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Some conditions for the knot group to be an R-group, i.e.,
the group in which the extraction of roots is unique, will be
discussed in this paper. In particular, the group of a product
knot is an R-group iff the knot group of each component is
an R-group. For a fibred knot, a sufficient condition for its
group to be an R-group will be given.

A group G is called an R-group if for every pair of elements
¢ and y, and every natural number #, it follows from " = y" that
2 =y. In other words, G is an R-group if G has not more than
one solution for every equation 2" =a. If G is an R-group, G is
locally infinite. The converse, however, need not be true even if
G is restricted to the group of a knot in S®. For example, let G be
the group of K(m, n), the torus knot of type (m, »). G has a presen-
tation G = (a, b: a™ = b"). Then the equation x™ = o™ has infinitely
many distinct solutions, © = a, (ba)a(ba)™, (ba)a(ba)?, «--.

This observation gives immediately a negative answer to Problem
N in [3]. Neuwirth asks if a knot group can be ordered. In fact,
the group of K(m, n)(|m |, |n| = 2) cannot be ordered, since an ordered
group is always an R-group. Therefore, Problem N now leads slightly
weaker problems: Can a knot group other than torus knot groups
be ordered? Or, is a knot group other than torus knot groups an
R-group?

The purpose of this paper is to give a sufficient condition for the
group of a fibred knot to be an R-group. (See Theorem 2.) Using
this condition, we can prove, for example, that the group of the
figure eight knot is an R-group. (See Proposition 3 or Proposition 5.)

1. Statement of main results. To make our statement precise,
we will introduce some concepts relevant to an R-group.

DEFINITION 1. Let » > 1 be an integer. A group G is said to
be n~divisible if for any pair of elements x and ¥ in G it follows from
x" = y" that v = y.

Therefore, a group G is an R-group if G is n-divisible for every
n. However, n may be restricted to a prime number. In fact, we
have the following easy

ProrosiTiON 1. G is mn-divisible iff G is m- and n-divisible.
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Proposition 1 implies

PROPOSITION 2. A group G is an R-group iff G is p-divisible for
every prime p.

The group of K(m,n) is neither m-divisible nor mn-divisible.
However, it will be shown in § 4 that it is p-divisible iff (n, p) =
(m, p) =1, (see Theorem 3).

Now the following theorem shows that we need only consider the
groups of prime knots.

THEOREM 1. Let K be the product knot of two knots K, and K,.
Let G, G, and G, denote the groups of knots K, K,, and K,, respectively.
Then G is an R-group iff G, and G, are R-groups.

The proof will be given in § 2.
Finally, the main theorem of this paper is stated as follows.

THEOREM 2. Let K be a nontrivial fibred (or Neuwirth) knot.
Suppose that the Alexander polymomial 4(t) of K has no repeated
roots and let ay, ++-, a, be all the roots of 4(t). If the group of K
18 not p-divisible, p a prime, then the multiplicative subgroup
generated by a,, -+, @, in the complex number field contains a
nontrivial pth root of unity.

The proof will be given in §3.

2. Proof of Theorem 1. Since a subgroup of an R-group is an
R-group, “only if” part of Theorem 1 is trivial.

To prove “if” part, we will show a slightly stronger theorem
below.

Let G = G, £ G, denote the free product of two groups G, and
G, with an amalgamated subgroup H.

Let ®; (¢ =1, 2) be the system of right coset representatives for
G, modulo H. Then any element x of G has a unique normal form:
x = hx, -+ 2, where he H, each z,(¢ H) belongs to only one system
®, or ®, and no two successive elements z; and #,,, (i =1, -+, k — 1)
belong to the same system. k& is the length of x, denoted by I(x).
h will be called the initial factor of =, and is denoted by i(x). If
x€ H, or if I(x) =1 and if », and x, belong to different systems,
is said to be cyclically reduced.

THEOREM 1A. G =G, %G, is an R-group if the following con-
dition (1)-(3) are satisfied:
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2.1) (1) G, and G, are R-groups,
(2) H is an isolated subgroup of G, and G,. In other words,
if U z) £ 1 and U(a™) = 0 for some natural number n, then l(x) = 0.
(8) z" =y for some natural number n yields i(x) = i(y).

Theorem 1A implies immediately
COROLLARY. G = G,*G,1s an R-group tf G, and G, are groups.
The proof of Theorem 1A will follow from Lemmas 1-6 below.

