AN ANALOGUE OF THE PALEY-WIENER THEOREM FOR CERTAIN FUNCTION SPACES ON SL(2, C)

Andrew Bao-hwa Wang
AN ANALOGUE OF THE PALEY-WIENER THEOREM
FOR CERTAIN FUNCTION SPACES ON $SL(2, C)$

ANDREW B. WANG

The classical theorem of Paley-Wiener is concerned with characterizing Fourier transforms of C^∞ functions of compact support on the real line. It states that an entire holomorphic function F is the Fourier-Laplace transform of a C^∞ function on the real line \mathbb{R} with support in $|x| \leq R$ if and only if for given integer m, there exists a constant C_m such that

$$|F(\xi + i\eta)| \leq C_m(1 + |\xi + i\eta|)^{-m} \exp R|\eta|, \quad \xi, \eta \in \mathbb{R}.$$

The purpose of this paper is to prove an analogue of this theorem for certain convolution subalgebras of C^∞ functions with compact support on the group $SL(2, C)$, by using Fourier transform involving elementary spherical functions of general type δ.

These subalgebras have been defined on locally compact group by R. Godement [4], in order to study the spherical trace function, cf. also G. Warner [8]. On this special group mentioned, by use the differential equations satisfied by the spherical functions, we derive a parametrization of such functions. These are in turn utilized to prove the Paley-Wiener theorem.

The analogous question on symmetric space of noncompact type was considered by S. Helgason [5] and R. Gangolli [3]. L. Ehrenpreis and F. I. Mautner [2] studied the Fourier transform on the group $SL(2, \mathbb{R})$ in detail, and theorem of the same kind was proved there. Results of this sort involving spherical functions of general type δ on some other groups have also been investigated, see e.g. Y. Shimizu [7].

2. Preliminaries. Throughout this paper, let G denote the complex semisimple Lie group $SL(2, C)$ and let K denote the maximal compact subgroup consisting of all unitary matrices in G. A basis of the real Lie algebra g_o of G consists of

$$R_1 = \frac{1}{2}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad R_2 = \frac{1}{2}\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad R_3 = \frac{1}{2}\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$S_1 = \frac{1}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad S_2 = \frac{1}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S_3 = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The set $\{R_1, R_2, R_3\}$ also forms a basis of the Lie algebra k_o of K. 617
Elements of \(g_0 \) are viewed as left invariant vector fields on \(G \), which generates the algebra \(\mathfrak{g}_0 \) of all left invariant differential operators on \(G \). Let \(a_{p_0} = \{ tS_3; t \in \mathbb{R} \} \). The root system for \((g_0, a_{p_0}) \) consists of \(\{ \rho, -\rho \} \), where \(\rho(S_3) = 1 \), and each has multiplicity two. Let \(N_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), \(N_2 = \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} \) and let \(\pi_0 \) be the subspace of \(g_0 \) spanned by \(\{ N_1, N_2 \} \), then \(\pi_0 \) is the root space for \(\rho \). Let \(N = \exp \pi_0 \) and \(A_p = \{ a_t = \exp tS_3; t \in \mathbb{R} \} \). Then \(g_0 = k_0 + a_{p_0} + \pi_0 \) and \(G = KA_p N \) (Iwasawa decomposition). It is also known that \(G = K A^+_p K, A^+_p = \{ a_t; t \geq 0 \} \). The Haar measure on \(G \) is normalized so that

\[
\int_G f(x) dx = \int_K \int_{A_p} \int_{N_0} f(ka,n)e^{i\pi} dk dt dn, \quad f \in C_c(G),
\]

where \(dk \) is the normalized Haar measure on \(K \), \(dt \) is the Lebesgue measure on \(\mathbb{R} \) and \(dn = d\xi d\xi_2 \) if \(n = \exp (\xi N_1 + \xi_2 N_2) \), is the Lebesgue measure on \(\mathbb{R}^2 \). Let \(k \in K \), we can write \(k = u_\varphi v_\theta u_\psi \) with \(u_\varphi = \exp \varphi R_3, v_\theta = \exp \theta R_2, \) and \(0 \leq \varphi, \theta \leq 2\pi, 0 \leq \varphi_2 \leq 4\pi \). Then

\[
\int_K f(k) dk = \frac{1}{16\pi^2} \int_{\varphi_1 = 0}^{2\pi} \int_{\theta_1 = 0}^{\pi} \int_{\varphi_2 = 0}^{2\pi} f(u_\varphi v_\theta u_\psi) \sin \theta_2 d\varphi_2 d\theta_1 d\varphi_1,
\]

\(f \in C_c(K) \).

For each nonnegative integer or half integer \(s \), let \(D^s \) be the unique (up to equivalence) irreducible unitary representation of \(K \) on a \(2s + 1 \) dimensional Hilbert space \(E_s \). We can choose a basis \(\{ v_-, v_-, \cdots, v_\} \) of \(E_s \) so that the matrix \((D^s_{j,q}(k)) \), \(j, q = -s, -s + 1, \cdots, s \) has the following expression [see e.g. 6, p. 129].

\[
D^s_{j,q}(u_\varphi) = \delta_{j,q} e^{-i\varphi q}
\]

\[
D^s_{j,q}(v_\theta) = (-1)^{j-q}(\frac{(s+j)! (s-j)!}{(s+q)! (s-q)!})^{1/2}
\]

\[
\times \sum_{r=\max|j+q|}^{\min|s-j+q|} (-1)^r \left(s+q \right) \left(s-q \right) \left(s-j-r \right) \cos^{2s-j-q-2s} \frac{\theta}{2} \sin^{j-q+2r} \frac{\theta}{2}.
\]

