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The classical theorem of Paley-Wiener is concerned with
characterizing Fourier transforms of C°° functions of compact
support on the real line. It states that an entire holomor-
phic function F is the Fourier-Laplace transform of a C00

function on the real line R with support in | x | ^ R it and
only if for given integer m, there exists a constant Cm such
that

( 1 ) \F(ξ + iη)l£Cm(l + \ξ + iη IΓ e x p R\η\9 ξ, ηe R .

The purpose of this paper is to prove an analogue of this
theorem for certain convolution subalgebras of C°° functions
with compact support on the group SL(2, C), by using Fourier
transform involving elementary spherical functions of general
type δ.

These subalgebras have been defined on locally compact group
by R. Godement [4], in order to study the spherical trace function,
cf. also G. Warner [8]. On this special group mentioned, by use the
differential equations satisfied by the spherical functions, we derive
a parametrization of such functions. These are in turn utilized to
prove the Paley-Wiener theorem.

The analogous question on symmetric space of noncompact type
was considered by S. Helgason [5] and R. Gangolli [3]. L. Ehrenpreis
and F. I. Mautner [2] studied the Fourier transform on the group
SL(2, R) in detail, and theorem of the same kind was proved there.
Results of this sort involving spherical functions of general type d
on some other groups have also been investigated, see e.g. Y.
Shimizu [7].

2* Preliminaries* Throughout this paper, let G denote the
complex semisimple Lie group SL(2, C) and let K denote the maximal
compact subgroup consisting of all unitary matrices in G. A basis
of the real Lie algebra g0 of G consists of

i \ Λ w o A j i / < o
V - 1 0/ 2\i 0/ 2\0 -ί

)

0/

The set {Ru R2, R3} also forms a basis of the Lie algebra k0 of K.
617
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Elements of g0 are viewed as left invariant vector fields on G, which
generates the algebra ® of all left invariant differential operators
on G. Let aPo = {tS3: te R}. The root system for (gQ, aPo) consists
of {p, —p}, where p(S3) = 1, and each has multiplicity two. Let

/0 1\ (0 i\
Nx = I ), iV2 = I and let π0 be the subspace of g0 spanned
by {Nlf N2), then π0 is the root space for p. Let N=expn0 and
Ap = {at = exp ίS3: ί e R}. Then 0̂ = 0̂ + 3̂>0 + π0 and G = KAPN
(Iwasawa decomposition). It is also known that G = KA%K> A% —
ίat: t^ 0}. The Haar measure on G is normalized so that

(3) ( f(x)dx = [ [ [ f(katn)e2tdkdtdn, feCc(G),

where dk is the normalized Haar measure on K, dt is the Lebesgue
measure on JB and dn = dξtdξ2 if n = exp (f I-ZVΊ + £2^2), is the Lebesgue
measure on R2. Let fc e K, we can write & = u<Plvθuψ2 with ^ 9 =
exp φR3, vθ = exp ΘR, and 0 ^ ^ ^ 2ττ, 0 ^ % ^ 4π . Then

S I Γ27Γ Cπ CAπ

f(k)dk = — — \ I f(uΨlvθuφ) sin θdφ1dθdφ2 ,

feC(K).

For each nonnegative integer or half integer s, let Ds be the
unique (up to equivalence) irreducible unitary representation of K on
a 2s + 1 dimensional Hubert space E8. We can choose a basis {v_8,
tf_.+i, , v.} of Es so that the matrix (Ds

j>q(k))f j , q = — s, — s + 1,
• • ,s has the following expression [see e.g. 6, p. 129],

(5)

s-j+q-2s — sinj-q+2r —
2 2

The infinitesimal form for Ds has

6) Ds(R2)v3 = ^(s + j)v^ + -5-(β

Hence £>3(i2? + i22

2 + Ef) = -s(s + 1)1.
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2>Let M = {uΘ = exp ΘS5: θ e R}. Then M is the centralizer of A
in K, also it is a maximal torus in K. The set M of all characters
of M is parametrized by half integers, i.e., for each p with 2p an
integer, uθ —• e~ίp<? gives a character of Λf. Let p e M, and let
Ep ^{feL2(K):f(kuθ) = e^θf(k)f keK a n d u . e i k f } , w i t h | | / 2 | | =

I I f(k) |2 dk. Let λ be a complex number and given xeG, define
Upa{x) by the prescription

(7) (Up>\x)f){k) = exp (- (iλ

where a; = /c(#) exp H(x) w(a ) is the Iwasawa decomposition for x.
Then Up*λ defines a continuous representation of G on the Banach
space Ep, and every TCI Banach representation of G is equivalent
to a subquotient of ΌpΛ for some p, λ. The restriction of ΌpΛ to
iΓ is just the unitary representation of K induced from the character
uθ —* eipθ of M, hence Ds occurs in UPyλ exactly once if and only if
s = I p I + q for some nonnegative integer q.

