REMARK ON THE PRECEDING PAPER: “IDEALS IN NEAR RINGS OF POLYNOMIALS OVER A FIELD”

ERNST GABOR STRAUS
REMARK ON THE PRECEDING PAPER, IDEALS IN
NEAR RINGS OF POLYNOMIALS OVER A FIELD

E. G. STRAUS

In this note we extend the characterization of ideals in
near rings $N = F[x, \circ]$ of polynomials over a field F under
addition and composition, the most interesting and exceptional
cases of which are given in the preceding paper by J. L.
Brenner.

The results can be summarized in the following theorems.

Theorem 1. If F is infinite then N contains no nontrivial ideals.

Theorem 2. If F is finite and $\text{char } F > 2$ then every ideal of
N is also an ideal of the ring $F[x]$.

Theorem 3. Those ideals of N which are also ideals of $F[x]$ consist of multiples of polynomials $p(x)$ of the form

\begin{equation}
(1) \quad p(x) = \text{l.c.m. } [(x^{n_i} - x)^{m_i} | 1 \leq n_i < \cdots < n_k; m_i \geq 0]
\end{equation}

where $q = |F|$.

Theorem 4. If F is finite of characteristic 2 then $N = F[x, \circ]$ contains ideals which are not ideals of $F[x]$.

If $|F'| > 2$ then every ideal, I, of N is a module over $F[x^2]$ and contains an ideal J of $F[x]$ which is generated by the squares of the elements of I. The ideal J contains the ordinary product of every two elements of I.

Proof of Theorem 1. Let $I \neq \{0\}$ be an ideal of N and let
$p(x) \in I$, $p \neq 0$. Since F' is infinite there exists an element $a \in F$ so that $p(a) \neq 0$. Thus $p(a) \in I$ and hence $F' \subseteq I$.

If char $F \neq 2$ then by Criterion 2.03 of the preceding paper we have

\[x^2 + x = (x + 1)^2 + x^2 - 1 \in I \]

and hence $x \in I$ so that $I = N$.

If char $F = 2$ then we have

\[ax^2 + a^2x = (a + a^2) + x^2 + a^2 \in I \quad a \in F, a \neq 0, 1. \]

Thus

\[a(x^2 + x) + ax^2 + a^2x = (a + a^2)x \in I \]
and hence \(x \in I \) so that again \(I = N \).

Proof of Theorem 2. Let \(I \) be an ideal of \(N \). Then for every \(f \in N \) and \(p \in I \) we have

\[
f p = \frac{1}{2}((f + p)^2 - f^2 - p^2) \in I.
\]

Thus \(I \) is closed under multiplication by \(F[x] \) and is therefore an ideal of \(F[x] \).

Proof of Theorem 3. We first show that every ring ideal \(pf[x] \) with \(p \) of the form (1) satisfies the criteria of §2 of the preceding paper. Closure under addition is obvious. Criterion 2.02 follows from the fact that for \(f(x) = a_0 + a_1x + \cdots + a_kx^k \) we have

\[
(x^q^n - x) \cdot f(x) = \sum_{i=1}^{k} a_i(x^{iq^n} - x^i)
\]

where the right side is obviously divisible by \(x^q^n - x \). Criterion 2.03 is again obviously satisfied since \(f(g + ph) - f(g) \) is divisible by \(p \) for all \(f, g, h \in F[x] \).

Conversely, if \(I = pF[x] \) is an ideal of \(N \) then we must have

\[
p(x) | p(f(x)) \text{ for all } f \in N,
\]

if \(\theta \) is a zero of multiplicity \(m \) of \(p \) then it must therefore be a zero of multiplicity \(\geq m \) of \(p(f(x)) \). In other words, \(p(x) \) must have a zero of order \(\geq m \) at every element of \(F(\theta) \) thus \(p(x) \) is divisible by \((x^{[F(\theta)]} - x)^m \). Starting with a zero, \(\theta \), of highest degree over \(F \) we thus get successively the expression for \(p \) given in (1).

Proof of Theorem 4. We observe that for each \(n \geq 1 \) the set of polynomials

\[
I = (x^{q^n} + x)^2F[x^2] + (x^{q^n} + x)^4F[x],
\]

where \(q = |F| \), is an ideal of \(N \) but is clearly not an ideal of \(F[x] \); since it contains \(p(x) = (x^{q^n} + x)^2 \) but does not contain \(xp(x) \). To prove that \(I \) is an ideal we observe that it is obviously closed under addition. Also for each \(f, g, h, k \in N \) we have

\[
f(g + ph(x^2) + p^2k(x)) - f(g) \equiv ph(x^2)f'(g(x)) \pmod{p^2}.
\]

Now \(f'(g(x)) \) is a polynomial in \(x^2 \) and hence contained in \(F[x^2] \). Thus \(f(g + i) - f(g) \in I \) for all \(i \in I \).
Finally, in order to show that $i(f(x)) \in I$ for all $f \in N$, $i \in I$ it suffices to show that for all $g \in N$

$$p(f)g(f^2) \equiv ph(x^2) \pmod{p^2}$$

for a suitable $h \in N$. Since $p(f_i + f_\ell) = p(f_i) + p(f_\ell)$ it suffices to prove this fact for $f(x) = x^k$. If $k = 2l$ is even then $p(x^k) = p^2(x^l) \equiv O(\text{mod } p^2)$. If $k = 2l + 1$ is odd then

$$p(x^k) = x^{2v_n} + x^{2l} = (x^{2\nu_n} + x^2 + x^k)^k + x^{2k} \equiv x^{2k-2}p(x) \pmod{p^2}.$$

