T — X,. Let f: F— F be
a homomorphism such that f(z) = 0, and f(y) = y, for all ye X — {z}.
Then f(a) =0 and hence, 0 = f(a**) = f(r). But f(r) =17 since
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2¢ X,. Then r =0, a contradiction. This proves that T X,, and
so [I(T)e F,. Let g: F— F be a homomorphism such that g(y) =1
for all ye T, and g(y) =y for ye X — T. Then g(s) =s. Hence
s = g(s) = g(s - II(T)**) = g(a**) = g(r). But by definition of F}, and
g, 9(r)e F,. Thus se F, and hence o = II(T)-sc F,.

COROLLARY 2.1. Let F be a free PCSL and let re F'*, then
{ae F:a* = r} 1s finite.

Proof. {ae F:a* = r} = {ac F:a** = *} which is finite.

COROLLARY 2.2. Let F be an infinite free PCSL and let S & F,
S infinite. Then, |S*{ =|S|. Proof is clear.

THEOREM 2.7. If B is a free Boolean algebra, then there exists
o free PCSL F such that F* = B.

Proof. Let X< B, freely Boolean generate B. Let F be the free
PCSL on a set S of | X| free generators. Then F* is a free Boolean
algebra freely generated by S**. Since | X| =8| =]|S**|, by Lemma
2.1(6), then F'* = B.

LEMMA 2.8. Ewvery free Boolean algebra s a retract (in the cate-
gory of PCSL) of a free PCSL.

Proof. Let B be a free Boolean algebra. By Theorem 2.7, there
exists a free PCSL F such that F* = B. But F* is a retract of
F, hence B is a retract of F.

THEOREM 2.8. In a free PCSL, all chains are countable.

Proof. Let F be a free PCSL, and let C = {a,e F: 1€ I} be an
infinite chain. Then C* is an infinite chain in F* a free Boolean
algebra. But chains in F'* are countable [6], and since |C| = [C*],
hence C is a countable chain.

THEOREM 2.9. All disjointed subsets of a free PCSL are count-
able.

Proof. Let S be an infinite disjointed subset of F, a free PCSL.
Now | S| = |S**|. Also a**b** = (ab)** = 0** =0, fora, be S. Thus
S** is a disjointed subset of F*. But in a free Boolean algebra all
disjointed sets are countable [7, p. 51], hence S is countable.
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3. Projective PCSL.

THEOREM 3.1. B, a Boolean algebra is projective in the category
of boolean algebras, iff it is projective in the category of PCSL.

Proof. B is aretract of a free Boolean algebra B. By Theorem
2.7 there exists a free PCSL F such that B = F*, and thus B is a
retract of F in the category of PCSL. Hence B is a retract of F
in the category of PCSL and thus B is projective. Conversely, let
B be a Boolean algebra which is projective in the category of PCSL.
Thus there is a free PCSL F such that B is a retract of F. Then
by Lemma 2, it follows that B is a retract of F'* in the category of
Boolean algebras, and the result follows.

REMARK. The definition of projectivity makes it clear that the
results of the preceding section following Theorem 2.4, hold for
projective PCSL.

4. Finite projective PCSL.

DEFINITION 4.1. If Pis a partially ordered set and M & P, pe P,
let M, = {me M: m = p}.

DEFINITION 4.2. Let P be a finite partially ordered set and let
M be the set of maximal elements of P. Then a semi-lattice A with
least element, 0, is said to be freely gemerated by P with the defining
relation II(M) = 0 if there is an order preserving function ¢: P— 4
such that 77(6(M)) = 0, 6(P) generates A, and such that if B is any
semi-lattice with 0, and h: P— B is any order preserving function
such that II(h(M)) = 0, then there exists a semi-lattice homomorphism
g: A— B such that ¢(0) =0, and g0 = h. The existence of A is
guaranteed by a known theorem of universal algebra. A is unique
up to isomorphism. See [4, p. 182 183].