Up>λ is unitary if λ is real, which constitutes the principal series
representation induced from the characters of the group MAPN.
Define

U"x(f) = \ f{x)Up>\x)dx , feC7(G) .
JG

Then UpΛ{f) is of trace class and we have the inversion formula

(8) fix) = - 1 - Σ Γ (P2 + λ2) Trace (ϋ'Ήμr1) U*>\f))dX

where Z is the set of all integers and dX is the usual Euclidean
measure.

3* The spherical functions* Let C~(G) be the algebra of all
C°° functions with compact support on G, with multiplication defined
by convolution. The subalgebra IC(G) is formed by those functions
/ in CT(G) satisfying fikxk'1) = f(x) for x e G, k e K. Define χ8(k) =
(2&+1) Trace (D*(k)), k e K and Ds e K. Let CC,S(G) = {fe Cτ(G): f*χx =
/ = χtf} and fβf.(G) - Iβ(G) n CCjS(G). /C,8(G) is a subalgebra of C?{G)
and the mapping f -+f°*χ8, /°0*0 = \ f{kxk~ι)dk, is the projection of
C?(G) onto JC,S(G).

DEFINITION. Let Z)s € K. By a spherical function Φ on G of
type s we mean a quasi-bounded continuous function on G such that
(i) Φ{kxk~ι) = Φ(a ), a? 6 G and keK; (ii) Φ*χs = Φ; (iii) the map / ->
I /(ίc)Φ(a;)(Zίc is a nonzero homomorphism of the algebra Ie,s(G) onto
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the complex numbers C.
Spherical functions of type s relates naturally to the TCI Banach

representations of G. Suppose U is a TCI Banach representation of
G on a space E such that Ds occurs in the restriction of U to K.

Let U(χs) = [ U(k)χs(k)dk and E(s) = U(χs)E. The s-spherical func-
tion Ψ* of UKon G is defined by W*(x) = U(χs)U(x)U(χs). Since Ds

occurs in U exactly once, choose a basis for E(s) so that U(k) = Ds(k)
on E(s). Then clearly ΨΐfcxkJ = Ds{k1)Ψu

s{x)Ds{k2). Let ^ ( α ) =
( Ψ^kxk'^dk. Then Ψu

s κ{x)Ds(k) - Ds(k)Ψu

s{x\ xe G, ke K, and we

have ΨY9κ(x) is a scalar Φ?(&) times identity operator. We recall the
following facts, [cf. 8, Ch. 6].

PROPOSITION 3.1. ( i ) Φu

s is a spherical function of type s and
every spherical function of type s is of this form.

(ii) Let κυ he the infinitesimal character of U defined on the
center Q of the algebra ©, then DΦU

S = ̂ (0)0* and DΨU

S = ιcϋ(D)Ψ^f

Consider the Banach representation Up>2 with s — | p \ + q for
some nonnegative integer q, let Ψξ>λ and ΦVλ be the s-spherical func-
tion and the spherical function of type s respectively of the TCI
Banach representation of G which occurs in Upa and has Ds occurs
in it. Let Ep(s) = Up'λ(χ8)Ep, then {D3

jr_p: j = -s, -s + 1, , s} forms
a basis for Ep(s). Now

(9) - (2s + 1) Σ ( exp (-(iλ +
l = ~s )κ

x Dl^iφ-'k^dk D\^p .

But Φ*-*(x) = 1/(28 + 1) Trace (Ψf;k(x)) = 1/(2* + 1) Trace (Ψp>λ(x)), so

(10) Φ*-*(x) - ί exp (-(iλ + l)p(H(x'1k))DLp^p(k'1κ(x'1k))dk .

Using this formula and the above proposition, we will set up a differ-
ential equation which enables us to get a complete parametrization
of the spherical functions of type s.

LEMMA 3.2. Φp>x(x) = φ-p~\χ-1).

