ON AN INVERSION THEOREM FOR THE GENERAL MEHLER-FOCK TRANSFORM PAIR

PETER MICHAEL ROSENTHAL
ON AN INVERSION THEOREM FOR THE GENERAL MEHLER-FOCK TRANSFORM PAIR

P. Rosenthal

Let $P^k_m(y)$ be the Legendre function of the first kind and let $\Gamma(z)$ be the Gamma function. Then the general Mehler-Fock transform of complex order k of a function $g(y)$ is defined by the equation

$$f(x) = L_2(g) = \pi^{-1} x \sin h(\pi x) \Gamma \left(\frac{1}{2} - k - i x \right)$$

$$\times \Gamma \left(\frac{1}{2} - k + i x \right) \int_1^\infty g(y) P^k_{ix-1/2}(y) dy ,$$

the inversion theorem states

$$g(y) = L_1(f) = \int_0^\infty f(x) P^k_{ix-1/2}(y) dx .$$

It is stated on page 416 of I. N. Sneddon's book 'The Use of Integral Transforms, (1972) that apparently a class of functions $g(y)$ for which this result is valid is not yet clearly defined. The purpose of this paper is to define a class of functions $g(y)$ as well as a class $f(x)$ and give proofs that the above inversion formula hold for these classes.

Introduction. The theorem and proofs presented in the paper are basically a generalization of those in a paper of V. Fock [4] who treated the case $k = 0$, the Mehler-Fock transform. Some applications of the Mehler-Fock transform and general Mehler-Fock transform are given in [7], [8]. Tables of these transforms are given in [6].

All integrals are taken in the improper (complex) Riemann sense. $x \sim + \infty$ means x positive and sufficiently large, $x \sim + 1$ sufficiently close to 1, $x > 1$.

Theorem 1. Let G be the class of complex valued functions such that $g \in G$ if and only if

1. $g(y) = (y - 1)^{-k/2} g_\epsilon(y), y > 1, g_\epsilon(y)$ is twice differentiable and continuous for $y \geq 1$, the real and imaginary parts of $g''_\epsilon(y)$ are of bounded variation on any closed and bounded interval contained in $\infty > y \geq 1$.

2. $d^n g_\epsilon / dy^n = O(y^{-(1/2) - n + (k/2) - \epsilon}), y \geq 1, 1/4 > \epsilon > 0, 0 \equiv$ large order relation, $n = 0, 1, 2$ (the case $n = 0$ means g_ϵ).

Then $L_1(L_2(g)) = g, y > 1, |\text{Re } k| < 1/4$.

539
Proof of Theorem 1.

Lemma 1. Let

\[g \in G, \ h(t) = \int_0^t p(t, q) dq, \ p = (\sinh q)^{1-k}(\cosh t - \cosh q)^{-1/2+k}g(\cosh q), \]

\[f(x) = \int_0^\infty \cos (xt)h'(t)dt, \ |\text{Re} \ k| < \frac{1}{4}. \]

Then

1. \(f(x) = 0(x^{-\varepsilon}), \ x \sim +\infty, \int_0^\infty |f(x)| dx < \infty. \)
2a. \(h'(t) \) is continuous for \(t \geq 0. \)
2b. \(h'(t) \) satisfies the conditions of a Fourier inversion theorem \[9, \text{p. 13}], \ h', h'' \ are both absolutely integrable over the infinite interval \(\infty \geq t \geq 0, \lim_{t \to 0, +\infty} h = 0, \lim_{t \to +\infty} h' = 0. \)
3. \(\int_0^\infty (\int_0^t |p| dq) dt < \infty. \)

Proof of Lemma 1. Let \(s = \cosh t, \ r = \cosh q, \ r = (s - 1)w + 1. \)

Then

\[p = (s - 1)^{(1+k)/2}((s - 1)w + 2)^{-k/2}g((s - 1)w + 1)c(w), \]
\[c(w) = (1 - w)^{-(1/2+k)}w^{-k/2}. \]

Hence there exists \(c_n(w) \) independent of \(t \) such that

\[\left| \frac{\partial^n p}{\partial t^n} \right| \leq e^{-\varepsilon t} |c_n(w)|, \ t \sim +\infty, \int_0^1 |c_n| dw < \infty, \frac{1}{4} > \varepsilon > 0, \]
\[= 0, 1, 2, \ |\text{Re} \ k| < \frac{1}{4}. \]