LEMMA 4.1. Let P be o finite partially ordered set and M be
the set of maximal elements of P. Suppose for each pec P — M we
have M, = M. Let A be a semi-lattice with 0 freely generated by
P with defining relation II(M) = 0 and let §: P— A be an in Defi-
nition 4.2. Then,

(a) 01isanorder isomorphism. (So we may consider P contained
in A, and 0 as the inclusion function.)

(b) prl; ) pnePthenplpz- pn:OlﬁU{Mpz’L§%}:M

(¢) If p,py, ++, PP and 0 < p,p, - -+ - p, < p then p; < p,
some 1.
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(d) P is the set of meet irreducible elements of A.

Proof. (a) If SE P let M(S) = U {M,: pe S}, m(S) be the set
of minimal elements of S. Define

B={M}U{S: 2 + S< P, M(S) + M and for
r,ye S,z #y—uxl|ly}
where a || b means ¢ £b and b £ a. For S, S,e B, define

M if M(S,US) =M
m(S,US,) if M(S,US,)= M.

Then S,:-S,=S,-8,8,-5,=8,8,-M= M for any S, S,e B. It is
easy to verify that

S]_'Sz = {

M if M(S,US,US)=M

8.+ (S, 8y =
(5 5) {m(SIUSZUSS) if (S,US,US) =+ M.

Therefore, (S,+S,)- S; = S;+(S,- S;)=3S,: (S, S;), and thus Bis a semi-
lattice with smallest element M if we define S, < S, whenever
S-S, =8,. Note that S, < S, iff either S, = M, or for any z¢ S,
there exists y € S, such that = y. Define h: P— B by g(p) = {p}
for pe P. If p, < p, then {p} = {p,}. Also, II(K(M)) = II{{m}: me
M} = M. Thus there exists a homomorphism g¢g: A — B such that
90 = h. If 0(p) =< 6(p,), then h(p,) =< h(p,). But {p} = {p.} implies
p, < p, or M, =M. If M, = M then p,e M and hence M = P = {p},
S0 p, = p,. Therefore, § is an order isomorphism. Henceforth we may
assume PS A and 6(p) = p for all pe P.

(b) If pp,- -+ p,=0, then {p}- .-+ - {p,} = M. Therefore,
M=M{p, -+, 2.)=U{M;:i=n}. I U{M;:i=n}= M then
PP+ P = (M) = 0.

(c) Suppose 0 <p,---p,=p. Then {p}-----{p.} ={p} and
{p,}+ - - {p,} + M. Therefore, p = p, for some 7.

(d) Since P generates A, every element of A is a product of
elements of P. Therefore, any meet irreducible element of A is in
P. Conversely if pe P, and p 0 then p is meet irreducible by (c)
and the fact that P generates A. If 0e P then 0¢ M because M, = M
for pe P — M, thus P = {0} and A = {0} and thus (d) is proved.

LEMMA 4.2. Let A be a finite semi-lattice, P be the set of meet
irreducible elements of A, and M the set of mawximal elements of
P, If

(a) If p,, +++, 0, € P then p, -+ p, =0 iff U{M,;:1=n}= M.

(b) Ifo,py -+, p€Pand 0 <p, ---p, < p then p, < p some 1.
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Then for each pe P — M, M, + M and A s freely generated by P
with defining relation II(M) = 0.

Proof. If pe P— Mand M, =M, thenby () p=0. ButII(M)=0
by (a) hence p = II(M) which contradicts the fact that P is meet
irreducible. If xe A, z = 0, then x = I7(S) for some S & P, and we
may assume the elements of S to be pairwise incomparable. If
xell(S), S’ < P and the elements of S’ incomparable, then by (b)
every member of S’ is greater than or equal to a member of S, and
vice-versa. Therefore S = S. Thus for x ¢ A there exists a unique
set S, of incomparable elements of P such that x = I7(S,).

Suppose B is any semi-lattice with 0, and h: P— B is an order
preserving function such that I7(h(M)) = 0.

Define g: A — B by g(x) = II(h(S,)) for 2+ 0 and g(0) =0. To
show g is a semi-lattice homomorphism, first note g(xy) = g(x)-g(y) =0
if =0, or y =0. Suppose 2= 0 and y==0. If 2y =0 then S,, =
m(S, U S,), the set of minimal elements of S, U S,. Since ¢ is order
preserving we have g(x)-g(y) = II(h(S,)) - II(R(S,)) = I (R(S, U S,)) =
Th(S,,) = g(xy).