Proof. It suffices to show that

\ f{x)Φp>-\x)dx = ί f(x)Φ7p'\χ-1)dx
JG JG
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for all / 6 Cr(G). Since Φξ x{k x Ar1) = Φ' x{x), xeG,keKand Φξ x*χs =
ΦξΛ, we only need to consider those / in Ie,s(G). Thus let / e /„,,(£),
by (10)

f{x)Φξ x{x)dx = \ f{χ-ι)Φξ x{χ-')
Jβ

= \ /(ar')exp(-

= ( [ \ f(n-ια
JK jAp JN

= \ \ \ f(kαtn)ettl+1)tDL,.-t(k-1)dkdtdn.

-ι)dx = \ /(a ) e x p ( - ( - t λ + l)p{H(x)))Dpp{k(

= [ ί [ f(kαtn)eM-l)*Dt

pJikytdkdtdn
JK JAp JN

= ί 1 ( f(kαtn)e{U+1)tDs

pp(k)dkdtdn .
JK jAp JN

But DLp^p{k~l) = Ds

pp(k) by (6), hence the lemma.

Let w1 = SI + Si + SI - R\- R\- R\ and w2 = R& + R2S2 +
R3S3. Then {wlf w2} generates the center ,3- It is easy to see that
St = R2- N2, St = Nί- Rt and N,R, - R,N, - >S3, N2R2 = R2N2 - SΛ,

substitute into wl9 w2 we get

(11) Wl = S3

2 + 2S3 - Rl + Nί + N2

2 - 2(R1N1 + R2N2)

(12) w2 =

Use the formula for Φξ'λ(x) in the above lemma, a direct computation
gives us

(13) wmtX0) = P2 - λ2 - 1 , w2Φξ'\l) = p\ .

Now, Φξ'λ = l/(2s + 1) Trace (Wi**), and for xeG, we can write x =
k,αtk21 K k2eK, αteA+

p, so Ψ*>\x) = Ψξ^k.αA) = D ' ί W ' W W .
Then this function determined by the restriction of Ψf>λ to A%. Let
t Φ 0, define Ad(ατι)X = ατγXαu Xeg0; then we have

Ad ( a r 1 ) ^ = coshί JBX — sinht S 2 ,
(14)

Ad {ατι)Rz = coshί J22 + sinhί S1 .

By substitution, we get
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wγ = Sξ + 2 cothί S, + coth2* {R\ + JB|)

+ csch21 Ad (ar 1 )^ 2 + Rt)
- 2 coth ί csch t ((Ad (

((Ad (aτί)R2)Rί) - (i2? + R\ + Rt)

w* S*R3 + c o t h ί -ββ - cschί ((Ad (aτ1)R1)R2(16)

- (Ad ( o r 1 ) ] ^ .

Hence for ί > 0, apply w1; iί?2 on ^f ^αt), we get

(17) + (coth2ί -

+ coth ί csch t(XΨξ x(at)Y + YΨξ \at)X)

+ s(s + l)ΨξΛ{at) = (p2 - λ2 -

jΨξ\at)at
(18) .

-±CBcht(XΨ>'i(at)Y- YΨξ>\at)X) =

where X= D^R,) - iD8(R2), Y= -D^R,) - iD8(R2). Since uθat =
%0 G M, αf 6 Ap, by (5) we see that Ψf>λ(at) is a diagonal matrix, so let
Wf j be the jΓth. diagonal element, j = — s, — s + 1, ••-,§, we see from
(18) and (6)

- ii^J'M ~ ϋ
at

(19) - i-
Δ

- (s - j)(s -3 + l)Ψ>.?U«t)) =

Hence for j — s, s — 1, s — 2, •• , — s + 1, we get

(s + j)(s -j + ΐ)

(20) = 2jfψfjat) + 2j
at/

α,) + (s - j)(β + i + 1) cschίy.^+i(ot) .

Therefore, ΨξJ(at) is determined by knowing Ψξ',l{at), t > 0. Con-
sider the sth diagonal element of (17) + 2i cothί (18), we find that
Ψv

s',l(at) satisfies the following differential equation

<p"(t) + 2(1 + s) c o t W ( ί )

+ ((s + I)2 - p* + λ2 - 2ϊpλ cothί)9(ί) = 0 .
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This is a differential equations with regular singular point at t = 0.
The inditial equation f(z) = z(z + 1 + s), so we have zί = 0 and
z2 = — (1 + s) as roots for f(z) = 0. From the general theory of
such differential equation [e.g. 1, Ch. 4] we have

PROPOSITION 3.3. Two linearly independent solutions of (21) can
be represented in the following form

(22) φx(t) = t iUάt) = ϋi(t)

(23) φ2(t) .= t »ϊ7a(t) + α^OO In ί

here U1 and U2 are analytic on [0, ©o) wn£/?, C/̂ O) = ί72(0) = 1 and a
is some constant.