If $|F| > 2$ we can see that the construction in (2) is rather typical. Pick $a \in F$ with $a^2 + a \neq 0$ then for every $i \in I, f \in N$ we have

$$(a^2 + a)f^i = a((f + i)^3 + f^3 + i^3) + ((f + ai)^3 + f^3 + a^3i^3) \in I$$

and thus $f^i \in I$. In other words the squares of the elements of I generate an ideal of $F[x]$ contained in I and therefore itself an ideal J of N of the form $p^2F[x]$ where p is a polynomial of the form (1).

Since the square of every element of I is divisible by p^2 it follows that all elements of I are divisible by p. Finally we have for every $i \in I, f \in N$

$$(a^2 + a)f^i = a^3((f + i)^3 + f^3 + i^3) + ((f + ai)^3 + f^3 + a^3i^3) \in I$$

and thus $f^i \in I$, so that I is a module over $F[x^2]$. Every module over $F[x^2]$ can be expressed in the form $f(x^2)F[x^2] + g(x)F[x^2]$ where the first part gives the ideal of all polynomials in x^2 contained in the module and the second part the coset involving terms of odd degree with g chosen so that its highest term of odd degree has minimal degree. Once we have determined the polynomial p of form (1) then I has the form

$$(3) \quad I = p(x)[f(x^2)F[x^2] + g(x)F[x^2]] + p^l(x)F[x].$$

Here f, g are determined (mod p) so that there are only finitely many possible choices leading to ideals of N. We forego the somewhat complicated detailed description of this determination. It is clear, however, from (3) that there can be nontrivial ideals of N containing 1 only when $|F| = 2$.

Received November 2, 1972.

University of California, Los Angeles
Harm Bart, *Spectral properties of locally holomorphic vector-valued functions* .. 321
J. Adrian (John) Bondy and Robert Louis Hemminger, *Reconstructing infinite graphs* .. 331
Bryan Edmund Cain and Richard J. Tondra, *Biholomorphic approximation of planar domains* .. 341
Richard Carey and Joel David Pincus, *Eigenvalues of seminormal operators, examples* .. 347
Tyrone Duncan, *Absolute continuity for abstract Wiener spaces* .. 359
Joe Wayne Fisher and Louis Halle Rowen, *An embedding of semiprime \(P1\)-rings* .. 369
Andrew S. Geue, *Precompact and collectively semi-precompact sets of semi-precompact continuous linear operators* .. 377
Charles Lemuel Hagopian, *Locally homeomorphic \(\lambda\) connected plane continua* .. 403
Darald Joe Hartfiel, *A study of convex sets of stochastic matrices induced by probability vectors* .. 405
Yasunori Ishibashi, *Some remarks on high order derivations* .. 419
Donald Gordon James, *Orthogonal groups of dyadic unimodular quadratic forms, II* .. 425
Geoffrey Thomas Jones, *Projective pseudo-complemented semilattices* .. 443
Darrell Conley Kent, Kelly Denis McKennon, G. Richardson and M. Schroder, *Continuous convergence in \(C(X)\)* .. 457
J. J. Koliha, *Some convergence theorems in Banach algebras* .. 467
Tsang Hai Kuo, *Projections in the spaces of bounded linear operations* .. 475
George Berry Leeman, Jr, *A local estimate for typically real functions* .. 481
Andrew Guy Markoe, *A characterization of normal analytic spaces by the homological codimension of the structure sheaf* .. 485
Kunio Murasugi, *On the divisibility of knot groups* .. 491
John Phillips, *Perturbations of type I von Neumann algebras* .. 505
Billy E. Rhoades, *Commutants of some quasi-Hausdorff matrices* .. 513
David W. Roeder, *Category theory applied to Pontryagin duality* .. 519
Maxwell Alexander Rosenlicht, *The nonminimality of the differential closure* .. 529
Peter Michael Rosenthal, *On an inversion theorem for the general Mehler-Fock transform pair* .. 539
Alan Saleski, *Stopping times for Bernoulli automorphisms* .. 547
John Herman Scheuneman, *Fundamental groups of compact complete locally affine complex surfaces, II* .. 553
Vashishtha Narayan Singh, *Reproducing kernels and operators with a cyclic vector, I* .. 567
Peggy Strait, *On the maximum and minimum of partial sums of random variables* .. 585
J. L. Brenner, *Maximal ideals in the near ring of polynomials modulo 2* .. 595
Ernst Gabor Straus, *Remark on the preceding paper: “Ideals in near rings of polynomials over a field”* .. 601
Masamichi Takesaki, *Faithful states on a \(C^*\)-algebra* .. 605
R. Michael Tanner, *Some content maximizing properties of the regular simplex* .. 611
Andrew Bao-hwa Wang, *An analogue of the Paley-Wiener theorem for certain function spaces on \(SL(2, \mathbb{C})\)* .. 617
James Juei-Chin Yeh, *Inversion of conditional expectations* .. 631