If sy =0thenby () U{M,:pe S} UU{M,: pe S,} =M. There-
fore g(x) - 9(y) = I (M(S, U §,)) = II(h(M)) = 0 = g(xy). Clearly g|P=h,
and the proof is complete.

LEMMA 4.3. Let A be a finite semi-lattice with 1 and suppose
A — {1} satisfies the hypothesis of Lemma 4.2. Then

(a) A is pseudo complemented and for each xe A — {1}, z* =
II(M — M) and z** = I(M,) where M,, M as in Lemma 4.2.

(b) A* —{1} = {II(S): S€ M}.

(¢) M is the set of dual atoms of A which is also the set of
dual atoms of A*.

(d) If SS A%, then 3..(S) ewists and equals > . (S).

Proof. Firstly we show that if S& M, me M and II(S) < m,
then me S. We prove this as follows: If /7(S) = 0 then S = M by
hypothesis (2), and thus me S. If II(S)+# 0 then by hypothesis (b)
m' £ m for some m’'e S, but then m = m’'e S, so me S.

(a) Let veA— {1} and let y = II(M — M,). Then

oy < (M) - I(M — M) = II(M) =0 .

Now suppose xz = 0 for some € A. Using the notation of the proof
of Lemma 4.2 we have 77(S, U S,) = 0. Therefore by hypothesis (b),
M=U{M;peS,US}. If meM— M, it follows that m = p for
some peS,US,. If peS,, then m = 2 contradicting me M — M,.
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Therefore, pe S, and so m = p = z. Therefore, y = II(M — M,) = 2
and this proves that y = x*.
Now

meM,—y =II(M—- M)=m
—~meM — M, by hypothesis (a) .

Therefore, M, = M — M, and «** = y* = [I(M — M,) = II(M,). This
proves (a).

(b) By (a), every element of A*is of the form /7(S) for some
S& M. If meM, then m** = I[I(M,) = m, hence M < A*. This
proves (b).

(¢) If meM and m <2 <1, xe A, then m < p <1 for some
pe P. This is a contradiction and so m is a dual atom of A. If »
is a dual atom of A, then x is meet irreducible and hence ze M.
By (b), the dual atoms of A* are in M. Therefore, M is the set of
dual atoms of A*.

(d) By hypothesis (b) of Lemma 4.2, and (b) above, it is easy
to see that if ae A* xe 4, and 0 < a <2 then xe A*. This implies
(d) just as it did for a free PCSL, in the proof of Theorem 2.6.

REMARK. By Lemmas 4.2 and 4.3, the free finite PCSL F with
% generators may be described as follows. Let P be the set

{wri=nU{z:S&S{1,2 -, n}},

and suppose #, < z, iff 1€ S. Then F is the semi-lattice with 0 which
is freely generated by P with defining relation 7{z,: S&{1, - -+, n}} =0.

THEOREM 4.1. Let A be a finite projective PCSL, let P be the
set of meet irreducible elements of A — {1}, and M be the set of
maximal elements of P. Then

(a) If S P, peP, and 0 <II(S)= p, then s<p for some
se S.

(b) If S P, then II(S) =0 iff U {M,:seS} =M.

(¢c) N{My:peP - M+ Q.

Proof. As in the proof of Lemma 4.3, it is easy to see that M
is the set of dual atoms of A. M is also the set of dual atoms of
A*, It follows that (P — M)n A* = @&.

(a) Let F be a PCSL freely generated by a set X such that
| X|=|P|. Let h: X— P be 1 —1 and onto. Then there exists a
homomorphism f: F— A such that f| X = h. Since P generates A4,
fis onto. Since A is projective, there exists a homomorphism g: A—F
such that fg =1,. Letpe P—Mand 2 = h™'(p). Now g(p)=II(T)-r
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for some T< X, re F*. Hence p = fg(p) = II(f(T))- f(r). Since p
is meet irreducible and p¢ A*, it follows that » = f(y) for some
yeT. But p = f(z) and f| X is 1 — 1, therefore z =ye T and so
g(p) £ II(T) £ x. We have therefore shown that for any pe P — M,
9(p) = ().