COROLLARY 1. The function Ψξ:λ

s{at) = φ^t).

Proof. The only solutions of (21) which are bounded at t = 0
are constant multiples of φ^t) and we know that Wξ;ί(l) = 1.

Let 9?i(ί) = ΣΓ=o Ciίy. We will compute the coefficients cά more
explicitly. Since lim^o* cothί = 1, we get

(24) cotλί = — + Σ M 3 "
t 3=0

with g(t) = ΣΓ=o ̂ j ^ analytic at ί = 0. Substitute φ^t) into (21), we
get

(25) 2(1 + s)cx - 2ipXc0 = 0

and the recursion formula, j = 2, 3, •

i(3 + 1 + 2s)c, - [̂ >2 - λ2 - (s + l)2]c, _2 - 2(1 + β) Σ rcraj+r

(26)

Σ

COROLLARY 2. Two spherical functions Φf1>h and Φξ2'2* of type
s are equal if and only if (p2, λa) = ± (pίf \) or (p2, λ2) = ± i(Xu — pλ).

Proof. From earlier discussion, it suffices to consider the func-
tions Ψv

8)^{at) and Ψΐ*ιλ*(at), hence their corresponding coefficients
derived from (25) and (26). Clearly then it is equivalent to have

and p\ — λ2 = p\ — λ2 and the corollary follows.

PROPOSITION 3.4. Φ*tλ is bounded ifx = σ + ib with σ, be R and
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Proof. Let xeG and wr i te % — hajc^ wi th t Ξ> 0. Then

Φΐ'^x-1) = Φ' Kfcafa-1) = Φi'ι(VeJc1at)-1)

= \
J K

Now, write k = uψ]vθuφ2, then atk = (u^i;^, uψ2)at,n, neN,

i> f O θ . _f 9 θ
0 — 0 (*f\oί ___ -4— 0 Gin _

2 2

cos — - β(ί~ί0/2 cos — , sin — = β"(ί+ί/)/2 sin — , 0 < θ'< π .
2 2 2 2

Thus by (4) and (5) we get

(29) Φf\x~ι) = — Γexp (-(iλ + Vft^DL^Jiv^kJc^e) sin d̂/9 .
2 Jo

I £ { = 0, then ί' = 0 and the integral (29) bounds by 1. If t > 0, by
(28) with change of variable gives

1 8 V

and

I Φ**\χ-1) I < — Γ ewdt - s m h ^ < 1 .
1 v " - 2sinhί J-« δsinhί "

4* The analogue of Paley-Wiener theorem* Let

B8 = {(p, λ) :p = - s , - s + 1, •••, s λeC} .

For each pair (p, λ) e B8, there corresponds a spherical functions Φξ'λ

of type s. Let / 6 IC,S(G), the Fourier-Laplace transform / of / is
a function defined on B8 by

(30) f(p, λ) - ( f(x)Φ* λ(x)dx .

Given / e IC(G). Let 5/ = {at e Ap: /(&αβ) =£ 0 for some & 6 K}.
We say that / has support in the ball of radius R if sup{ | ί | :α ί€
Bf} ^ R. Clearly / has compact support if and only if there exists
an R which is finite. For each Ds e K, define

(31) F}(at) = e* \ [ f{katn)Ds{k-ι)dkdn .

This gives a map of Ap to the space of linear operators L(E8) on E8.
It is easy to see that F} = F} , f e IC(G) and /, = /*χ..
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LEMMA 4.1. Let neN,ateAP and write atn — kxatlk2 for some
ku k2eK. Then ( ί j ^ | ί |.

Proof. Let w = | ), zeC and kj = (-'' ^') with K |2 +
\0 1/ \/5i α,/

I &• |2 = 1, j = 1, 2. Equat ing t h e corresponding matr ix coefficients
from atnk2

λ yields e* + (1 + | z \2)e~ι = eh + e~h, i.e., 2 cosh^ + eι\z |2.
Thus l ί j ^ | ί | .

PROPOSITION 4.2. Let f e IC,S(G) have support in the ball of radius
R, then Fs

f is C°° with support in {at:\t\ ^ R}.

Proof. Suppose Fs

f(at) Φ 0, then f(katn) Φ 0 for some k e K,
neN. Now katn = kxatιk2 for some klyk2^K and ahe Ap. Thus
atn = k~%ahk2 and f{k2kxat) = fik&tfr^ = f{katn) φQ. By the above
lemma and the assumption we get | ί | ^ | ^ | ^ i2. Differentiability
is clear.