Again by dominated convergence we conclude \(d^nh/dt^n = \int_0^t (\partial^n p/\partial t^n) dw, \)
\(\infty > t \geq 0, \ n = 1, 2, \ |\text{Re} \ k| < 1/4. \) Hence parts 2, 3 of Lemma 1 hold. We are now permitted to integrate by parts with respect to \(t \) the right-hand side of the defining formula for \(f(x) \) in the hypothesis of Lemma 1 to conclude \(f(x) = x^{-1}F(x), \)
\(F(x) = \int_0^\infty \sin (xt)h'(t)dt. \) Since \(h''(t) = O(e^{-\varepsilon t}), \ t \sim +\infty, 1/4 > \varepsilon > 0, \) we conclude the real and imaginary parts of \(h''(t) \) are of bounded variation in the infinite interval \(\infty \geq t \geq 0 \) (see I.P. Natanson “Theory of Functions of a Real Variable”, p. 238, for definitions and theorem). This implies \(F(x) = O(x^{-1}), \ x \sim +\infty. \) This completes the proof of Lemma 1.

Lemma 2. Let \(g \in G. \) Then
\[
\lim_{A \to +\infty} \left(\int_{A}^{\infty} \left(\int_{0}^{A} \hat{f} dt \right) dq \right) = \lim_{A \to +\infty} \left(\int_{0}^{A} \hat{f} dt \right) dq = \int_{0}^{\infty} \left(\int_{0}^{\infty} \hat{f} dt \right) dq,
\]
\[
\hat{f} = p \sin (xt), \quad x \geq 0, \quad |\text{Re} \ k| < \frac{1}{4}.
\]

(See Lemma 1 for the definition of \(p \).)

Proof of Lemma 2. Since \(g \in G \), the iterated integrals in Lemma 2 are equal for finite \(A \). Part 3 of Lemma 1 implies absolute integrability of the first iterated integral in Lemma 2. Hence we satisfy Fubini's theorem which implies Lemma 2.

Lemma 3. Let
\[
F(v) = \int_{1}^{v} (v - s)^{-1/2 + k} ds, \quad r = (s^2 - 1)^{-1/2} g(s), \quad g \in G.
\]
Then
\[
\frac{d}{dt} \int_{1}^{t} (t - v)^{-1/2 - k} F(v) dv = \int_{1}^{t} (t - v)^{-1/2 - k} \frac{dF}{dv} dv, \quad |\text{Re} \ k| < \frac{1}{4}.
\]

Proof of Lemma 3. Part 2 of Lemma 1 implies \(F(v), F''(v) \) are both continuous for \(v > 1 \), \(\lim_{v \to +1} F(v) = 0 \). Hence we satisfy a theorem (relating to the Abel integral equation) [1, p. 5] (this theorem can be modified to include singularities of the type \((x - 1)^a, \quad x \sim +1, \quad \text{Re} \ a > -1 \), our case, see [1, p. 6]), which implies the conclusion of Lemma 3.

The rest of the proof of Theorem 1 consists mainly in applying the above lemmas to show that all the operations we use to show that (2) is a solution to (1) are valid.

Using the integral representation for \(P_{t/2 - 1/2}^{k} \) from [5, p. 165], we obtain from (2), the iterated integral,
\[
(3) \quad f(x) = a(k)x \int_{0}^{\infty} \left(\int_{1}^{\infty} p \sin (xs) ds \right) dt
\]
(see Lemma 1 for the definition of \(p \))
\[
a(k) = 2^{1/2} \pi^{-3/2} \Gamma \left(\frac{1}{2} - k \right) \sin \left(\pi \left(\frac{1}{2} + k \right) \right), \quad x \geq 0, \quad |\text{Re} \ k| < \frac{1}{4}.
\]
(We note (3) is valid by Lemma 2.)