Now suppose SE& P,pe P — M and 0 < II(S) < p. Since g is
1—-1, 0<(9(S)) < g(p) £ h'(p), so by Theorem 2.4, g(s) < h7'(p)
for some se S. Hence s = fy(s) < fh~(p) = p. This proves (a) for
the case when p¢ M. If pe M and 7I(S) < p for some SE P, then
II(S**) < p** = p. Since p is super-meet irreducible in A%, it follows
that for some se S, s < s** < p, and so (a) holds.

(b) If SS P and II(S) = 0, then for any me M, II(S) < m and
so me M, for some se S, by the preceding paragraph. This proves (b).

(¢c) We have shown that A satisfies the hypothesis of Lemmas
4.2 and 4.3. Therefore, for each v A — {1}, 2* = II(M — M,). Suppose
N{M,:pe P— M} = . Then

H{p*:pe P— M} = II{lI(M — M,): pe P — M}
=IU{M— M,:pe P — M})
=IIM-N{M,:pecP—M})=0.

Therefore,
0 =g(0) = g(l{p*:pec P — M})
= Il{g(p)*:pe P — M}
= II{h~(p)*:pe P — M}
since g(p) = h™'(p) for all pe P — M.

But this is impossible, because if T is any finite subset of X, then
II(T*) %+ 0 by Lemma 2.1.

LEMMA 4.4. Suppese a PCSL A satisfied the hypotheses of Lemma
4.3. Let B be PCSL and g: A — B 1is a semi-lattice homomorphism
such that g(0) =0, g(p**) = g(p)** for all pe P, P the set of meet
wrreducible elements of A, and g(u*) = g(w)* for all we A*. Then g
is ¢ PCSL homomorphism.

Proof. Let a by any element of A. We first prove that g(z**) =
g(@)**. We have x = II{p,: ¢ < n} for some {p, ---, p,} & P. Hence

g@**) = g(I{p,: 1 = n}**) = g(Il{pF*:i = n})
by (23) of §1

= I{g(pf*):1 = ) = {g(p.)**: v = n}
= (I{g(p.): 7+ = n})** = g(II{p;: i = n})** = g(x)** .
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Let zc A and let w = 2**, we have
g(a*) = g(@***) = g(u*) = g(w)* = g(@**)* = g(w)*** = g(x)* .

Hence g is a * homomorphism.

THEOREM 4.2. Let A be a finite semi-lattice with 1, and let P
be the meet irreducible element of A — {1} and M the maximal ele-
ments of P. If

(a) If p, -++, D€ P then p, -+ p, =0 if U{M,21=n} =DM

(b) If p,py -+, .€P and 0<p, -+ p, < p, then p;, <p for
some 1.

(¢) N{M,:peP — M} + Q.

Then A is a projective PCSL.

Proof. By Lemma 4.3 A is a PCSL. Let M= {a, ---, a,} and
P—-M=1{,--+-,b,}). Let F be a PCSL freely generated by
(@, <=, 2} U{yy, -, ¥n} and let f: F— A be a homomorphism such
that f(z,) = a,, and f(y;) =b; for all 7,5. If 1 <7< w, let

e =xf* + 3 {witk = i + 2 {yiib; <al
+ 2y b Laid .
We observe that ¢, is a dual atom of F*. Let D be the set of all
dual atoms of F* which are not in {¢, ¢, -+, ¢,}. Since N {M,:pe

P — M} =+ @ we may assume that o, = b; forallj=1,2 ---, m. Let
h: P— F be defined by

k(a‘l) = CLH(D)
ha,) = ¢, forl1<izgn
h(b;) = H{y,: b; < by} - II(D) forl1<j=m.