The infinitesimal form for \(D^s \) has

\[
D^s(R_3)v_j = \frac{1}{2}(s+j)v_{j-1} - \frac{1}{2}(s-j)v_{j+1}
\]

\[
D^s(R_2)v_j = \frac{1}{2}(s+j)v_{j-1} + \frac{1}{2}(s-j)v_{j+1}
\]

\[
D^s(R_3)v_j = -ijv_j.
\]

Hence \(D^s(R_3^2 + R_2^2 + R_3^2) = -s(s+1)I \).
Let \(M = \{u_\theta = \exp \theta S_5 : \theta \in \mathbb{R}\} \). Then \(M \) is the centralizer of \(A \) in \(K \), also it is a maximal torus in \(K \). The set \(\hat{M} \) of all characters of \(M \) is parametrized by half integers, i.e., for each \(p \) with \(2p \) an integer, \(u_{\theta} \to e^{-i\theta p} \) gives a character of \(M \). Let \(p \in \hat{M} \), and let \(E^p = \{f \in L^2(K) : f(ku_\theta) = e^{ip\theta} f(k), \ k \in K \text{ and } u_\theta \in M\} \), with \(\|f\|^2 = \int_K |f(k)|^2 \, dk \). Let \(\lambda \) be a complex number and given \(x \in G \), define \(U^{p,\lambda} \) by the prescription
\[
(U^{p,\lambda}(x)f)(k) = \exp \left(-(i\lambda + 1)p(H(x^{-1}k))f(k(x^{-1}k)) \right), \quad f \in E^p
\]
where \(x = a(x) \cdot \exp H(x) \cdot u(x) \) is the Iwasawa decomposition for \(x \). Then \(U^{p,\lambda} \) defines a continuous representation of \(G \) on the Banach space \(E^p \), and every TCI Banach representation of \(G \) is equivalent to a subquotient of \(U^{p,\lambda} \) for some \(p, \lambda \). The restriction of \(U^{p,\lambda} \) to \(K \) is just the unitary representation of \(K \) induced from the character \(u_{\theta} \to e^{ip\theta} \) of \(M \), hence \(D^p \) occurs in \(U^{p,\lambda} \) exactly once if and only if \(s = |p| + q \) for some nonnegative integer \(q \).

\(U^{p,\lambda} \) is unitary if \(\lambda \) is real, which constitutes the principal series representation induced from the characters of the group \(MA_pN \).

Define
\[
U^{p,\lambda}(f) = \int_G f(x)U^{p,\lambda}(x)dx, \quad f \in C_c^\infty(G).
\]
Then \(U^{p,\lambda}(f) \) is of trace class and we have the inversion formula
\[
f(x) = \frac{1}{4\pi^2} \sum_{p \geq 0} \int_{\mathbb{R}} (p^2 + \lambda^2) \text{Trace} \left(U^{p,\lambda}(x^{-1})U^{p,\lambda}(f) \right) d\lambda
\]
where \(Z \) is the set of all integers and \(d\lambda \) is the usual Euclidean measure.

3. The spherical functions. Let \(C^\infty_c(G) \) be the algebra of all \(C^\infty \) functions with compact support on \(G \), with multiplication defined by convolution. The subalgebra \(I_s(G) \) is formed by those functions \(f \) in \(C^\infty_c(G) \) satisfying \(f(kxk^{-1}) = f(x) \) for \(x \in G, k \in K \). Define \(\chi_s(k) = (2k+1) \text{Trace} (D^s(k)), k \in K \) and \(D^s \in \hat{K} \). Let \(C_s(G) = \{f \in C^\infty_c(G) : f^*\chi_s = f = \chi_s^* f \} \) and \(I_s(G) = I_s(G) \cap C_s(G) \). \(I_s(G) \) is a subalgebra of \(C^\infty_c(G) \) and the mapping \(f \to f^*\chi_s, f^*(x) = \int_K f(kxk^{-1})dk \), is the projection of \(C^\infty_c(G) \) onto \(I_s(G) \).

DEFINITION. Let \(D^s \in \hat{K} \). By a spherical function \(\Phi \) on \(G \) of type \(s \) we mean a quasi-bounded continuous function on \(G \) such that (i) \(\Phi(kxk^{-1}) = \Phi(x), x \in G \) and \(k \in K \); (ii) \(\Phi^*\chi_s = \Phi \); (iii) the map \(f \to \int_G f(x)\Phi(x)dx \) is a nonzero homomorphism of the algebra \(I_s(G) \) onto...
the complex numbers \mathbb{C}.

Spherical functions of type s relates naturally to the TCI Banach representations of G. Suppose U is a TCI Banach representation of G on a space E such that D^s occurs in the restriction of U to K. Let $U(\chi_s) = \int_K U(k)\chi_s(k)dk$ and $E(s) = U(\chi_s)E$. The s-spherical function Ψ^U_s of U on G is defined by $\Psi^U_s(x) = U(\chi_s)U(x)U(\chi_s)$. Since D^s occurs in U exactly once, choose a basis for $E(s)$ so that $U(k) = D^s(k)$ on $E(s)$. Then clearly $\Psi^U_s(k) = D^s(k)\Psi^U_s(x)$. Let $\Psi^U_s(x) = \int_K \Psi^U_s(kxk^{-1})dk$. Then $\Psi^U_s(x) = D^s(k)\Psi^U_s(x)$, $x \in G$, $k \in K$, and we have $\Psi^U_s(x)$ is a scalar $\Phi^U_s(x)$ times identity operator. We recall the following facts, [cf. 8, Ch. 6].

PROPOSITION 3.1. (i) $\Phi^U_s(x)$ is a spherical function of type s and every spherical function of type s is of this form.