PROPOSITION 4.3. The map f —* F} is a one-to-one algebra homo-
morphism of IC,S(G) into C?(AP, L(ES)).

Proof. Let /, ge Ic,s(t), use Fubini's theorem repeatedly

F}*g(at) = e*[ [ (f*g)(katn)D9(k-1)dkdn

= e* \ [ [ f(katnχ-1)g(x)D8(k-1)dxdkdn
JK JN JG

= A \ \ \ \
JK JN JK JAP IN

x

JAp JK JN JK JN*

x D8(kτ1)dkίdn1dkdrdt1

= \ Fftatar'W'ia^d^ = F}*Fs

g(at) .
JAV

The linearity is trivial, hence it is algebra homomorphism. As for
one-to-one, given fe IC,S(G) a n d F} = 0, to show / = 0. Note first
that F}(at)Ds(uθ) = D8(uθ)F8

f(at), hence F}(at) is a diagonal matrix.
Prom (10) and Lemma 3.2, we see that if F}>P(at) is the pth diagonal
element of F}(at),

(32) ί F},P{at)e-iλtdt = \ f{x)Φ*>\x)dx.
JAυ JG
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If F} = 0, then F}ιP = 0 for all p, hence f(p, X) = 0 for all p, X.
Thus Up'λ(f) = 0 for all p, λ. But the set {UpJ} forms a complete
set of representations on G, thus we get / — 0.

COROLLARY. IC,8(G) is commutative.

For each nonnegative real number R, let HS{R) be the set of
functions g defined on Bs satisfying (i) g is entire holomorphic in λ;
(ii) g(pf λ) = g(-p, -λ), (p, X)eBs; (iii) #(p, λ) = g(i\ -ip) if both
(p, λ) and (iλ, — ip) are in I?s; (iv) given a positive integer m, there
exists a constant Cw such that |'g(p, X) | ^ Cm(l + | λ|)~mexpi2|)7|,
λ = £ + iη e R + IB. Let ifs be the union of all the HS(R).

Given / in JC,8(G), by Corollary 2 of Proposition 3.3 we see the
function / defined in (30) satisfies conditions (i), (ii), (iii) of the defi-
nition of Hs. By (32), f(p, X) is just the usual Fourier transform of
the function F}ιP on the real line, which is C°° with compact support,
hence / is holomorphic in λ. If / has support in the ball of radius
R, so is Ff, hence the classical Paley-Wiener theorem asserts that
fe HS(R). Thus we have a linear map /—•/of IC,S(G) into Hs such
that if / has support in the ball of radius R, we get fe HS(R). We
want to show that this map is also onto now.

In the inversion formula (8), when /e/β,,(G), it is easy to see
that Trace (U*>\χ-ι)U*'x(f)) = (2s + l)f(p, X)Φt\x'1) for p = -s , -s +
1, •••, s; and Up>λ(f) = 0 otherwise. Thus we have

(33) f{χ) = 2 β i l £ ( . + λ ^ x,)*;.^
4ττ3 P=-S

LEMMA 4.4. Let geH8(R) and define

(34) Ux) = Σ Γ (P2 + ^2MP, λ)Φf ̂ (aj

/ € Ic,s(G) and fλ has support in the ball of radius R.

Proof. Since g(p, X) decreases rapidly at infinity on λ and Φξ'λ is
C°° and bounded when λ is real, the integral converges absolutely and
defines a C°° function on G. By the property of ΦitX, it is clear that
f(k x AT1) = /(a?), heK, xeG and /*%, = / l β It remains to show that
/x has support in the ball of radius R. Thus let x = kxat with kxe K
and tΦύ. Since α* e Bfl if and only if α_* G J5A, may assume that
t > 0. Using the expression and notation in Proposition 3.4, we get

(35)

x DL

Σ Diχkd Γ Γ
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For each p, j = — s, — s + 1, , s, define

(36) fPj(t) = Γ Γ (p2 + X*)g(p, X)e-iλtfDLp>j(vjί)Dl_p(vθf)dtfdX .
Jλ oo Jtr — t

Let t > R, to show /X^α*) = 0, it suffices to show that Σi=- /p,iOO = °
for all j . Let

(37) hP{t') = Γ (p2 + λ2Mp, λ)β-""dλ .
J—oo

By the classical Paley-Wiener theorem, hP(t') = 0 if t' > R. Thus

(38) Λ f i(ί) = Γ hP(t')DLPti(v^)Dl^(v9t)dtf .
J—oo

Put xγ = e*', α;2 = e - ί /, then by (5), (28) we get

( 3 9 ) (β + j)! (« - i

x (α?!̂  - β̂ a?! + x2) + e2ί)s+i] .