We now apply to the right-hand side of (3) the following operations in this order,
1. integration over a triangular domain (see Lemma 2),
2. integration by parts with respect to \(s \),
3. the Fourier cosine transform.
Since operations 1, 2, 3 are now permissible by Lemmas 1, 2 (\(g \in G \)),
we obtain from (3) the valid identity
\[
\int_0^\infty \cos (tx)f(x)dx = a_\ell(k) \frac{d h}{dt} \quad \text{(see Lemma 1 for definition of } h) \tag{4}
\]

\[
a_\ell(k) = (2\pi)^{-1/2} \Gamma\left(\frac{1}{2} - k\right) \sin \left(\left(\frac{1}{2} + k\right)\pi\right),
\]

\[
t > 0, \ |\Re k| < \frac{1}{4}.
\]

Lemma 3 implies all the operations (those indicated in Lemma 3) to show the right-hand side of (4) is a solution to an Abel integral equation are now permissible [1, p. 9]. (Again we note only real \(k \) are treated on p. 9, but the theory can be extended to complex \(k \), our case.) Hence applying these operations (those indicated in Lemma 3 to the right-hand side of (4), we obtain the valid identity
\[
g(\cosh t) = \int_0^t \left(\int_0^\infty udx\right)ds, u = a_\ell(k)(\sinh t)^k(\cosh t - \cosh s)^{-1/2 - k}
\]

\[
\cos (sx)f(x), \ a_\ell(k) = (2^{-1/2})^{-1/2} \left(\frac{1}{2} - k\right)^{-1}, \ t > 0, \ |\Re k| < \frac{1}{4}.
\]

Interchanging the order of integration of the iterated integral on the right-hand side of (5) (which is now permissible by part 1 of Lemma 1), then using the integral representation for \(P_{1/2-1/2} \) from [2, p. 156], we obtain the valid identity \(L_\ell(L_\ell(g)) = g, \ t > 0, \ |\Re k| < 1/4 \). This completes the proof of Theorem 1.

Corollary 1. Let \(g_1, g_2 \in G \) such that \(L_\ell(g_1) = L_\ell(g_2) \), then \(g_1(t) = g_2(t), \ t > 0, \ |\Re k| < 1/4 \).

Proof. Let \(u = g_1 - g_2 \). Then \(u \in G \). Hence \(L_\ell(u) = 0 \) by linearity of \(L_\ell \). Hence \(f(x) \) (of (3)) = 0, \(x \geq 0 \). We then obtain from (5) the conclusion of Corollary 1.

Theorem 2. Let \(F \) be the class of real valued functions such that \(f \in F \) if and only if

1. \(f(x) = x^2 f'(x) \), \(f'(x) \) is continuous for \(x \geq 0 \), and of bounded variation on any closed and bounded interval contained in \(\infty > x \geq 0 \).
2. \(f, f' = O(x^{-1-\varepsilon}), \ x \sim + \infty, \ \varepsilon > 0 \).

Then \(L_\ell(L_\ell(f)) = f, \ x \geq 0, \ |\Re k| < 1/2 \).

Proof of Theorem 2.

Lemma 4. Let \(f \in F, g = L_\ell(f) \), then

1. \(\int_1^A |g(x)|dy \) exists for any \(A > 1 \).
2. \(g = 0((\cosh^{-1} y)^{-2}(y^2 - 1)^{-1/4}), y \sim + \infty, \)

\[
\text{providing } |\text{Re } k| < 1/2.
\]

Proof of Lemma 4. From formula 26 [2, p. 129],

(a) \(P^k_{x-1/2}(\cos t) = (2\pi \sinh t)^{-1/2}(e^{-i\pi} f_1 + e^{i\pi} f_2), \)

\[
f_1(x) = \frac{\Gamma(-ix)}{\Gamma(\frac{1}{2} - k - ix)} f_3, f_3 = F\left(\frac{1}{2} + k, \frac{1}{2} - k, 1 + ix; - \frac{1}{2}e^{-t} \cosh t\right),
\]

\[
f_2(x) = f_1(-x), F(a, b, c; z) = M \int_0^1 w^s d w, w = s^{1/2} - (1 - s)^{1/2} - (1 - z s)^{-s},
\]

\[
\text{Re } b, \text{Re } (c - b) > 0, |z| < 1, M \text{ independent of } z[2, p. 59].
\]