LEMMA 1. Let y be a noncyclically reduced element of G = G, ;G,
and y¢ H. Then y can be written as

Y = u'Yu,

where
(2.2) (1) y,ts a cyclically reduced element of G. Let y, = hz, - 2,
he H, be the normal form of y,. Then l(y,) =k = 1.

(2) u hasthe normal form, w=hu,- - u;, where h e Hn=l(u)=1,
and u,c®, or &,.

(3) (i) Ifk=2, then k is even, and 2, and , are not in the
same system, and u*h~‘hz,¢ H. Therefore, l(y) =k + 2n — 1.

(ii) If k=1, then z, and u, are not in the same system and
y) =2n + 1.

Since the proof ~is straightforward, it will be omitted, or see [2,
§4.2]. Denote k = l(y).

In the following lemmas, we assume that the group G = G, ;G,
satisfies (2.1) (1)-(3).

LEMMA 2. Let y be a noncyclically reduced element of G =G, %G,
and y¢ H. Then for any positive integer n, l(y™) s given as follows:
2.3) (1) If W)=k =2 and l(u) = M= 1), then l(y") = nk+2\ —
1=2.

(2) If l(y) =1, then I(y") = 2)n + 1 = 3.

Proof. (1) is obvious.

To prove (2), let ¥ = u'y,u be the form obtained in Lemma 1.
Since I(y) =1, we see that y, = hz, 2¢ G, — H or G, — H. Since 2
and u, are not in the same factor, it follows that

(2.4) Wy™) = u " (h2)"u) < 20 + 1.
An inequality in (2.4) holds only when (hz)" and u, belong to the
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same factor, i.e., (k2)"€ H. Then by (2.1) (2) hz€ H, and hence, z¢ H.
This is a contradiction. Therefore, I(y™) = 2\ + 1.

LEMMA 8. Let 2 and y be cyclically reduced elements of G. If
x* = y", then l(x) = l(y).

Proof. First we note that for any cyclically reduced element z
(2.5) Izl iff () <1.

Now the proof will be divided into the following three cases.

Case 1. l(x) = 2.

Then I(z™) = nl(x) = 2. Since z" = y* l(y") = l(z") = nl(z) = 2
and hence Il(y) = 2. Therefore, I(y") = nl(y). Now, the conclusion
of Lemma 3 is immediate.

Case 2. l(x) = 1.

Then I(z") = 1, and hence, I(y") = 1, since z" = y". Therefore,
it follows from (2.5) that I(y) < 1. I(y) cannot be 0, otherwise I(y")
would be 0. Therefore, l(y) =1 = ().

Case 3. l(x) = 0.
Then (") = 0 and hence I(y¥") = 0. Then it follows from (2.1) (2)
that I(y) = 0.

LEMMA 4. Let o and y be cyclically reduced elements of G.
Then x™ = y™ yields x = y.

Proof. By Lemma 3, we know that I(x) = I(y). Letx = ha,---x,
and ¥y = gy, - -+ ¥, be the normal forms of z and y.

Case 1. l(x) =k =2.
The normal forms of z* and y" can be written as

r" = h'm;”’l)xé"”_l) e x(k”“l) e x;a;; o x;‘xl oo
and
Yr =gy ey e Y e Y Y
Since 2" = y*, we obtain that x, =y, ---, 2, = ¥,. Moreover, it

follows from (2.1) (8) that i(x) = h = i(y) = 9. Therefore, v = ha, + -
Ty =9Y, " Yr =Y.

Case 2. l(x) =k =1.
Then x = hx, and ¥ = gy,. Suppose that x, and y, are not in
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the same system. Then z" = (k)" = (9y)" = y™ must belong to
H = G,N G, and hence, x belongs to H by (2.1)(2). It contradicts
our assumption. Therefore, x, and ¥, belong to the same system.
Since G, and G, are R-groups, © = y follows.

Case 3. l(x) =1l(y)=0.
Then © = y, since H is an R-group as a subgroup of G,.

LEMMA 5. Let ¢ and y be elements of G. Suppose that only
one of x and y, ¥ say, 18 cyclically reduced, dbut y is not, and hence
yeé H. Then z* =+ y".

Proof. Case 1. lx) = 2.

It follows from Lemma 2 that I(2") = 0(mod 2), while I(y") =
1 (mod 2). Therefore, ™ = y".

Case 2. l(x) =1.