(ii) Let κ_U be the infinitesimal character of U defined on the center Z of the algebra \mathfrak{g}, then $D\Phi^U_s = \kappa_U(D)\Phi^U_s$ and $D\Psi^U_s = \kappa_U(D)\Psi^U_s$, $D \in 3$.

Consider the Banach representation $U^{p,1}$ with $s = |p| + q$ for some nonnegative integer q, let $\Psi^{p,1}_s$ and $\Phi^{p,1}_s$ be the s-spherical function and the spherical function of type s respectively of the TCI Banach representation of G which occurs in $U^{p,1}$ and has D^s occurs in it. Let $E^p(s) = U^{p,1}(\chi_s)E^p$, then $\{D^p_{j,-p}: j = -s, -s + 1, \ldots, s\}$ forms a basis for $E^p(s)$. Now

$$
\Psi^{p,1}_s(x) \cdot D^p_{j,-p} = U^{p,1}(\chi_s)U^{p,1}(x)U^{p,1}(\chi_s)D^p_{j,-p} \\
= (2s + 1) \sum_{l=-s}^s \int_K \exp \left(-(i\lambda + 1)\rho(H(x^{-1}k)) \right) \\
\times D^p_{j,-p}(\kappa(x^{-1}k))dk \cdot D^p_{j,-p}.
$$

But $\Phi^{p,1}_s(x) = 1/(2s + 1) \text{Trace}(\Psi^{p,1}_s(x)) = 1/(2s + 1) \text{Trace}(\Psi^{p,1}_s(x))$, so

$$
\Phi^{p,1}_s(x) = \int_K \exp \left(-(i\lambda + 1)\rho(H(x^{-1}k)) \right)D^p_{j,-p}(\kappa^{-1}k)dk.
$$

Using this formula and the above proposition, we will set up a differential equation which enables us to get a complete parametrization of the spherical functions of type s.

LEMMA 3.2. $\Phi^{p,1}_s(x) = \Phi^{p,-1}_s(x^{-1})$.

Proof. It suffices to show that

$$
\int_G f(x)\Phi^{p,-1}_s(x^{-1})dx = \int_G f(x)\Phi^{p,1}_s(x^{-1})dx
$$
for all $f \in C^\infty_c(G)$. Since $\Phi^\pm_\lambda(k \times k^{-1}) = \Phi^\pm_\lambda(x)$, $x \in G$, $k \in K$ and $\Phi^\xi_\lambda \chi_s = \Phi^\xi_\lambda$, we only need to consider those f in $I_{\xi,s}(G)$. Thus let $f \in I_{\xi,s}(G)$, by (10)

$$
\int_G f(x)\Phi^\pm_\lambda(x)dx = \int_G f(x)^{-1})\Phi^\pm_\lambda(x)^{-1}dx \\
= \int_K \int_{A_p} \int_N f(n^{-1}a^{-1}_i k^{-1})e^{-(i\lambda + 1)D^\pm_\lambda(k)e^2dkdt dn} \\
= \int_K \int_{A_p} \int_N f(kn_x)e^{(i\lambda + 1)D^\pm_\lambda(k^{-1})dkdt dn} \\
= \int_K \int_{A_p} \int_N f(kn_x)e^{(i\lambda + 1)D^\pm_\lambda(k^{-1})dkdt dn}.
$$

But $D^\pm_\lambda(k^{-1}) = D^\pm_\lambda(k)$ by (6), hence the lemma.

Let $w_1 = S_1^2 + S_2^2 + S_3^2 - R_1^2 - R_2^2 - R_3^2$ and $w_2 = R_1S_1 + R_2S_2 + R_3S_3$. Then $\{w_1, w_2\}$ generates the center \mathfrak{g}. It is easy to see that $S_1 = R_2 - N_s$, $S_2 = N_1 - R_s$ and $N_1R_1 = R_1N_1 - S_s$, $N_2R_2 = R_2N_2 - S_s$, substitute into w_1, w_2 we get

(11) $w_1 = S_3^2 + 2S_3 - R_3^2 + N_1^2 + N_2^2 - 2(R_1N_1 + R_2N_2)$

(12) $w_2 = R_1S_1 + R_2 - R_1N_2 + R_2N_1$.

Use the formula for $\Phi^\pm_\lambda(x)$ in the above lemma, a direct computation gives us

(13) $w_1\Phi^\pm_\lambda(1) = p^2 - \lambda^2 - 1$, $w_2\Phi^\pm_\lambda(1) = p\lambda$.

Now, $\Phi^\pm_\lambda = 1/(2s + 1) \text{Trace}(\Psi^\pm_\lambda)$, and for $x \in G$, we can write $x = k_1a_1k_2$, $k_1, k_2 \in K$, $a_1 \in A_\pm$, so $\Psi^\pm_\lambda(x) = \Psi^\pm_\lambda(k_1a_1k_2) = D^\pm_\lambda(k_1)\Psi^\pm_\lambda(a_1)D^\lambda(k_2)$. Then this function determined by the restriction of Ψ^\pm_λ to A_\pm. Let $t \neq 0$, define $\text{Ad}(a_i^{-1})X = a_i^{-1}Xa_i$, $X \in g_\pm$; then we have

(14) $\text{Ad}(a_i^{-1})R_i = \cosh t \cdot R_i - \sinh t \cdot S_i$.