(b) \(z^{b-a}(\Gamma(z + a)/\Gamma(z + b)) \sim a_n + a_z z^{-1} + \cdots \) (an asymptotic series), \(|z| \sim + \infty \) uniformly for \(|\arg z| \leq \pi - \epsilon, \pi/2 > \epsilon > 0 [2, p. 47], \)

so differentiation of the right-hand side of (b) is permissible [3, p. 21]. From (a) we conclude \((1 + x)^{-1/2+k} f'_3(x), (1 + x)^{-1/2+k} f''_3(x) \) are uniformly bounded for \(x \geq 0 \) and \(t \geq 1, \) providing \(|\text{Re } k| < 1/2. \) In (1) we now use the integral representation from (a), then integrate by parts with respect to \(x, \) which is permissible \((f \in F) \) to conclude

\[
g^{(i)}(y) = (\cosh^{-1} y)^{-1}(y^2 - 1)^{-1/4} \int_0^\infty e^{\pm it} e^{(øj) (y, x, k)} dx, y \geq 2, |\text{Re } k| < 1/2, \)

further the real and imaginary parts \(c^{(j)} \) are of bounded variation in \(x \) on the infinite interval \(\infty \geq x \geq 0, y \geq 2, |\text{Re } k| < 1/2. \) Hence the real and imaginary parts of \(c^{(j)} \) can each be written as the difference of two monotonically decreasing functions \(c^{(j)}(x), x \geq 0, \)

\[
\lim_{x \to +\infty} c^{(j)}(x) = 0 \text{ uniformly in } y \geq 2, c^{(j)}(x) \text{ uniformly bounded}, x \geq 0, y \geq 2, |\text{Re } k| < 1/2, \)

Also \(g(y) = O((y - 1)^{-1/4}), 2 > y > 1, |\text{Re } k| < 1/2, \) by (5) (in the proof of Theorem 1), \(f \in F. \) Hence Lemma 4 holds.

Lemma 5. The \(g \) of Lemma 4 implies \(\int_0^\infty \left(\int_q^\infty |\hat{f}| dt \right) dq < \infty, x \geq 0, |\text{Re } k| < 1/2 \) (see Lemma 2 of Theorem 1 for the definition of \(\hat{f} \)).

Proof. Using the change of variable \((\cosh t - \cosh q) = (\cosh q + 1)w, \) we conclude

\[
\int_q^\infty |\hat{f}| dt \leq M (\sinh q/2)^{-1} |(\sinh q)^{1-k}(\cosh q)^{1-k} g(\cosh q)|, q > 0, x \geq 0, M \text{ a constant, } |\text{Re } k| < 1/2. \) Hence the conclusion of Lemma 5 follows.

The rest of the proof of Theorem 2 consists mainly in justifying in reverse order all the formulas arising from the solution of the integral equation \(L_x(f) = g \) in the proof of Theorem 1. Hence we will point only where the rest of the proof of Theorem 2 must be modified from that of Theorem 1.
REMARK 1. The inversion theorem for the solution to the Abel integral equation [1, p. 9] appealed to in the proof of Theorem 1 has been modified to include functions which have singularities of the type \((x - 1)^\alpha, x \sim +1, \Re \alpha > -1\). Hence this modified form of the theorem applies again to our case (see (5) in the proof of Theorem 1) since we have a singularity of this type when we use the change of variable \(s = \cosh q\).

REMARK 2. Lemma 5, \(f \in F\) imply the sum \(\hat{h}(+\infty) - \hat{h}(0), x \geq 0, |\Re k| < 1/2, \) of the upper and lower limits (both are finite) (arising when one does an integration by parts, i.e., the reverse operation corresponding to the one of part 2 of (3) in the proof of Theorem 1) is zero.

REMARK 3. Lemma 5 implies the \(g\) of Lemma 4 satisfies the conclusion of Lemma 2 of Theorem 1. Hence the reverse operation of integrating over a triangular domain (see Lemma 2 of Theorem 1) is now permissible. Hence we conclude all the reverse formulas are valid. This completes the proof of Theorem 2.

COROLLARY 2. Let \(f_1, f_2 \in F\) such that \(L_i(f_i) = L_i(f_2)\). Then \(f_1(x) = f_2(x), x \geq 0, |\Re k| < 1/2\).

Proof. Let \(r = f_1 - f_2\). Then \(r \in F\). Hence by linearity \(L_i(r) = 0\). Then by (3) of Theorem 1 (see also Lemma 5 of Theorem 2) we obtain the conclusion of Corollary 2.

