Vol. 53, No. 1, 1974

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Strongly unique best approximates to a function on a set, and a finite subset thereof

Martin Bartelt

Vol. 53 (1974), No. 1, 1–9
Abstract

Let X be a compact Hausdorff space and let C(X) denote the space of continuous real valued functions defined on X, normed by the supremum norm f= maxxX|f(x)|. Let M be a finite dimensional subspace of C(X). This note examines the problem of whether every best (unique best, strongly unique best) approximate to f on X is also a best respectively: unique best, strongly unique best) approximate to f on some finite subset of X. Appropriate converse results are also considered.

Mathematical Subject Classification 2000
Primary: 41A50
Milestones
Received: 13 July 1973
Revised: 21 September 1973
Published: 1 July 1974
Authors
Martin Bartelt