By substitution, we get
\[w_1 = S_s + 2 \coth t \cdot S_s + \coth^2 t \cdot (R_s + R_s') \]
\[+ \csch^2 t \cdot \Ad (a_i^-) (R_s + R_s') \]
\[- 2 \coth t \csch t \cdot ((\Ad (a_i^-) R_s) R_s' - (R_s + R_s' + R_s)) \]
\[w_2 = S_s R_s + \coth t \cdot R_s - \csch t \cdot ((\Ad (a_i^-) R_s) R_s' - (R_s + R_s' + R_s)) \]

Hence for \(t > 0 \), apply \(w_1, w_2 \) on \(\Psi^{p, q}(a_i) \), we get

\[\frac{d^2}{dt^2} \Psi^{p, q}(a_i) + 2 \coth t \frac{d}{dt} \Psi^{p, q}(a_i) \]
\[+ (\coth^2 t - \csch^2 t) D^s(R_s) \Psi^{p, q}(a_i) \]
\[+ \coth t \csch t (X \Psi^{p, q}(a_i) Y + Y \Psi^{p, q}(a_i) X) \]
\[+ s(s + 1) \Psi^{p, q}(a_i) = (\lambda^2 + \lambda_2^2 - 1) \Psi^{p, q}(a_i). \]

where \(X = D^s(R_s) - i D^s(R_s), Y = -D^s(R_s) - i D^s(R_s). \) Since \(u_i a_i = a_i u_i, \) \(u_i \in M, a_i \in A, \) by (5) we see that \(\Psi^{p, q}(a_i) \) is a diagonal matrix, so let \(\Psi^{p, q}_{i,j} \) be the \(j \)th diagonal element, \(j = -s, -s + 1, \ldots, s, \) we see from (18) and (6)

\[-i j \frac{d}{dt} \Psi^{p, q}_{i,j}(a_i) - ij \coth t \Psi^{p, q}_{i,j}(a_i) \]
\[- \frac{i}{2} \csch t (s - j)(s + j + 1) \Psi^{p, q}_{i,j+1}(a_i) \]
\[- (s - j)(s - j + 1) \Psi^{p, q}_{i,j-1}(a_i) = \lambda \Psi^{p, q}_{i,j}(a_i). \]

Hence for \(j = s, s - 1, s - 2, \ldots, -s + 1, \) we get

\[(s + j)(s - j + 1) \csch t \Psi^{p, q}_{i,j+1}(a_i) \]
\[= 2j \frac{d}{dt} \Psi^{p, q}_{i,j}(a_i) + 2j \coth t \Psi^{p, q}_{i,j}(a_i) \]
\[- 2i \lambda \Psi^{p, q}_{i,j}(a_i) + (s - j)(s + j + 1) \csch t \Psi^{p, q}_{i,j+1}(a_i). \]

Therefore, \(\Psi^{p, q}(a_i) \) is determined by knowing \(\Psi^{p, q}(a_i), \) \(t > 0. \) Consider the \(s \)th diagonal element of (17) + 2i \coth t \cdot (18), we find that \(\Psi^{p, q}(a_i) \) satisfies the following differential equation

\[\varphi''(t) + 2(1 + s) \coth t \varphi(t) \]
\[+ ((s + 1)^2 - \lambda^2 - \lambda_2^2 - 2i \lambda \coth t) \varphi(t) = 0. \]
This is a differential equations with regular singular point at $t = 0$. The initial equation $f(z) = z(z + 1 + s)$, so we have $z_1 = 0$ and $z_2 = -(1 + s)$ as roots for $f(z) = 0$. From the general theory of such differential equation [e.g. 1, Ch. 4] we have

Proposition 3.3. Two linearly independent solutions of (21) can be represented in the following form

(22) \[\varphi_1(t) = t^{i \lambda t} U_1(t) = U_1(t) \]
(23) \[\varphi_2(t) = t^{i \lambda t} U_2(t) + \alpha \varphi_1(t) \ln t \]

here U_1 and U_2 are analytic on $[0, \infty)$ with $U_1(0) = U_2(0) = 1$ and α is some constant.

Corollary 1. The function $\Psi_{1; i}^*(a_i) = \varphi_1(t)$.

Proof. The only solutions of (21) which are bounded at $t = 0$ are constant multiples of $\varphi_1(t)$ and we know that $\Psi_{1; i}^*(1) = 1$.

Let $\varphi_1(t) = \sum_{j=0}^{\infty} c_j t^j$. We will compute the coefficients c_j more explicitly. Since $\lim_{t \to 0} t \coth t = 1$, we get

(24) \[\cotht = \frac{1}{t} + \sum_{j=0}^{\infty} a_j t^j \]

with $g(t) = \sum_{j=0}^{\infty} a_j t^j$ analytic at $t = 0$. Substitute $\varphi_1(t)$ into (21), we get

(25) \[2(1 + s)c_1 - 2i \lambda c_0 = 0 \]

and the recursion formula, $j = 2, 3, \ldots$

(26) \[j(j + 1 + 2s)c_j = [p^2 - \lambda^2 - (s + 1)^2] c_{j-2} - 2(1 + s) \sum_{r=1}^{j-1} rc_r c_{j-1-r} \]
\[+ 2i \lambda \sum_{r=0}^{j-1} c_r a_{j-2-r} . \]

Corollary 2. Two spherical functions $\Phi_{1, i}^{p_1, \lambda_1}$ and $\Phi_{1, i}^{p_2, \lambda_2}$ of type s are equal if and only if $(p_1, \lambda_1) = \pm (p_2, \lambda_2)$ or $(p_1, \lambda_2) = \pm i(\lambda_1, -\lambda_2)$.

Proof. From earlier discussion, it suffices to consider the functions $\Psi_{1; i}^{p_1, \lambda_1}(a_i)$ and $\Psi_{1; i}^{p_2, \lambda_2}(a_i)$, hence their corresponding coefficients derived from (25) and (26). Clearly then it is equivalent to have $p_1 \lambda_1 = p_2 \lambda_2$ and $p_1^2 - \lambda_1^2 = p_2^2 - \lambda_2^2$ and the corollary follows.