Since x belongs to one factor, we see that l(z") = 1. On the other
hand, I(y") = 2 by Lemma 2. Therefore, " == y”.

Case 3. l(xz) = 0. Suppose 2" = y".

Then 2" belongs to H and so does y*. Therefore, y belongs to
H by (2.1) (2). It contradicts our assumption.

LEMMA 6. Suppose that neither x nor y is cyclically reduced.
Then " = y™ yields © = y.

Proof. By Lemma 1, we can write
x=uwu and y = v 'y,

where 2, and y, are cyclically reduced. Then 2™ = y” yields v 'zju =
vy and hence,

xy = wvypout = (v youh)” .

Since 2, is cyclically reduced, it follows from Lemmas 4 and 5 that
T, = uv 'yvut. It implies that z = y.

Theorem 1A follows immediately from these lemmas.

Now what it remains to show is that the group of the product
knot K, # K, satisfies (2.1) (1)-(3).
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Let G; = G(K,) be the knot group of K,. Then it is well known
that G = G,}%G,, where G = G(K,# K,) and H is the infinite cyclic
group generated by ¢ that is represented by a meridian. Denote P’
the commutator subgroup of a group P.

Now (2.1) (1) is exactly the assumption of Theorem 1.

To prove (2.1) (2), take an element ¢ from G,, say. « is written
as ¢ = t*x,, where 2,¢G.. Then 2" = t**z, for some x;€G;. There-
fore " = t* g} = t™, for some m, yields kn = m, and hence, t*"x; = t*".
Since G, is an R-group, it follows that (t*x,)" = (t*)" yields t*x, = t*.
Therefore, , = 1, and hence, xz e H.

To prove (2.1)(8), let ¢ =t%, --- 2, and y = t"y, -+ ¥, be the
normal forms of # and y. Then 2" = t*g and y" = t™h for some
9, heG'. Thus 2" = y* implies that ¢ =¢™" in G/G’, and hence,
g = r. This proves (2.1) (3).

3. Proof of Theorem 2. Let K be a fibred knot in S Then
the knot group G of K is a semi-direct product of Z and F', where
Z is an infinite cyclic group generated by ¢ and F is a free group
freely generated by r elements z,, -+, x,. The action of Z on F is
given by an automorphism ¢ of F:

o, —tat™ = W, =1, -, 7.

Let {F,} be the lower central series of F, where F = F, and
F,=][F, F,,]. Then ¢ induces an automorphism ¢,: F, — F, for each
n, since F', is a characteristic subgroup of F. Using 4,, we can
construct a semi-direct product G,.(K) of Z and F,, where the action
of Z on F, is given by 4,.

Now we know that F,/F,,, is a free abelian group of finite rank
and ¢, induces an automorphism ¢, of F,/F,,. Let 4,(t) be the
characteristic polynomial of the integer matrix M, associated with
#,. We should note here that the Alexander polynomial 4.(¢) of K
is just 4.(t) defined above.

First we want to know the characteristic roots of &,.

To do this, we use a technique given in [2, §5.7].

Let A(Z, r) be the graded associative Z-algebra freely generated
by » elements y, v, -+, ¥y.. We define the bracket product in
A(Z, r) by [u, v] = uv — vu. Then there exists a free Lie algebra
A(Z, r) freely generated by &, ---, &, that is imbedded in A(Z, r)
equipped with the bracket product [2, Lemma 5.5]. Let 4, be the
submodule consisting of all homogeneous elements of degree = in
A(Z, r). Then F,/F,., is isomorphic to 4,, as an abelian group, under
a natural mapping [2, Theorem 5.12]. Therefore, the automorphism
$, of F,/F,., induces an automorphism ¢, of 4,.
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Let C denote the complex number field. For u,, ---, u,€C — {0},
we denote by {u, ---, u,» the multiplicative subgroup in C — {0}
generated by u,, - -, .

LEMMA 7. Suppose that Adx(t) has mo repeated roots, and let
a, <+, &, be all the roots of dx(t). Let B, +--, B, be all the roots of
4,(t). Then

<a11 % ar>D<Bu Tty :83> .

Therefore, in particular, the splitting field of 4,(t) is contained
wn that of 4x(t).

Proof. Since we are concerned with only the characteristic
roots, we consider the vector space V, = F,/F,,, ® C instead of a
free abelian group F,/F,.,, and the vector space 4, ® C instead of
A,.