To show % is order preserving we observe the following: If b; <a,
then

hb;) = y;- (D) = y;*- II(D) = 2{yi*: b, < a,}- 1I(D)
= ¢, - I(D) = ha)) -
If b; < b, then A(b;) < h(b,) since
{0420, = by} 2 (b b, = b} .
Also, h(a,) --- h(a,) is the product of all the dual atoms of F'*, which
is 0. By Lemma 4.2, there exists a semi-lattice homomorphism
9g:A — {1} —F such that g|P =h. Extend g to A by defining

9(1) =1. By Lemma 4.3, z* = [I(M — M,) for all ze A. Now f(¢,) =
af* + Zag: kb= i} + Thr*:b; < a}+ T{br:b; £ a} = a, for all ¢, since
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af*=a;, 0 Za, for k-1, 0" Za, if b; <a,;, and b Z a, if b; < a,.
If de D, then either d = x{* + aF* for some k = [, in which case
fd)=a,+a,=1,ord=X{x}; k<n}in which case f(d)=F{aj: k<n}=
(Hai:k = n})* =0% =1, or d = z}* + y¥ for some 7 and some j such
that b; < a,, in which case f(d) = a; + I{a;: b; < a;} = II{a; + a,:b; «
a} =1, or d =xf* + y}* for some 7 and some j such that b; £ a,
in which case f(d) = a, + T{a,: b; < a;} = II{a, + a;: b; <a;} =1. Thus
f(d)=1 for all de D. Now

fg(ai) = f(ci) =a,;, for 7 >1
fo(a) = f(e)- U(f(D)) = a,, and
fo(b;) = I{b,: b; = by} - I f(D) = b; , for all 5.

Since P generates A we have fg = I,. It remains to show that g is
a * homomorphism.

For any k, y;* is the product of all dual atoms of F* which
are = yi*. Since F* is a free Boolean algebra, the only such dual
atoms are the ones of the form ¥(S* U T**) where y,€ Tand SU T =
{m, *<+, @, Yy, *++, Yn}. Thus yi*= II{c;: b, <a;}-I(D,) where D, & D.
Therefore for any 7,

9(b;)** = Myi*: b; = b} - (D)
= I{IH{c: by = a:}: b; = by} - (D) = Ife.: b; < a,}- 1(D)
= IHg(a.): b; < a.} = g(Il{a.: b; < a;}) = g(b7") .

Also g(a,)** = g(aF*) since a,c A* and g(a,)e F. We observe that
if R is the set of dual atoms of a finite Boolean algebra, then for
any TS R, II{T)* = II(R — T). Hence if ue A*, then u = II(S), for
some SS M, and w* = II(M — S). If a,€ S,

g(u)* = (I{c;: a,€ S} - I(D))* = M{e: a.¢ S}
= g(I(M — S)) = g(u*) .

While if a,¢ S, g(u)* = ({I{c,: a;€ S})* = II{c,:a,¢ S} - [I(D) = g(II(M —
S)) = g(u*). We have now satisfied the hypothesis of Lemma 4.4, so
¢ is a * homomorphism. Since 4 has been shown to be a retract of
a free PCSL, then A is projective.

THEOREM 4.3. Let A be a finite semi-lattice with 1. Let P be
the set of meet irreducible elements of A — {1}, and M the set of
maximal elements of P. Then A is projective if and only if the
Sfollowing hold.

(a) If Q& P, then II(Q) =0 off for each me M, thereisa g€ @
such that m = q.
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(b) If Q€S P, peP and 0 < II(Q) < p, then q < p, for some
€@

(¢) There exists an me M such that m = p for every pe P — M.
Proof of this follows from Theorems 4.1 and 4.2.

THEOREM 4.4. If P 1s a finite partially ordered set and M s
the set of maximal elements of P. Suppose

(a) For every pe P, there exists an me M such that p £ m.

(b) There exists a me M such that m = p, for every pe P — M.

Then the semi-lattice with 0 which 1s freely generated by P with the
defining relation II(M) = 0, is a projective PCSL, and every finite
projective PCSL can be so obtained. Proof of this follows from
Lemma 4.1 and Theorem 4.2.

REMARK. To the conditions of Theorem 4.2 and 4.3, we could add
the following, though redundent condition: If Q & M, then I7(Q) =0
iff @ =M.
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