Proposition 3.4. $\Phi_{i}^{p, \lambda}$ is bounded if $\lambda = \sigma + ib$ with $\sigma, b \in \mathbb{R}$ and $|b| \leq 1$.
Proof. Let \(x \in G \) and write \(x = k_1a_1k_2 \) with \(t \geq 0 \). Then

\[
\Phi_{x^{-1}}(w^{-1}) = \Phi_{x^{-1}}((k_1a_1k_2)^{-1}) = \Phi_{x^{-1}}((k_2k_1a_1)^{-1})
\]

\[
= \int_k \exp \left(-(i\lambda + 1)\rho(H(a_1,k))D_{-p,-p}(k^{-1}k_1k_2k(a_1,k))dk \right).
\]

Now, write \(k = u_\psi v_\theta u_\varphi \), then \(a_1k = (u_\psi v_\theta, u_\varphi) a_1n, n \in N \),

\[
e^t = e^t \cos^2 \frac{\theta}{2} + e^{-t} \sin^2 \frac{\theta}{2}
\]

\[
\cos \frac{\theta'}{2} = e^{(t-t')/2} \cos \frac{\theta}{2}, \quad \sin \frac{\theta'}{2} = e^{-(t+t')/2} \sin \frac{\theta}{2}, \quad 0 \leq \theta' \leq \pi.
\]

Thus by (4) and (5) we get

\[
\Phi_{x^{-1}}(w^{-1}) = \frac{1}{2} \int_0^\infty \exp \left(-(i\lambda + 1)t'\right)D_{-p,-p}(v_\psi^{-1}k_1k_2v_\psi) \sin \theta d\theta.
\]

If \(t = 0 \), then \(t' = 0 \) and the integral (29) bounds by 1. If \(t > 0 \), by (28) with change of variable gives

\[
\Phi_{x^{-1}}(w^{-1}) = \frac{1}{2 \sinh t} \sum_{j=0}^s \int_{-t}^t e^{-it'}D_{-p,-p}(v_\psi^{-1})D_{j,0}(k_1k_2)D_{j,-1}(v_\theta)dt'.
\]

and

\[
|\Phi_{x^{-1}}(w^{-1})| \leq \frac{1}{2 \sinh t} \int_{-t}^t e^{it'}dt = \frac{\sinh t}{b \sinh t} \leq 1.
\]

4. The analogue of Paley-Wiener theorem. Let

\[
B_\ast = \{(p, \lambda); p = -s, -s + 1, \ldots, s; \lambda \in C\}.
\]

For each pair \((p, \lambda) \in B_\ast\), there corresponds a spherical functions \(\Phi_{p,\lambda} \) of type \(s \). Let \(f \in I_\ast(G) \), the Fourier-Laplace transform \(\hat{f} \) of \(f \) is a function defined on \(B_\ast \) by

\[
\hat{f}(p, \lambda) = \int_G f(x) \Phi_{p,\lambda}(x) dx.
\]

Given \(f \in I_\ast(G) \). Let \(B_f = \{a_t \in A_p; f(ka_t) \neq 0 \text{ for some } k \in K\} \). We say that \(f \) has support in the ball of radius \(R \) if \(\sup \{|t|; a_t \in B_f\} \leq R \). Clearly \(f \) has compact support if and only if there exists an \(R \) which is finite. For each \(D^r \in K \), define

\[
F_f(a_t) = e^t \int_K \int_N f(ka_tn)D^r(k^{-1})dkdn.
\]

This gives a map of \(A_p \) to the space of linear operators \(L(E_s) \) on \(E_s \). It is easy to see that \(F_f = F_{f*} \), \(f \in I_\ast(G) \) and \(f* = f*\chi_s \).
Lemma 4.1. Let $n \in \mathbb{N}$, $a_i \in A$, and write $a_n = k_1 a_i k_2$ for some $k_1, k_2 \in K$. Then $| t_1 | \geq | t |$.

Proof. Let $n = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$, $z \in C$ and $k_j = \begin{pmatrix} \alpha_j & \beta_j \\ \bar{\beta}_j & \bar{\alpha}_j \end{pmatrix}$ with $| \alpha_j |^2 + | \beta_j |^2 = 1$, $j = 1, 2$. Equating the corresponding matrix coefficients from $a_n k_2^{-1}$ yields $e^t + (1 + | z |^2) e^{-t} = e^t + e^{-t}$, i.e., $2 \cosh t_1 + e^t | z |^2$. Thus $| t_1 | \geq | t |$.

Proposition 4.2. Let $f \in I_c, s(G)$ have support in the ball of radius R, then F^*_f is C^∞ with support in $\{ a_i : | t | \leq R \}$.

Proof. Suppose $F^*_f(a_i) \neq 0$, then $f(k a_i, n) \neq 0$ for some $k \in K$, $n \in \mathbb{N}$. Now $k a_i, n = k a_i k_2$ for some $k_1, k_2 \in K$ and $a_i \in A$. Thus $a_n = k^{-1} k_1 a_i k_2$ and $f(k a_i, a_i) = f(k a_i, k_2) = f(k a_i, n) \neq 0$. By the above lemma and the assumption we get $| t | \leq | t_1 | \leq R$. Differentiability is clear.

Proposition 4.3. The map $f \rightarrow F^*_f$ is a one-to-one algebra homomorphism of $I_c, s(G)$ into $C^\infty_c(A, L(E))$.