Since 4g(t) has no repeated roots, the characteristic polynomial
coincides with the minimal polynomial and further V, is completely
reducible. Therefore, we can choose a new basis {%, ---, Z,} for V,
so that §,(Z;) = a&;. The corresponding new basis of 4, ® C will be
written as &, ---, &, and #,(,) = a;&;. Then ¢, maps a basis element
E.n of 4, ®C to an element of the form al --- a*¢&,,. Therefore,
the matrix associated with &, is diagonal and each characteristic root
B: of &,, and that of &, is of the form a¥ --. a*. This proves
Lemma 7.

Now we proceed to the proof of Theorem 2.

Suppose that G is not p-divisible, p > 1. Then there exist ¢ and
9 in G such that x =y but x*» = y*. Since G is a semi-direct product
of Z and F, « and y can be written as « = gt* and y = ht* for some
integer & and for some elements g and Ao in F=F,=G'. g+ h,
since ¢ s y. Therefore, there is an element %1 in F,— F,,,,
n =1, such that # = ug. Then it follows from x* = 2* that

(8.1) (9t*)” = (ugt*)” .
By induction on p, it is easy to show that

(8.2) (ugt®)? = u(t*ut *)(t*ut=*) - - - (* " Vrut=*"2*)(gt*)?(mod F,.,) .
Compare (3.1) and (3.2) to obtain

(3.3 w(t ut=F) (2 ut =) « - - (P VEyt= 2% = 1 (mod F,.,) .

Consider the semi-direct product G, of Z and F,/F,.,, where the
action of Z on F,/F,,, is given by an induced automorphism d&,.
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Introduce a new multiplication mt-g = tg™t™ for te Z and ge F,/F, .,
so that G, becomes an R-module, where R is the group ring of the
infinite cyclic group Z. This R-module G, is finitely presented and
its relation matrix is || M, — tI]] .

Then~equation (8.3) is interpreted as a relation (3.4) below, which
holds in G,:

(8.4) A+t % 4 oee F )y =0,

Since || M, — tI|| is a relation matrix of the R-module G,, some
factor of the characteristic polynomial 4,(t) of M, must divide
@) =1+¢tF+ oo + ¢tV = (1 — ¢**)/(L — t¥). Since p is prime, it
follows that the set of roots of 4,(¢) contains a mpth root of unity,
m | k, and hence, it contains a pth root of unity. Theorem 2 now
follows form Lemma 7.

COROLLARY 1. Under the hypothesis of Theorem 2, if the group
of a knot K is not p-divisible, then the splitting field of 4x(t) contains
a pth root of unity.

4, Divisibility of the groups of torus knots.

THEOREM 3. The group G of the torus knot K(m, n) is p-divisible,
p a prime, iff (n, p) = (m, p) =1. In any case, any two solutions
of the equation x® = y® are conjugate.

Proof. Suppose that G is not p-divisible. We want to show that
pln or p|m.

Since 4(t) = 1 — )L — t™)/(L — t™)(1 — ¢*), all the roots «,, - -,
O m-rym—1y Of 4(t) are distinct and they are mmnth root of unity. There-
fore, {a,, ***, @m_1ym_yy contains only mnth roots of unity. On the
other hand, it follows from Theorem 2 that {a,, -, @m_1)m—ry must
contain a pth root of unity. Therefore, p must be a divisor of mn,
and hence, p|m or p|n. To prove the converse, let G have a
presentation (a, b: a™ = b"). If p|m, then m = pg, and ba'd™* =~ a’,
since a™ generates the center of G. However, (ba™)” = a”’. There-
fore, G is not p-divisible.

To prove the last part!, first we should note that G = G,};G,,
where G, G,, and H are infinite cyclic groups generated by a, b, and
¢ = a™(= b"), respectively, and H is the center of G, but H is not
an isolated subgroup of G, ¢ =1, 2.

Now, suppose z? = y*. We may assume without loss of generality
that p|m and hence, p }n, since (m, n) = 1.

1 T owe the proof mostly to D. Solitar.
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Let x = hx,---2, and y = gy, --- ¥y, be the normal forms of z
and y, where h =¢" =a™ and g =¢* =a™. By Lemma 6, one of
x and y, x say, is assumed to be cyclically reduced. Further, if
k=1, we may assume that 2 is in G,.

Case 1. vy is cyclically reduced.

It is obvious that k=2 iff { > 2 and if %, 1 =2, then k =1.
Therefore, x = y follows immediately from z? = y~.