We note in closing, using the change of variable \((\cosh t - \cosh q) = (\cosh q + \cos a)s,\) the integral representations for \(P^k_{\alpha - 1/2}\) in Theorem 1 and [5], we obtain a pair of reciprocal transforms

1. \(g(\cosh q) = \sin a(\cosh q + \cos a)^{-2/2+k}(\sinh q)^{-k}, |a| < \pi/2,\)
2. \(f(x) = 2^{1/2} \pi^{-1/2}(\Gamma(1/2 - k))^{-1} \beta(1/2 - k, 1)x \Gamma(1/2 - k + ix) \Gamma(1/2 - k - ix) \sinh ax, |\Re k| < 1/2.\) (The case \(k = 0\) specializes to the example in [4].) \(\beta \equiv\) Beta function. Further, \(g \in G\) of Theorem 1 and \(f \in F\) of Theorem 2.

If in Theorem 1, part 1, we now assume \(g_i\) is analytic for \(y \geq 1, \Re k < 1/2,\) in 2 we assume \(n \geq 0\) and arbitrary, then by the methods in the proofs of Theorems 1 and 2 (we use the integral representation for \(P^k_{\alpha - 1/2}\) from (5) in \(L_2\)), we conclude \(c(k) = L_i(L_i(g))\) is an analytic function in \(k\) for \(\Re k < 1/2, y > 1\). Hence by analytic continuation, Theorem 1 and Corollary 1 are now valid for \(\Re k < 1/2\).
REFERENCES

Received July 2, 1973.
Harm Bart, *Spectral properties of locally holomorphic vector-valued functions* ... 321
J. Adrian (John) Bondy and Robert Louis Hemminger, *Reconstructing infinite graphs* ... 331
Bryan Edmund Cain and Richard J. Tondra, *Biholomorphic approximation of planar domains* ... 341
Richard Carey and Joel David Pincus, *Eigenvalues of seminormal operators, examples* ... 347
Tyrone Duncan, *Absolute continuity for abstract Wiener spaces* .. 359
Joe Wayne Fisher and Louis Halle Rowen, *An embedding of semiprime $P.I.$-rings* ... 369
Andrew S. Geue, *Precompact and collectively semi-precompact sets of semi-precompact continuous linear operators* ... 377
Charles Lemuel Hagopian, *Locally homeomorphic λ connected plane continua* ... 403
Darald Joe Hartfiel, *A study of convex sets of stochastic matrices induced by probability vectors* ... 405
Yasunori Ishibashi, *Some remarks on high order derivations* .. 419
Donald Gordon James, *Orthogonal groups of dyadic unimodular quadratic forms. II* .. 425
Geoffrey Thomas Jones, *Projective pseudo-complemented semilattices* .. 443
Darrell Conley Kent, Kelly Denis McKennon, G. Richardson and M. Schroder, *Continuous convergence in $C(X)$* ... 457
J. J. Koliha, *Some convergence theorems in Banach algebras* .. 467
Tsang Hai Kuo, *Projections in the spaces of bounded linear operations* .. 475
George Berry Leeman, Jr., *A local estimate for typically real functions* .. 481
Andrew Guy Markoe, *A characterization of normal analytic spaces by the homological codimension of the structure sheaf* ... 485
Kunio Murasugi, *On the divisibility of knot groups* .. 491
John Phillips, *Perturbations of type 1 von Neumann algebras* .. 505
Billy E. Rhoades, *Commutants of some quasi-Hausdorff matrices* .. 513
David W. Roeder, *Category theory applied to Pontryagin duality* .. 519
Maxwell Alexander Rosenlicht, *The nonminimality of the differential closure* ... 529
Peter Michael Rosenthalal, *On an inversion theorem for the general Mehler-Fock transform pair* ... 539
Alan Saleski, *Stopping times for Bernoulli automorphisms* .. 547
John Herman Scheuneman, *Fundamental groups of compact complete locally affine complex surfaces. II* ... 553
Vashishtha Narayan Singh, *Reproducing kernels and operators with a cyclic vector. I* ... 567
Peggy Strait, *On the maximum and minimum of partial sums of random variables* ... 585
J. L. Brenner, *Maximal ideals in the near ring of polynomials modulo 2* ... 595
Ernst Gabor Straus, *Remark on the preceding paper: “Ideals in near rings of polynomials over a field”* ... 601
Masamichi Takesaki, *Faithful states on a C^*-algebra* .. 605
R. Michael Tanner, *Some content maximizing properties of the regular simplex* ... 611
Andrew Bao-hwa Wang, *An analogue of the Paley-Wiener theorem for certain function spaces on $SL(2, \mathbb{C})$* ... 617
James Juei-Chin Yeh, *Inversion of conditional expectations* .. 631