Proof. Let $f, g \in I_c, s(t)$, use Fubini’s theorem repeatedly

$$
F^*_{f \star}(a_i) = e^t \int_{A} \int_{N} \int_{K} (f \star g)(k a_i, n) D^t(k^{-i}) d \kappa d \nu d \pi
$$

$$
= e^t \int_{A} \int_{N} \int_{K} \int_{A} \int_{N} f(k a_i, n, k^{-i}) g(k a_i, n) d \kappa d \nu d \pi
$$

$$
\times e^{t_1} D^t(k^{-i}) d k d t_1 d \kappa d \nu d d \pi
$$

$$
= \int_{A} \int_{N} \int_{K} \int_{A} \int_{N} f(k a_i, a_i^{-i} n) g(k a_i, n) e^{t_1} \cdot e^{t_1} D^t(k^{-i})
$$

$$
\times D^t(k^{-i}) d k d t_1 d \kappa d \nu d d \pi
$$

$$
= \int_{A} \int_{N} F^*_f(a_i, a_i^{-i}) F^*_s(a_i) d t_1 = F^*_f \ast F^*_s(a_i).
$$

The linearity is trivial, hence it is algebra homomorphism. As for one-to-one, given $f \in I_c, s(G)$ and $F^*_f \equiv 0$, to show $f \equiv 0$. Note first that $F^*_f(a_i) D^t(u_\alpha) = D^t(u_\alpha) F^*_f(a_i)$, hence $F^*_f(a_i)$ is a diagonal matrix. From (10) and Lemma 3.2, we see that if $F^*_f(a_i)$ is the pth diagonal element of $F^*_f(a_i)$,

$$
\int_{A} F^*_{f,p}(a_i) e^{-t_1} d t = \int_{\beta} f(\alpha) \Phi_{\beta,1}^{-1}(\alpha) d \alpha.
$$
If $F'_\lambda = 0$, then $F'_\lambda \rho = 0$ for all p, hence $\hat{f}(p, \lambda) = 0$ for all p, λ. Thus $U^{p,i}(f) = 0$ for all p, λ. But the set $\{U^{p,i}\}$ forms a complete set of representations on G, thus we get $f = 0$.

COROLLARY. $I_{c,*}(G)$ is commutative.

For each nonnegative real number R, let $H_s(R)$ be the set of functions g defined on B_s satisfying (i) g is entire holomorphic in λ; (ii) $g(p, \lambda) = g(-p, -\lambda)$, $(p, \lambda) \in B_s$; (iii) $g(p, \lambda) = g(i\lambda, -ip)$ if both (p, λ) and $(i\lambda, -ip)$ are in B_s; (iv) given a positive integer m, there exists a constant C_m such that $|g(p, \lambda)| \leq C_m(1 + |\lambda|)^{-m} \exp R|\eta|$, $\lambda = \xi + i\eta \in R + iR$. Let H_s be the union of all the $H_s(R)$.

Given f in $I_{c,*}(G)$, by Corollary 2 of Proposition 3.3 we see the function \hat{f} defined in (30) satisfies conditions (i), (ii), (iii) of the definition of H_s. By (32), $\hat{f}(p, \lambda)$ is just the usual Fourier transform of the function $F'_\lambda \rho$ on the real line, which is C^∞ with compact support, hence \hat{f} is holomorphic in λ. If f has support in the ball of radius R, so is F'_λ, hence the classical Paley-Wiener theorem asserts that $\hat{f} \in H_s(R)$. Thus we have a linear map $f \mapsto \hat{f}$ of $I_{c,*}(G)$ into $H_s(R)$ such that if f has support in the ball of radius R, we get $\hat{f} \in H_s(R)$. We want to show that this map is also onto now.

In the inversion formula (8), when $f \in I_{c,*}(G)$, it is easy to see that $\text{Trace} (U^{p,i}(x^{-1}) U^{p,i}(f)) = (2s + 1)\hat{f}(p, \lambda) \Phi^{p,i}(x^{-1})$ for $p = -s, -s + 1, \ldots, s$; and $U^{p,i}(f) = 0$ otherwise. Thus we have

$$f(x) = \frac{2s + 1}{4\pi^2} \sum_{p=-s}^{s} (p^2 + \lambda^2)\hat{f}(p, \lambda) \Phi^{p,i}(x^{-1})d\lambda.$$

LEMMA 4.4. Let $g \in H_s(R)$ and define

$$f_t(x) = \sum_{p=-s}^{s} \int_{\lambda=\infty}^{\lambda=-\infty} (p^2 + \lambda^2)g(p, \lambda) \Phi^{p,i}(x^{-1})d\lambda.$$

Then $f_t \in I_{c,*}(G)$ and f_t has support in the ball of radius R.

Proof. Since $g(p, \lambda)$ decreases rapidly at infinity on λ and $\Phi^{p,i}$ is C^∞ and bounded when λ is real, the integral converges absolutely and defines a C^∞ function on G. By the property of $\Phi^{p,i}$, it is clear that $f_t(k \times k^{-1}) = f_t(x)$, $k \in K$, $x \in G$ and $f_t \ast \chi_s = f_t$. It remains to show that f_t has support in the ball of radius R. Thus let $x = k a_t$ with $k \in K$ and $t \neq 0$. Since $a_t \in B_{f_t}$ if and only if $a_{-t} \in B_{f_t}$, may assume that $t > 0$. Using the expression and notation in Proposition 3.4, we get

$$f_t(k a_t) = \frac{1}{2 \sinh t} \sum_{p, \rho} D^{p,i}_{\rho, \lambda}(k) \int_{\lambda=-\infty}^{\lambda=\infty} \int_{t'=t}^{t'} (p^2 + \lambda^2)g(p, \lambda)e^{-2\lambda t'} \times D^{\rho,p}_{\lambda, \lambda}(v^{t'})D^{\rho,-p}_{\lambda, -\lambda}(v_{t'})dt'd\lambda.$$
For each $p, j = -s, -s + 1, \ldots, s$, define
\begin{equation}
(36) f_{p,j}(t) = \int_{-\infty}^{\infty} \int_{t'=t}^{t} (p^2 + \lambda^2)g(p, \lambda)e^{-it'\lambda}D_{p,j}(v_{\theta'})D_{j,-p}(v_{\theta'})dt'd\lambda.
\end{equation}