Suppose that ¥ <1 and I < 1. There are six cases to be con-
sidered.

. T = ca? . x=ca’
() {170 i
Yy =c'a Yy = ¢cb
x = ca’ . x=c"
iy (77 R
Yy = Yy =ca
vy 197 wi) 177
v vi
y =t y=c,

where 0 < d, e < m, and 0 < f < n.

In Cases (i) and (vi), it is easy to see that x = y follows from
? = y?. Case (ii) does not occur. In fact, a” = y* implies that
fp = 0(modn) and hence, f = 0(mod n), since (p, n) = 1. Similarly,
Case (v) does not occur. Case (iii) also does not occur. In fact,
2? = y? implies that rmp + dp = smp, and hence, d = 0 (modm).
Similarly, Case (iv) does not occur.

Case 2. ¥ is not cyclically reduced.

Suppose that I(z) = k = 2. Then l(2?) is always even, while I(y)
is odd by Lemma 2. Therefore, a” = y?, and hence, I(z) < 1.

Suppose that I(x) < 1. Since ¥ is not cyclically reduced, I(y) # 0.
If I(y) = 2, then Il(y?) =2 by Lemma 2. This contradicts x? = y*.
Therefore, I(y) = 1.

Now we have to consider the following four cases.

(i) {x:c’a" (i) {x:c’a‘i

Yy = u'ca’u ¥y = u'cbu

x=c"

(i) {% =<

Yy = u'c’a‘u

iv
N
where 0 < d,e < m, and 0 < f < n.

Now Case (ii) does not occur. In fact, 2" = y* implies that
¢?a’” = u'e¢*?b’?y, and hence, b’? e H, otherwise [(y?) = 2. Therefore,
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fp = 0(mod #). Since (p, n) = 1, it follows that f = 0 (mod #). This
contradicts 0 < f < n. By a similar argument, we can prove that
Case (iv) does not occur. Case (iii) does not occur. In fact a? = y*
implies that o™ = u~'a*?"*+*?y and hence, rpm = spm + ep. It shows
that e = 0 (mod m), which contradicts 0 < e < m.

Now consider Case (i). If (c*a®)?¢ H, then l(y?) =2, while [(x?) = 1.
Therefore, (c*a’)? € H. Then 2? = y? implies that ¢"™?+¥ = y™'@*"?™*?y =
a’*™*°? since a**"**? ¢ H. Therefore, rmp + dp = spm + ep and hence,
rm + d = sm + e. This shows that ¥y = u™'zu.

This proves Theorem 3.

5. Applications.

PROPOSITION 3. The group G of the figure eight knot K is an
R-group.

Proof. Since 4x(t) =1 — 3t + ¢* has two real roots a« and 1/a,
|a| = 1, it follows that {«) contains only real numbers. Therefore,
G is p-divisible except possibly for p = 2. If {a) contains —1, a" =
—1 for some integer n. Therefore |a| =1, a contradiction. Since
{a) has no nontrivial roots of unity, it follows from Theorem 2 that
G is an R-group.

Note that the figure eight knot is the only fibred knot K with
Ag(®) =1 — 3t + ¢,

Finally we consider the knots whose Alexander polynomials A(t)
are of degree 4.* Such a polynomial has the form:

A(t) = (¢ —a)(t~_}i>(t—e)(t—%>.
Note that o« =1 and g # 1.

Case 1. Both « and B are real.

Case 2. Only one of them, « say, is real.

Case 3. Neither « nor B is real.

Case 1. <, B) contains no nontrivial pth root of unity, except
possibly for —1.

If both « and g are positive, then {«, B> does not contain —1,
and hence, G is an R-group.

Case 2. Since B and 1/8 are roots of a quadratic equation
1+ at+ t* =0 for some real number a, we see that 1/8 = 8 and
|B] =1. Suppose that & = a™(1/a)"s"B° is a pth root of unity. Then

® I am grateful to R. A. Smith for his helpful suggestion.



ON THE DIVISIBILITY OF KNOT GROUPS 501

[é| = |a|*™ =1 yields m = n, and hence, & = 8"*. Therefore, B is
a p(r — s)th root of unity. Thus the splitting field of 4(¢f) must
contain a p(r — s)th root of unity.

Case 3. If one of the roots has the absolute value 1, so do all
the roots. Kronecker’s theorem, then, says that all the roots are
mth roots of unity for some m.