The above expression is just the linear combination of terms

with coefficients as functions of t, and rl9 r2 ^ 0 , rx + r2 ^ 2s. Pick
one of these terms and consider the two integrals

(40) = 2π

X f

} j ( L + 2 — s + £>)! (Ti — s —

(n + r2 - s + p)\ (rx -

-ί(τ2 + ί?))2]#(ί?, —ί(^2

<V _L r V <r
V' 1 ~ ' 2/ ' :

- s — p)l

+ P»

1 2 \ ' 1 I * 2 *5 I jt*) * \ 1 ir)m

x r2(r2 + 2p)#(p, - ΐ ( r 2 + p))

(41) = 2π m l n g 1 + - s l (rt + rjl r tl Γ
j — s + p)! (r! + r 2 — s — p)!

- p)).
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By changing the index and the fact that

(r* ~ PΪ) = 9(P - rit -ip) ,

we get the sum of (40) and (41) is zero. Now the lemma is clear.
Combine the above discussion, we get the following analogue of

Paley-Wiener theorem.

PROPOSITION 4.5. The Fourier transform f to f defined in (30)
is a one-to-one algebra homomorphism of IC,8(G) onto H8. A function
f in Ic,s(G) has support in the ball of radius R if and only if f is
in HS(R).

Let Ll(G) be the closure of IC,8(G) in L\G). Given feL](G),
by Proposition 3.4, the integral

(42) f(p, X) =

is defined for (p, λ) e Bs with λ = ζ + iη, \ η | ^ 1. Then we have the
following analogue of Riemann Lebesgue lemma.

PROPOSITION 4.6. Let f e L\(G) and define f as in (42), then
limξ^±00 f(p, ζ + ifj) ~ 0 uniformly for | η \ ^ 1.

Proof. Given ε > 0, choose g in IC>S(G) such t h a t \\f — g\\ι< ε/2.

But t h e n we h a v e

(43) | / ( p , λ) - §{p, λ) I ^ \ I f(x) - g(x) | dx < ε/2 .
JG

Choose R, C such that

(44) I g(p, λ) I ̂  C(l + I λ I)"
1
 exp R \ η \ ̂  C(l + | λ I)"

1
 exp R

since \η\ ^ 1. Combine (43), (44) we get \f(p, λ) | < ε when \ζ \ is
large enough.

Let B = {(s, p, λ): s is a nonnegative integer or half integer,
(p, λ) 6 Bs}. Given / e IC(G) and (s, p, λ) e B, define

(45) f{s, p, λ) = \ f(x)Φ»>\x)dx .
JG

It is clear that f(s, p, λ) = fs(p, λ).

LEMMA 4.7. Let f e IC(G). Then f has support in the ball of
radius R if and only if f8 has support in the ball of radius R for
all s.
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Proof. By definition, fs(x) = [ f{k~ιx)χs{k)dk. Thus if / has sup-

port in the ball of radius R and f&k&ύ Φ 0 with kλe K, ate Ap, we
have f(k~%at) Φ 0 for some k e K and therefore \t\ ^ R. The
converse follows from the fact that Σ s / S converges to / absolutely,
[8, vol. I, p. 264].

PROPOSITION 4.8. The map f—*f defined in (45) is a one-to-one
algebra homomorphism of IC(G) into the algebra of all functions g
on B satisfying (i) g(s, p, X) is entire holomorphic in λ, (ii) g(s, p, X) —
Φ, -p, - λ ) , (s, p, λ ) e B , (iii) g(s, p, λ) = g(sf iX, -ip) if both (s, p, X)
and (s, iX, —ip) are in B, (iv) there exists R > 0, for each given
positive integer m, there exists Cm>s such that

I g(s, p, X) I ̂  Cm,s(l + I λ \)~m exvR\η\,ξ + iηeR + iR.

Proof. This is clear by Proposition 4.6 and Lemma 4.7.

COROLLARY. Let f e ^ ( G ) . 2 7 ^ /(s, p, λ) is defined forX = ξ +
iη,\η\<^l and lim^± 0 0/(s, p, ζ + iη) = 0 for \ η \ ̂  1.
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