Let $t > R$, to show $f_i(k, a_i) = 0$, it suffices to show that $\sum_{p=-s}^{s} f_{p,j}(t) = 0$ for all j. Let
\begin{equation}
(37) h_s(t') = \int_{-\infty}^{\infty} (p^2 + \lambda^2)g(p, \lambda)e^{-it'\lambda}d\lambda.
\end{equation}

By the classical Paley-Wiener theorem, $h_s(t') = 0$ if $t' > R$. Thus
\begin{equation}
(38) f_{p,j}(t) = \int_{-\infty}^{\infty} h_s(t')D_{p,j}(v_{\theta'})D_{j,-p}(v_{\theta'})dt'.
\end{equation}

Put $x_1 = e^{it'}, x_2 = -e^{-it}$, then by (5), (28) we get
\begin{equation}
(39) D_{p,j}(v_{\theta'})D_{j,-p}(v_{\theta'}) = \frac{(-1)^{s+j}e^{-it'}}{(s+j)!(s-j)!(2\sin h t)^{2s}}e^{-pt'}\frac{\partial^{2s}}{\partial x_1^{s-p}\partial x_2^{s+p}} [x_1x_2]^r [x_1^{2s} + x_2^{2s}] .
\end{equation}

The above expression is just the linear combination of terms
\[e^{-pt'}\frac{\partial^{2s}}{\partial x_1^{s-p}\partial x_2^{s+p}} [x_1x_2]^r (x_1^{2s} + x_2^{2s}) \]
with coefficients as functions of t, and $r_1, r_2 \geq 0, r_1 + r_2 \leq 2s$. Pick one of these terms and consider the two integrals
\begin{equation}
(40) \sum_{p=-s}^{s} \int_{-\infty}^{\infty} h_s(t')e^{-pt'}\frac{\partial^{2s}}{\partial x_1^{s-p}\partial x_2^{s+p}} [x_1x_2]^r [(x_1^{2s} + x_2^{2s})]dt' = \frac{\min\{s, r_1 - s\}}{\max\{s, r_1 + r_2 - s\}} \int_{-\infty}^{\infty} h_s(t') \frac{(r_1 + r_2)!r_1!}{(r_1 + r_2 - s + p)! (r_1 - s - p)!}e^{(r_2 + p)t'}dt' = 2\pi \int_{p=s-r_1}^{s} \frac{(r_1 + r_2)!r_1!}{(r_1 + r_2 - s + p)! (r_1 - s - p)!} \times [p^2 + (-i(r_2 + p))]g(p, -i(r_2 + p))
\end{equation}
\begin{equation}
\times (r_1 + r_2)! r_1! \times x_1x_2 \times (r_1 + r_2 - s + p)! (r_1 - s - p)!)
\end{equation}
\begin{equation}
(41) \sum_{p=-s}^{s} \int_{-\infty}^{\infty} h_s(t')e^{-pt'}\frac{\partial^{2s}}{\partial x_1^{s-p}\partial x_2^{s+p}} [x_1x_2]^r [(x_1^{2s} + x_2^{2s})]dt' = 2\pi \int_{p=s-r_1}^{s} \frac{(r_1 + r_2)!r_1!}{(r_1 - s + p)! (r_1 + r_2 - s + p)!} \times (r_1 + r_2)! r_1! \times x_1x_2 \times (r_1 + r_2 - s + p)! (r_1 - s - p)!)
\end{equation}
\begin{equation}
\times (r_1 + r_2)! r_1! \times x_1x_2 \times (r_1 + r_2 - s + p)! (r_1 - s - p)!)
\end{equation}
By changing the index and the fact that
\[g(p, i(r_2 - p)) = g(p - r_2, -ip) , \]
we get the sum of (40) and (41) is zero. Now the lemma is clear.

Combine the above discussion, we get the following analogue of Paley-Wiener theorem.

PROPOSITION 4.5. The Fourier transform \(\hat{f} \) defined in (30) is a one-to-one algebra homomorphism of \(I_{s, s}(G) \) onto \(H_s \). A function \(f \) in \(I_{s, s}(G) \) has support in the ball of radius \(R \) if and only if \(\hat{f} \) is in \(H_s(R) \).

Let \(L^i(G) \) be the closure of \(I^i(G) \) in \(L'(G) \). Given \(f \in L^i(G) \), by Proposition 3.4, the integral

\[(42) \quad \hat{f}(p, \lambda) = \int_G f(x) \Phi^i(x) dx \]
is defined for \((p, \lambda) \in B_s \) with \(\lambda = \xi + i\eta, |\eta| \leq 1 \). Then we have the following analogue of Riemann Lebesgue lemma.

PROPOSITION 4.6. Let \(f \in L^i(G) \) and define \(\hat{f} \) as in (42), then
\[\lim_{|\xi| \to \infty} \hat{f}(p, \xi + i\eta) = 0 \]
uniformly for \(|\eta| \leq 1 \).

Proof. Given \(\varepsilon > 0 \), choose \(g \) in \(I^s(G) \) such that \(\| f - g \|_1 < \varepsilon/2 \).

But then we have

\[(43) \quad |\hat{f}(p, \lambda) - \hat{g}(p, \lambda)| \leq \int_G |f(x) - g(x)| dx < \varepsilon/2 . \]

Choose \(R, C \) such that

\[(44) \quad |\hat{g}(p, \lambda)| \leq C(1 + |\lambda|)^{-1} \exp R |\eta| \leq C(1 + |\lambda|)^{-1} \exp R \]
since \(|\eta| \leq 1 \). Combine (43), (44) we get \(|\hat{f}(p, \lambda)| < \varepsilon \) when \(|\xi| \) is large enough.