Suppose that |a| = 1. Since a and 8 are complex roots, @ and
B are also the roots of 4(t). If @ = 1/a, then |a| =1, a contradiction.
If @ =g, then |@] =|B], and hence, |a| =|B]| =1, since |aB]| = 1.
This contradicts our assumption. Therefore, & = 1/8. Suppose that
{a, B> contains an nth root of unity & We write & = a*8'. Since
a =1/p, we see that ¢ =a*a@'. Then 1= |&|=|al|*" yields k = [.
Therefore, ¢ = (a/@)* and a/@ is a knth root of unity. Since a/@ is
contained in the splitting field & of 4(t), # must contain a knth
root of unity.

These observations will be collected in the following

PROPOSITION 4. Let K be a fibred knot. Suppose that Ax(t) is
of degree less than 5 and has mo repeated roots. Then

(5.1) (1) If all the roots of Ax(t) are positive real numbers, then
G, the group of K, 1s an R-group.

(2) Suppose that Ax(t) has only two complex roots B and 5. If
G 18 not p-divisible, then B is a pgth 7root of wumnity for some g,
and therefore, the splitting field of 4x(t) contains a pgth root of
unity.

(3) Suppose that Ax(t) has four complex roots a, @, B, B, and
that |a |+ 1. If G is not p-divisible, then «/& is a kpth root of unity
for some k, and therefore, the splitting field of Ax(t) contains a kpth
root of unity.

This proposition will be used to prove Proposition 5 below.

In 1961, Trotter [4] studied the splitting fields of the Alexander
polynomials of certain fibred knots. Combining his results [4, p. 557]
with corollary, we obtain that

(5.2) (1) The groups of 4,, 6, Ts, 8.5, %, 94, i, are p-divisible for all
prime p other than 2,

(2) The groups of 3,, 65, 7, 85, 8s1, s, are p-divisible for all prime
other than 2 or 8,

(8) The group of 5, is p-divisible for all prime p other than 2
or 5.
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Since the divisibility of the groups of 3,, 4,, and 5, has already
been determined, we consider the remaining eleven knots.

Now, each of the Alexander polynomials of 8, and 9,; has four
positive real roots. Therefore by (5.1) (1), their groups are R-groups.

On the other hand, each of the Alexander polynomials of 6,,
7., and 9, has only two complex roots. If their groups are not
2-divisible, the splitting fields of their Alexander polynomial must
contain 2¢th root of unity by (5.1) (2). According to [4, p. 557] they
contain only 2nd root of unity. Therefore, one of the complex roots
must be —1, which cannot occur.

That the group G of 9, is an R-group will be proved as follows.

Suppose that G is not p-divisible, » = 2 or 3. Since the splitting
field of the Alexander polynomial of 9, contains only 2nd, 3rd, or 6th
root of unity, it follows from (5.1) (2) that one of the complex roots,
B say, is either 2nd, 3rd, or 6th root of unity. However, the calcula-
tion shows that

B=7'—1/1_3+ﬁ1/71/fé~23i,

which is none of 2nd, 3rd and 6th root of unity.
Therefore, G is an R-group.

Finally, we consider the groups of 9., 6, and 7,. Each of the
Alexander polynomials of these knots has four complex roots, each
of which does not lie on the unit circle. Therefore, we can apply
(5.1) (3) on these groups.

Let .#(K) denote the splitting ﬁeld of Adg(t). Then according
to [4, p. 557], we know that

(5.3) (1) . (9.) contains only the 2nd and 4th roots of unity.
(2) &#(6;) and & (7,) contain only the 2nd 3rd, and 6th roots of
unity.
Now a direct computation shows that

4,,(t) has a root a, = —2—{( + ]/1/— > 11(1 + \/@)} ’
4;(t) has a root a, = %{(3 — Vm) + 13 + 1/175—24—_5)} ,

and

4,(t) has a root a, = %{(5 + VVRL+3) + i3 + VL — 3)).
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Then it is easy to verify that «,/@, is none of the 2nd and 4th root
of unity, and each of «a,/@, and a,/&, is none of the 2nd, 3rd, and
6th root of unity.

Therefore, the groups of these three knots are R-groups.
This proves the following

PROPOSITION 5. The groups of knots 4,, 6,, 63, Ts, Tz, 8.5, sz, sty Jusy
9 are R-groups.

REMARK. (2.1)(2) is not a necessary condition for G to be an
R-group.
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