Let \(B = \{(s, p, \lambda) : s \text{ is a nonnegative integer or half integer,} \ (p, \lambda) \in B_s \} \). Given \(f \in L(G) \) and \((s, p, \lambda) \in B \), define

\[(45) \quad \hat{f}(s, p, \lambda) = \int_G f(x) \Phi^i_s(x) dx . \]

It is clear that \(\hat{f}(s, p, \lambda) = \hat{f}_s(p, \lambda) \).

LEMMA 4.7. Let \(f \in L_s(G) \). Then \(f \) has support in the ball of radius \(R \) if and only if \(f \) has support in the ball of radius \(R \) for all \(s \).
Proof. By definition, \(f_s(x) = \int_{K} f(k^{-1}x)\chi_s(k)dk \). Thus if \(f \) has support in the ball of radius \(R \) and \(f_s(k, a_t) \neq 0 \) with \(k \in K, a_t \in A_t \), we have \(f(k^{-1}k, a_t) \neq 0 \) for some \(k \in K \) and therefore \(|t| \leq R \). The converse follows from the fact that \(\sum_s f_s \) converges to \(f \) absolutely, [8, vol. I, p. 264].

Proposition 4.8. The map \(f \mapsto \hat{f} \) defined in (45) is a one-to-one algebra homomorphism of \(L(G) \) into the algebra of all functions \(g \) on \(B \) satisfying (i) \(g(s, p, \lambda) \) is entire holomorphic in \(\lambda \), (ii) \(g(s, p, \lambda) = g(s, -p, -\lambda) \), \((s, p, \lambda) \in B \), (iii) \(g(s, p, \lambda) = g(s, i\lambda, -ip) \) if both \((s, p, \lambda) \) and \((s, i\lambda, -ip) \) are in \(B \), (iv) there exists \(R > 0 \), for each given positive integer \(m \), there exists \(C_{m,s} \) such that

\[
|g(s, p, \lambda)| \leq C_{m,s}(1 + |\lambda|)^{-m} \exp R|\eta|, \xi + i\eta \in R + iR.
\]

Proof. This is clear by Proposition 4.6 and Lemma 4.7.

Corollary. Let \(f \in L'(G) \). Then \(\hat{f}(s, p, \lambda) \) is defined for \(\lambda = \xi + i\eta \), \(|\eta| \leq 1 \) and \(\lim_{t \to \pm \infty} \hat{f}(s, p, \xi + i\eta) = 0 \) for \(|\eta| \leq 1 \).

References

Received June 21, 1973. This paper is based on the author’s doctoral dissertation under the direction of Professor, R. Gangolli at the University of Washington. The author wishes to express his sincere thanks to Professor Gangolli for his patient and persistent advice.
Harm Bart, Spectral properties of locally holomorphic vector-valued functions .. 321
J. Adrian (John) Bondy and Robert Louis Hemminger, Reconstructing infinite graphs .. 331
Bryan Edmund Cain and Richard J. Tondra, Biharolomorphic approximation of planar domains .. 341
Richard Carey and Joel David Pincus, Eigenvalues of seminormal operators, examples .. 347
Tyrone Duncan, Absolute continuity for abstract Wiener spaces .. 359
Joe Wayne Fisher and Louis Halle Rowen, An embedding of semiprime PI-rings .. 369
Andrew S. Geue, Precompact and collectively semi-precompact sets of semi-precompact continuous linear operators .. 377
Charles Lemuel Hagopian, Locally homeomorphic λ connected plane continua .. 403
Darald Joe Hartfiel, A study of convex sets of stochastic matrices induced by probability vectors .. 405
Yasunori Ishibashi, Some remarks on high order derivations .. 419
Donald Gordon James, Orthogonal groups of dyadic unimodular quadratic forms. II .. 425
Geoffrey Thomas Jones, Projective pseudo-complemented semilattices .. 443
Darrell Conley Kent, Kelly Denis McKennon, G. Richardson and M. Schroder, Continuous convergence in $C(X)$.. 457
J. J. Koliha, Some convergence theorems in Banach algebras .. 467
Tsang Hai Kuo, Projections in the spaces of bounded linear operations .. 475
George Berry Leeman, Jr., A local estimate for typically real functions .. 481
Andrew Guy Markoe, A characterization of normal analytic spaces by the homological codimension of the structure sheaf .. 485
Kunio Murasugi, On the divisibility of knot groups .. 491
John Phillips, Perturbations of type I von Neumann algebras .. 505
Billy E. Rhoades, Commutants of some quasi-Hausdorff matrices .. 513
David W. Roeder, Category theory applied to Pontryagin duality .. 519
Maxwell Alexander Rosenlicht, The nonminimality of the differential closure .. 529
Peter Michael Rosenthal, On an inversion theorem for the general Mehler-Fock transform pair .. 539
Alan Saleski, Stopping times for Bernoulli automorphisms .. 547
John Herman Scheuneman, Fundamental groups of compact complete locally affine complex surfaces. II .. 553
Vashishtha Narayan Singh, Reproducing kernels and operators with a cyclic vector. I .. 567
Peggy Strait, On the maximum and minimum of partial sums of random variables .. 585
J. L. Brenner, Maximal ideals in the near ring of polynomials modulo 2 .. 595
Ernst Gabor Straus, Remark on the preceding paper: “Ideals in near rings of polynomials over a field” .. 601
Masamichi Takesaki, Faithful states on a C^*-algebra .. 605
R. Michael Tanner, Some content maximizing properties of the regular simplex .. 611
Andrew Bao-hwa Wang, An analogue of the Paley-Wiener theorem for certain function spaces on $SL(2, \mathbb{C})$.. 617
James Juei-Chin Yeh, Inversion of conditional expectations .. 631